

Rational Rhapsody User Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2009.

US Government Users Restricted Rights - Use, duplication, or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
ii

Contents
Introduction to Rational Rhapsody . 1
Rational Rhapsody features . 2

UML design essentials . 3
UML diagrams. 4
UML views. 5
Diagrams in Rational Rhapsody . 6
Specify a model with Rational Rhapsody . 7

Development methodology . 7
Analysis . 7
Design . 8
Implementation . 9
The testing phase . 9

Rational Rhapsody tools . 10
The Rational Rhapsody browser . 10
The Favorites browser . 11
Diagram tools . 12
Graphic editors . 13
Code generator . 15
Animator . 15
Utilities. 15
Third-party interfaces . 16

Rational Rhapsody windows . 17
View menu commands . 19
Browser . 22
Diagram drawing area. 23
Diagram navigator . 24
Output window . 24
Active Code View window . 33
Welcome window . 33

Rational Rhapsody project tools . 33
Browser filter . 34
Standard tools . 35
Edit menu commands . 36
Rational Rhapsody iii

Table of Contents
Tools for Generating and running code. 37
Tools for managing and arranging windows . 39
Tools for the Favorites browser. 40
Tools for the VBA interface options. 40
Tools for animation . 40
Tools for creating and editing diagram elements . 40
Tools for common annotations . 41
Tools for zooming diagram views . 41
Tools for formatting text . 42
Tools for the layout of elements . 42
Tools for free shapes . 42

Creating diagrams . 43
Tools for creating/opening diagrams. 44
Opening the main diagram . 45
Locating in the browser . 45

Add new elements . 46
Add New > Event . 46
Add New > Interface . 46
Add New > Actor . 46
Add New > Tag . 46
Add New > Use Case . 46
Add New > Requirement . 46
Add New > Flow Item . 47

The Features window . 48
Open the Features window . 48
Applying changes with the Features window . 48
Canceling changes on the Features window. 49
General tab . 49
Properties tab . 49
Pinning the Features window . 50
Hiding the buttons on the Features window . 50
Docking the Features window . 50
Undocking the Features window . 51
Opening multiple instances of the Features window. 51
Displaying a tab on the Features window in a stand-alone window . 51
Docking a stand-alone window for a Features window tab . 52
Undocking a stand-alone window for a Features window tab . 52
Hiding tabs on the Features window . 53

Hyperlinks . 55
Create hyperlinks . 56
Following a hyperlink. 58
Edit a hyperlink . 58
Deleting a hyperlink. 59
iv User Guide

Table of Contents
Hyperlink limitations . 59

Create a diagram . 60
Creating a diagram . 60

Create a Rational Rhapsody project . 60
Creating a Rational Rhapsody project. 60

Import a Rational Rhapsody project . 61
Importing a Rational Rhapsody project . 61

Import source code . 62
Importing source code. 62

Search window . 62

Graphic editors . 62

Call stack and event queue . 63

Classes and types . 65
Creating a class . 65

Class features . 65
Defining the characteristics of a class. 66
Defining the attributes of a class . 67
Class operations . 71
Primitive operations. 72
Receptions . 73
Triggered operations . 75
Constructors . 76
Destructors . 79
Define class ports . 80
Define relations . 80
Showing all relations for a class, object, or package in a diagram . 82
Defining class tags . 83
Defining class properties. 83

Adding a class derivation . 84

Making a class an instance . 85

Defining class behavior . 85

Generating, editing, and roundtripping class code . 85
Generating class code . 85
Editing class code . 86
Roundtripping class code . 86

Opening the main diagram for a class . 87

Display option settings . 87
Rational Rhapsody v

Table of Contents
General tab display options. 88
Displaying attributes and operations . 89

Removing or deleting a class. 90

Ports . 90
Partial specification of ports . 91
Considerations . 91
Creating a port . 92

Specifying the features of a port . 93
The Port General tab. 93
The Port Contract tab . 94
The Tags tab . 96
The Properties tab. 96

Viewing ports in the browser . 97

Connecting ports. 97

Using rapid ports. 97

Selecting which ports to display in the diagram . 100
Creating a new port for a class . 100
Showing all ports . 100
Showing new ports only . 100
Hiding all ports . 100
Deleting a port . 101
Programming with the port APIs in C++ . 101
Port code generation in C . 104
Port code generation in Java . 105

Composite types . 106
Creating enumerated types. 107
Creating language types . 108
Using %s . 108
Creating structures . 109
Creating Typedefs. 110
Creating unions . 110
Properties . 111

Language-independent types. 113
Changing the type mapping . 114
Changing the order of types in the generated code . 115

Using fixed-point variables. 117
Defining fixed-point variables . 117
Operations permitted for fixed-point variables. 118
Restrictions on use of fixed-point variables. 118
Fixed-point conversion macros . 119
vi User Guide

Table of Contents
Java enums . 120
Adding a Java enum to a model . 120
Defining constants for a Java enum . 120
Adding Java enums to an object model diagram . 121
Code generation . 121
Creating Java enums with the Rational Rhapsody API. 121

Template classes and generic classes . 122
Creating a template class . 122
Using template classes as generalizations . 124
Creating an operations template . 124
Creating a functions template . 125
Instantiating a template class . 125
Code generation and templates . 126
Template limitations . 126

Eclipse platform integration . 127
Platform integration prerequisites. 128

Confirming your Rational Rhapsody Platform Integration within Eclipse. 128

Rational Rhapsody Platform Integration within Eclipse . 129
Rational Rhapsody perspectives in Eclipse . 129
Rational Rhapsody Eclipse support for add-on tools . 132

Eclipse projects . 133
Creating a new Rational Rhapsody project within Eclipse . 133
Opening a Rational Rhapsody project in Eclipse . 133
Adding new elements . 134
Filtering out file types . 134
Exporting Eclipse source code to a Rational Rhapsody project . 135
Importing Rational Rhapsody units . 136
Importing source code (reverse engineering) . 136
Search and replace in models. 137
Accessing the Rational Rhapsody search facility in Eclipse . 138

Generate and edit code. 140
Checking the model . 140
Generate code . 141
Selecting Dynamic Model-Code Associativity . 143
Edit code . 143

Build, debug, and animate . 145
Building your Eclipse project . 145
Debugging your Eclipse project . 146
Rational Rhapsody animation in Eclipse. 146

Eclipse configuration management. 149
Rational Rhapsody vii

Table of Contents
Parallel development. 149
Configuration management and Rational Rhapsody unit view . 150
Sharing a Rational Rhapsody model. 151
Performing team operations . 152
Rational Rhapsody DiffMerge facility in Eclipse . 153

Generate Rational Rhapsody reports . 153
Generating a report . 153

Properties . 155
Rational Rhapsody properties overview . 155

Property groups and definitions . 156
Subjects . 157
Metaclasses . 159

Regular expressions . 160
Regular expression syntax . 160
Parsing regular expressions . 161

Property file format . 162

Rational Rhapsody keywords . 163
Predefined variables . 163
Map custom properties to keywords . 176

Rational Rhapsody properties . 177
Using the Properties tab in the Features window . 177
PRP files . 187

Property inheritance . 192

Concepts used in properties . 193
Static architectures . 193
IncludeFiles . 193
Selective framework includes . 194
Reactive classes . 194
Units of collaboration. 194
The Executer . 195

Rational Rhapsody environment variables. 196

Format properties . 201
Defining default characteristics . 202
Defining line characteristics. 203

Rational Rhapsody projects . 205
Project elements . 205

Creating and managing projects . 206
viii User Guide

Table of Contents
Creating a project . 206
Profiles . 207
Opening an existing Rational Rhapsody project . 209
Search and replace facility . 209
Locating and listing specific items in a model . 213
File menu commands . 214
Editing and changing a project . 215
Using IDF for a Rational Rhapsody in C project . 217
Saving a project . 217
Renaming a project . 219
Refactoring or renaming in the user code . 219
Closing all diagrams . 220
Closing a project . 220
Closing Rational Rhapsody. 220
Creating and loading backup projects. 220
Archiving a project. 221

Table and matrix views of data . 222
Basic method to create views from layouts . 222
Creating a table layout . 223
Creating a table view. 226
Creating a matrix layout . 228
Creating a matrix view. 230
Setting up an initial layout for table and matrix views . 234
Managing table or matrix data. 236

The Rational Rhapsody specialized editions . 237
Creating projects in Rational Rhapsody Designer for Systems Engineers . 237
Creating projects in Rational Rhapsody Architect for Systems Engineers . 239
Creating projects in Rational Rhapsody Architect for Software. 240

Components with variants for software product lines . 241
Creating variation points . 241
Defining variants . 242
Selecting a variant. 243
Generating code for software variations . 243

Multiple projects . 244
Inserting an existing project . 244
Inserting a new project . 245
Setting the active project . 245
Copy and reference elements among projects . 246
Moving elements among projects . 248
Closing all open projects . 248
Managing project lists . 248
Project limitations . 249
Rational Rhapsody ix

Table of Contents
Naming conventions and guidelines . 251
Guidelines for naming model elements. 251
Standard prefixes . 252

Using project units . 253
Unit characteristics and guidelines . 254
Separating a project into units. 255
Modifying units . 256
Saving individual units. 256
Loading and unloading units . 256
Saving packages in separate directories. 258
Using environment variables with reference units. 260
Preventing unresolved references . 261

Using workspaces . 262
Creating a custom Rational Rhapsody workspace . 262
Adding units to a workspace . 262
Unloaded units . 262
Opening a project with workspace information . 263
Controlling workspace window preferences . 263

Project files and directories . 264

Parallel project development . 266
Unit types . 266
DiffMerge tool functions . 267

Project migration and multi-language projects . 268
Opening models from a different language version. 268
Multi-language projects . 269

Domain-specific projects and the NetCentric profile. 272
Creating a NetCentric project . 275
Creating a service contract to export as WSDL . 275
Exporting a WSDL specification file . 276
Importing a WSDL specification . 276

Schedulability, Performance, and Time (SPT) profile . 277
Manually adding the SPT profile to your model. 277
Using the stereotypes and tagged values . 278
Changing the profile . 278

Rational Rhapsody with IDEs. 279
IDE options . 279
Locating Rational Rhapsody elements in an IDE . 279
Opening the IDE . 279
Creating an IDE project . 279

Using the Rational Rhapsody Workflow Integration with Eclipse . 280
Converting a Rational Rhapsody configuration to Eclipse . 281
x User Guide

Table of Contents
Importing Eclipse projects into Rational Rhapsody. 281
Creating a new Eclipse configuration . 282
Troubleshooting your Eclipse installation with Rational Rhapsody . 283
Switching between Eclipse and Wind River Workbench. 284
Rational Rhapsody tags for the Eclipse configuration. 284
Configuring Rational Rhapsody for Eclipse. 284
Eclipse workbench properties . 285
Editing Rational Rhapsody code using Eclipse. 286
Locating implementation code in Eclipse . 286
Opening an existing Eclipse configuration . 286
Disassociating an Eclipse project from Rational Rhapsody . 287
Workflow integration with Eclipse limitations. 287

Visual Studio IDE with Rational Rhapsody . 288
Changing an existing Rational Rhapsody configuration to Visual Studio . 288
Adding a new Visual Studio configuration. 288
Creating a new Visual Studio project . 288

Co-debugging with Tornado. 289
Preparing the Tornado IDE . 289
IDE operation in Rational Rhapsody . 290
Co-debugging with the Tornado debugger . 290
IDE properties . 291

Creating Rational Rhapsody SDL blocks . 292

Model elements . 295
Browser techniques for project management . 295

Opening the Rational Rhapsody browser . 296
Browser display options . 296
Basic browser icons . 299
Rational Rhapsody browser menu options . 302
Deleting items from the Rational Rhapsody browser . 303

The Browse From Here browser . 304
Opening a Browse From Here browser. 304
Closing a Browse From Here browser . 304
Navigating a Browse From Here browser . 305
Deleting items from the Browse From Here browser . 305
Browse From Here browser limitations . 305

The Favorites browser . 306
Favorites toolbar . 307
Showing and hiding the Favorites browser . 307
Creating your Favorites list . 308
Creating a folder structure for your Favorites . 309
Re-ordering the items on your Favorites list . 310
Rational Rhapsody xi

Table of Contents
Removing items from your Favorites list . 311
Favorites browser limitations. 312

Elements. 313
Adding elements . 313
Naming new elements in the browser . 314
Browser settings . 314

Components. 315
Configurations . 315
Configuration files . 315

Packages . 316
Package design guidelines . 316
Creating a package . 317
Using functions . 318
Using objects. 318
Using variables . 319
Dependencies . 320
Constraints . 320
Classes . 320
Types . 320
Receptions . 320
Events . 320
Actors . 321
Use cases . 321
Nodes . 321
Files. 321

Diagrams . 322
Adding diagrams . 322
Locating an element on a diagrams . 323

Element identification and paths . 326

Descriptive labels for elements . 327
Setting properties for Asian languages . 327
Adding a label to an element. 329
Removing a label from an element . 330
Label mode . 330

Modify elements . 331
Moving elements . 331
Copying elements . 332
Renaming elements . 332
Deleting elements . 333
Editing multiple elements . 333
Re-ordering elements in the browser . 334
xii User Guide

Table of Contents
Displaying stereotypes of model elements . 335
Creating graphical elements . 336

Smart drag-and-drop. 339

Searching in the model . 342
Finding element references. 342
Advanced search and replace features. 343
Using the auto replace feature . 344
Searching for elements . 345
Searching in field types . 346
Previewing in the search and replace facility . 348

Controlled files . 349
Creating a controlled file . 350
Browsing to a controlled file . 351
Controlled file features . 352
Troubleshooting controlled files . 356
Controlled file limitations . 357

Print Rational Rhapsody diagrams . 360
Selecting which diagrams to print . 360
Diagram print settings . 362
Using page breaks . 363

Exporting Rational Rhapsody diagrams . 364

Annotations for diagrams. 365
Creating annotations . 366
Editing annotation text. 368
Defining the features of an annotation . 368
Converting notes to comments . 370
Anchoring annotations . 370
Changing the display options for annotations . 372
Deleting an annotation . 373
Using annotations with other tools . 374
Annotation limitations . 374

Profiles . 375
Creating a project without a profile . 376
Backward compatibility profiles . 377
Types of profiles . 378
Converting packages and profiles. 378
Profile properties . 378
Use a profile to enable access to your custom help file . 379

Stereotypes . 385
Associating stereotypes with an element . 385
Associate a stereotype with a new term element . 386
Rational Rhapsody xiii

Table of Contents
Re-ordering stereotypes in a list . 387
Associating a stereotype with a bitmap. 387
Deleting stereotypes . 388
Establishing stereotype inheritance . 389
Special stereotypes. 389

Use tags to add element information . 390
Defining a stereotype tag . 390
Defining a global tag . 391
Defining a tag for an individual element . 391
Adding a value to a tag . 391
Deleting a tag . 393

The Internal code editor . 395
Window properties . 395

The Color/Font tab . 395
The Language/Tabs tab . 398
The Keyboard tab . 399
The Misc tab . 403

Mouse actions . 405

Using Undo and Redo . 405

Using the search feature of the internal code editor . 406

Bookmarks . 407

Printing from the internal code editor . 408

Graphic editors . 409
Create new diagrams . 409

Creating new statecharts . 409
Creating new activity diagrams . 409
Creating all other diagram types . 410

Opening existing diagrams . 411
Navigating forward from opened diagram to opened diagram . 411
Navigating backwards from opened diagram to opened diagram. 411

Deleting diagrams . 412

Automatically populating a diagram . 412
Relation type styles . 412
Creating and populating a new diagram . 413
Automatically populating existing diagrams . 415

Property settings for the diagram editor. 416

Setting diagram fill color . 417
xiv User Guide

Table of Contents
Create elements. 417
Repetitive drawing mode. 418
Drawing boxes . 418
Drawing arrows . 419
Naming boxes and arrows . 421
Draw freestyle shapes. 422

Placing elements using the grid . 428
Setting the grid properties . 428
Snapping to the grid . 428
Displaying the rulers . 428

Autoscroll. 429

Select elements . 430
Selecting elements using the mouse . 430
Selecting elements using the edit menu . 430
Selection handles . 431
Selecting multiple elements . 431

Edit elements . 433
Resizing elements . 434
Moving control points . 434
Moving elements . 435
Maintain line shape when moving or stretching elements. 435
Change the format of a single element . 436
Copying formatting from one element to another . 440
Changing the format of a metaclass . 441
Making the format for an element the default formatting. 445
Copy an element . 445
Arranging elements . 448
Removing an element from the view. 451
Deleting an element from the model . 451
Editing text . 452

Display compartments . 453
Selecting items to display . 453
Display stereotype of items in list . 454

Zoom. 455
Zoom toolbar . 455
Zooming in and zooming out . 456
Refreshing the display. 456
Scaling a diagram . 457
Panning a diagram . 457
Undoing a zoom . 457
Specifying the specification or structured view . 457
Rational Rhapsody xv

Table of Contents
The Bird’s Eye (diagram navigator) . 459
Showing and hiding the Bird’s Eye window. 459
Navigating to a specific area of a diagram . 459
Using the Bird’s Eye to enlarge and shrink the visible area . 459
Scrolling and zooming in drawing area . 460
Changing the appearance of the viewport . 460
General characteristics of the Bird’s Eye window . 460

Complete relations . 461

Use IntelliVisor. 462
Activating IntelliVisor . 462
IntelliVisor information. 463

Customizations for Rational Rhapsody . 469
Helpers . 470

Creating a link to a helper application . 472
Adding a VBA macro. 479

Visual Basic for applications . 481
VBA and Rational Rhapsody. 481
The VBA project file . 481
VBA versus VB programs . 481
Writing VBA macros . 482
Creating and editing macros . 483
Exporting and importing VBA macros . 485

Creating a customized profile . 486
Creating a new stereotype for the new profile. 487
Re-using your customized profile . 487

Adding new element types . 489
New terms and their properties . 489
Availability of out-of-the-box model elements . 490

Creating a customized diagram . 493
Adding customized diagrams to the diagrams toolbar . 494
Creating a customized diagram element. 494
Adding customized diagram elements . 496
Diagram types . 496
Diagram elements . 497

Customize the Add New menu . 501
Re-organizing the common list section of the Add New menu . 501
Re-organizing the bottom section of the Add New menu . 502
Customizing the Add New menu completely. 504
Re-using property changes to the Add New menu . 505
xvi User Guide

Table of Contents
Creating a Rational Rhapsody plug-in . 507
Writing a Java plug-in for Rational Rhapsody . 507
Creating a .hep file for the plug-in . 510
Attaching a .hep file to a profile . 512
Troubleshooting Rational Rhapsody plug-ins . 512
Debugging Rational Rhapsody plug-ins . 513
The simple plug-in sample . 515

Use case diagrams . 517
Use case diagrams overview . 517

Opening an existing use case diagram . 518

Create use case diagram elements . 519
Use case diagram drawing tools . 519
System boundary box . 520
Use cases . 520
Actors . 524
Creating packages . 526
Creating associations . 527
Creating generalizations . 527
Creating dependencies . 528
Sequences . 528

Object model diagrams . 529
Object model diagrams overview . 529

Object model diagram elements . 530
Object model diagram drawing tools . 530
Objects . 531

Opening an existing object model diagram . 532

Creating an object . 532

Object characteristics . 532
Parts in an object model diagram . 533
Object features . 534
Converting object types. 535
Converting classes to objects . 535
Code generation for objects . 536
Editing the declaration order of objects. 537
Changing the value of an instance . 537

Creating a vacuum pump model as an example . 540

Creating classes . 545
Class compartments . 545
Rational Rhapsody xvii

Table of Contents
Creating composite classes . 546

Creating a package . 547
Package features . 547
Inheritance . 548

Realization . 550

Associations . 551
Bi-directional associations. 551
Creating a bi-directional association . 552
Association features . 553
Directed associations . 558
Aggregation associations . 559
Composition associations . 561
Links . 565

Dependencies . 572
Dependency arrows . 572
Drawing the dependency . 573

Actors . 577
Creating an actor. 577
The actor menu . 577

Flows and flowitems . 578
Creating a flow . 579
Features of a flow . 581
Conveyed information . 582
Flow menu. 583
Flowitems . 583
Embedded flows . 586

Files . 587
Creating a file . 588
Converting files . 592
Associations and dependencies . 592
Code generation for files . 593
Files with other tools . 595

Attributes, operations, variables, functions, and types. 596
Adding details to the object model diagram . 596
Flow ports . 597

External elements . 599
Reverse engineering . 600
External elements created by modeling . 605
Converting external elements . 608

Implementation of the base classes . 613
xviii User Guide

Table of Contents
Implicit invocation . 613
Explicit invocation . 614
Namespace containment . 618

Activity diagrams . 621
Activity diagram features . 621

Advanced features of activity diagrams . 622

Actions . 622

Activity diagram elements . 623
Activity diagram drawing tools. 623
Drawing an action . 625
Modify the features of an action . 625
Displaying an action . 626
Activity frames. 626
Action blocks . 628
Subactivities . 630
Creating a final activity . 631
Object nodes . 632
Adding call behaviors . 634
Activity flows . 634
Connectors . 636
Join or fork bars . 638
Swimlanes. 642
Adding calls to behaviors . 646
Add action pins/activity parameters to diagrams. 648
Local termination semantics . 650

Code generation . 652
Functor classes . 652
Limitations and specified behavior . 654

Flow charts . 655
Define algorithms with flow charts . 655

Flow charts similarity to activity diagrams . 656

Create flow chart elements. 657
Tools for drawing flow charts. 657
Actions . 658
Action blocks . 660
Activity final . 662
Activity flows . 663
Connectors . 664
Rational Rhapsody xix

Table of Contents
Code generation . 666
Flow chart limitations and specified behavior . 666

Sequence diagrams. 669
Sequence diagram layout . 670

Names pane . 671
Message pane. 672

Analysis versus design mode . 672
Showing unrealized messages . 673
Realizing a selected element . 673

Creating sequence diagram elements. 674
Sequence diagram drawing tools . 674
Creating a system border . 676
Creating an instance line. 677
Creating a message . 681
Creating a reply message . 690
Drawing an arrow . 693
Creating a destroy arrow. 693
Creating a condition mark . 693
Creating a timeout . 694
Creating a cancelled timeout. 694
Creating an actor line . 695
Specifying a time interval . 695
Creating a dataflow . 696
Creating a partition line . 698
Creating an interaction occurrence . 698
Creating interaction operators. 701
Creating execution occurrences . 703
Shifting diagram elements with the mouse . 705
Display options . 706

Sequence diagrams in the browser . 706

Animation for selected classes . 707

Sequence diagram comparison . 707
Sequence comparison algorithm. 707
Comparing sequence diagrams . 708
Sequence comparison options . 710
The Instance Groups tab. 715
The Message Groups tab . 720

Statecharts . 725
States . 726
xx User Guide

Table of Contents
Opening an existing statechart . 727

Statechart drawing tools. 727

Drawing a state . 728
State name guidelines. 728
Features of states . 729
Display options for states . 731

Termination states. 732
Local termination code with the reusable statechart implementation . 732
Local termination code with flat statechart implementation. 733

Transitions . 735
Creating a statechart transition . 735
Features of transitions. 736
Types of transitions . 738
Selecting a trigger transition . 740

Transition labels . 741
Triggers . 741
Guards . 747
Actions . 749

Initial connectors. 750

Events and operations . 751

Sending events across address spaces . 752
Properties for sending events across address spaces . 752
API for sending events across address spaces . 753
Functions for serialization/unserialization . 754

Send action elements . 756
Defining send action elements . 756
Display options for send actions . 757
Graphical behavior of send actions. 757
Code generation for send actions . 757

And lines . 758
Drawing And lines . 758

Connectors. 759
Decision nodes . 760
History connectors . 761
Merge nodes . 762
Diagram connectors . 762
Termination connectors. 763
EnterExit points . 763

Submachines . 765
Rational Rhapsody xxi

Table of Contents
Creating a submachine . 765
Opening a submachine or parent statechart . 765
Deep transitions . 765
Merging a sub-statechart into its parent statechart . 766

Statechart semantics . 767
Single message run-to-completion processing . 767
Active transitions . 768
Transition selection . 768
Transition execution . 770
Active classes without statecharts. 770
Single-action statecharts . 770

Inherited statecharts . 771
Types of inheritance . 772
Inheritance color coding . 772
Inheritance rules . 773
Overriding inheritance rules . 776
Overriding textual information . 777
Refining the hierarchy of reactive classes. 778

IS_IN Query . 781

Message parameters . 783

Modeling of continuous time behavior . 785

Interrupt handlers . 785

Inlining of statechart code . 786

Tabular statecharts . 787
Format of statechart tables . 787
Modifying statecharts from tabular view . 788

Panel diagrams . 791
Panel diagram features . 792

Creating a panel diagram . 794

Create panel diagram elements . 795
Panel diagram drawing tools . 795
Drawing a bubble knob control . 796
Drawing a gauge control . 797
Drawing a meter control . 798
Drawing a level indicator control . 799
Drawing a matrix display control . 800
Drawing a digital display control . 801
Drawing an LED control . 802
Drawing an on/off switch control . 803
xxii User Guide

Table of Contents
Drawing a push button control . 804
Drawing a button array control . 805
Drawing a text box control. 806
Drawing a slider control. 807

Bind a control element to a model element . 808
Binding a control element . 809
More about binding a control element . 809

Change the settings for a control element . 811
Changing the settings for a control . 811

Change the properties for a control element . 812
Properties for a bubble knob control . 812
Properties for a gauge control . 814
Properties for a meter control . 817
Properties for a level indicator control . 820
Properties for a matrix display control . 822
Properties for a digital display control . 822
Properties for a LED control . 823
Properties for a on/off switch control . 824
Properties for a slider control . 825

Setting the value bindings for a button array control . 827

Changing the display name for a control element . 827

Panel diagram limitations . 828

Structure diagrams . 829
Structure diagram drawing Tools . 830

Composite classes . 830

Objects . 831
Creating an object . 831
Features of objects . 832
Actual Call window for objects. 833
Changing the order of objects . 833
Supported Rational Rhapsody functionality in objects . 834

Structure diagram ports . 835

Links and associations . 835

Dependency uses . 835

Flows mechanism . 835

External files in C . 836
Rational Rhapsody xxiii

Table of Contents
Collaboration diagrams . 837
Collaboration diagrams overview . 837

Collaboration diagram tools. 839

Classifier roles. 840

Multiple objects . 840

Actors . 841
Creating an actor. 841

Links . 841
Creating a link . 842
Features of links . 843
Changing the underlying association . 844

Link messages and reverse link messages . 844
Creating a link message or reverse link message. 845

Component diagrams . 847
Component diagram uses . 848

Component diagram drawing Tools . 849

Elements of a component diagram . 850
Components . 850
Files. 852
Folders . 855
Dependencies . 857
Component interfaces and realizations. 857
Flows. 858

Component configurations in the browser . 859
Component options . 859
Active component . 860
Configurations . 860
Configuration menu. 861
Setting the active configuration . 861
Features of configurations. 862
Using selective instrumentation. 866
Making permanent changes to the main file . 868
Creating components under a package . 869

Deployment diagrams . 871
Opening an existing deployment diagram . 872

Deployment diagram drawing tools. 872
xxiv User Guide

Table of Contents
Nodes . 873
Creating a node . 873
Changing the owner of a node . 874
Designating a CPU type . 874
Features of nodes . 874

Component instances . 875
Adding a component instance. 875
Moving a component instance . 877
Features of component instances . 877

Dependencies . 878
Adding a dependency . 878

Flows . 879

Assigning a package to a deployment diagram . 880

Checks . 881
Checker features . 881

The Checks tab . 882

Specifying which checks to run. 884

Checking the model . 885

Checks tab limitations . 885

User-defined checks . 886
Creating user-defined checks . 886
Removing user-defined checks. 887
Deploying user-defined checks . 888
External checks limitations . 888

List of Rational Rhapsody checks . 889

Basic code generation concepts . 909
Code generation overview . 909

The Code Toolbar . 912

Generating Code . 912
Incremental Code Generation . 912
Smart Generation of Packages . 913
Generating Code Guidelines. 914
Dynamic Model-Code Associativity . 914
Generating Makefiles . 914
Stopping Code Generation . 915

Targets . 916
Rational Rhapsody xxv

Table of Contents
Building the Target . 916
Deleting Old Objects Before Building Applications . 917

Running the Executable . 918
Shortcut for Creating an Executable . 918
Instrumentation . 918
Stopping Model Execution . 918

Generating Code for Individual Elements . 919
Using the Code Menu . 919
Using the Browser . 919
Using an Object Model Diagram . 919

Results of Code Generation . 920
Output Messages . 920
Locating and Fixing Compilation Errors . 920

Viewing and Editing the Generated Code . 921
Setting the Scope of the Code View Editor . 921
Adding Line Numbers . 922
Editing Code . 923
Locating Model Elements . 923
Regenerating Code in the Editor . 924
Associating Files with an Editor. 924
Using an External Editor . 925
Viewing Generated Operations . 925

Deleting Redundant Code Files . 926

Generating Code for Actors . 926
Selecting Actors Within a Component. 927
Limitations on Actor Characteristics . 927

Generating Code for Component Diagrams . 928

Cross-Package Initialization. 930

Class Code Structure . 932
Class Header File . 932
Implementation Files . 938

Changing the Order of Operations/Functions in Generated Code . 942

Using Code-Based Documentation Systems . 944
Template Properties . 944
Sample Usage. 945

Wrapping Code with #ifdef-#endif . 949

Overloading Operators . 949

Using Anonymous Instances . 954
Creating Anonymous Instances . 954
xxvi User Guide

Table of Contents
Deleting Anonymous Instances. 955
Deleting Components of a Composite. 955

Using Relations . 956
To-One Relations . 956
To-Many Relations . 956
Ordered To-Many Relations . 957
Qualified To-Many Relations. 957
Random Access To-Many Relations. 958

Support for Static Architectures . 959
Properties for Static Memory Allocation . 960
Static Memory Allocation Algorithm. 962
Static Memory Allocation Conditions. 963
Static Memory Allocation Limitations. 963

Using Standard Operations . 964
Applications for Standard Operations . 964
Creating Standard Operations . 966

Statechart Serialization. 970
Generating Methods for Serialization . 970
Serialization Properties . 970
Methods Provided for Implementing Serialization . 971

Generating Classes as Structs in C++. 972

Components-based Development in C . 973
Action Language for Code Generation . 974
C Optimization. 975
Backward Compatibility . 976
Limitations . 976

Customize C code generation . 977
Code customization concepts . 977

Customizing code generation . 978

Viewing the simplified model . 979

Customize the generation of the simplified model . 979
Properties used for simplification . 979
Customizing the code writer . 980
Customizing the C rules . 981
Deploying the changed rules. 984

Reverse engineering . 985
Reverse engineering restrictions. 985
Rational Rhapsody xxvii

Table of Contents
Reverse engineering legacy code . 986
Reverse engineering tool features . 986
Displaying files in a tree view . 987
Displaying files in a flat view . 989
Reverse engineering messages in the Output window . 990

Initializing the Reverse Engineering window . 991

Excluding particular files . 992

Analyzing makefiles . 992

Visualization of external elements. 994

Defining preprocessor symbols. 995
Adding a preprocessing symbol . 996

Analyzing #include files . 1003

Mapping classes to types and packages . 1008
Specifying directory structures . 1014

Specifying reference classes . 1016
Reference classes. 1018
Locating a directory that contains reference classes . 1019

Miscellaneous reverse engineering options. 1020
Modeling classes as Rational Rhapsody types. 1023
Reflect data members . 1028

Reverse engineering error handling . 1031

Creating flow charts during reverse engineering. 1032

Updating existing packages . 1033
Command-line interface for populate object model diagrams. 1034
Populate object model diagrams limitations . 1034

Reverse engineering message reporting . 1035

Code respect and reverse engineering for Rational Rhapsody Developer for C and C++. . . 1037

Reverse engineering for C++ . 1037

Reverse engineering for Rational Rhapsody in Java. 1037

Reverse engineering other constructs . 1038
Unions . 1038
Enumerated types . 1038

Comments . 1039
Limitations for comments . 1040

Macro collection . 1041
Collected macro file. 1041
Code Generation. 1042
xxviii User Guide

Table of Contents
Controlling macro collection . 1042

Code generation of imported macros . 1043
Limitations for imported macros . 1043
Backward compatibility issues. 1044

Results of reverse engineering . 1044

Lost constructs . 1045

Roundtripping . 1047
Supported elements . 1048

Roundtripping limitations. 1048

Dynamic Model-code Associativity (DMCA) . 1049

The roundtripping process. 1050
Automatic and forced roundtripping . 1050
Roundtripping classes. 1050
Modifying code segments for roundtripping . 1051
Recovering lost roundtrip annotations. 1052
Roundtripping classes. 1053
Roundtripping packages . 1055
Roundtripping deletion of elements from the code . 1057
Roundtripping for C++. 1058
Roundtripping for Java . 1059
Roundtripping properties. 1059

Code respect . 1063
Activating the code respect feature. 1064

Where code respect information is defined . 1065
Making SourceArtifacts display in the browser . 1066
Manually adding a SourceArtifact . 1067
Reverse engineering and SourceArtifacts. 1067
Roundtripping and SourceArtifacts . 1067
Code generation and SourceArtifacts . 1068
Configuration management and SourceArtifacts. 1068

Code-centric mode . 1069
Entering code-centric mode . 1069

Leaving code-centric mode . 1070

Roundtripping in code-centric mode. 1072

Code generation in code-centric mode . 1073
Diagrams for which code not generated . 1074
Rational Rhapsody xxix

Table of Contents
Code regeneration in code-centric mode . 1074

Animation in code-centric mode . 1075

Scope for code-centric models . 1076

Properties modified by code-centric settings . 1077

Animation . 1079
Animation Overview . 1080

Animation Features . 1080
Preparing for Animation - General Procedure . 1080

Create a Component . 1081
Creating a component . 1081
Setting the Component Features . 1082
Creating a Configuration . 1083

Setting the Instrumentation Mode . 1084

Running the Animated Model. 1086
Running on the Host . 1086
Running on a Remote Target . 1087
Opening a Port Automatically . 1088
Testing an Application on a Remote Target . 1088

Testing a Library . 1089

Partially Animating a Model (C/C++) . 1089
Setting Elements for Partial Animation . 1090
Partial Animation Considerations . 1090
Partially Animated Sequence Diagrams . 1091

Ending an Animation Session . 1092

Animation Toolbar. 1093

Creating Initial Instances . 1094

Break Command . 1095

Command Prompt . 1095
Generating Events Using the Animation Command Bar . 1095
Events with Arguments . 1096
Generating Events Using the Command History List . 1097

Threads. 1098
Thread View . 1098
Setting the Thread Focus . 1098
Names of Threads. 1099
Notes on Multiple Threads . 1099
Active Thread Properties. 1100
xxx User Guide

Table of Contents
Creating Breakpoints. 1101
Defining Breakpoints . 1102
Enabling and Disabling Breakpoints . 1104
Deleting Breakpoints . 1105

Event Generator. 1106
Generating Events . 1106
Events History List . 1107
Calling Animation Operations . 1108

Scheduling and Threading Issues . 1110
Using Partial Animation. 1110
Scheduling and Threading Restrictions. 1110

Animation Modes. 1112
Silent Mode . 1112
Watch Mode . 1112

Viewing the Model . 1113
Call Stack . 1114
Event Queue . 1114
Animated Browser . 1115
Animated Sequence Diagrams . 1115
Animating Statecharts . 1124

Instance Names . 1125
Names of Class Instances . 1125
Names of Component Instances. 1125
Navigation Expressions. 1126
Names of Special Objects . 1126

Animation Scripts . 1126
Sample Script . 1127
Running Scripts Automatically. 1128

Black-Box Animation . 1130
Animation Properties. 1130
Example . 1131
Using the Properties for Black-Box Testing. 1134
Instance Line Menu. 1135
Behavior and Restrictions . 1135

Animation Hints . 1136
Exception Handling . 1136
If Animation and Application are Out of Sync . 1136
Passing Complex Parameters. 1137
Combining Animation Settings in the Same Model . 1137
Animation Feature Limitations. 1137

Guidelines for Writing Serialization Functions. 1138
Rational Rhapsody xxxi

Table of Contents
AnimSerializeOperation . 1138
AnimUnserializeOperation. 1140

Running an Animated Application Without Rational Rhapsody. 1141

Tracing . 1143
Tracer Capabilities . 1143

Starting a Trace Session. 1144

Controlling Tracer Operation . 1145
Accessing Tracer Commands . 1145
Tracer Commands and an Input File. 1145

Threads in Tracing . 1147

Tracer Commands . 1148
break . 1148
CALL . 1151
display . 1153
GEN . 1153
go . 1154
help . 1155
input . 1155
LogCmd. 1156
output . 1157
quit . 1157
resume . 1158
set focus . 1158
show . 1159
suspend. 1162
timestamp . 1162
trace . 1162
watch. 1166

Tracer Messages by Subject . 1167

Ending a Trace Session . 1169

Managing Web-enabled devices . 1171
Use of Web-enabled Devices . 1171

Setting Model Elements as Web-Manageable. 1172
Limitations on Web-Enabling Elements. 1173
Selecting Elements to Expose to the Internet . 1174

Connecting to the Web Site from the Internet . 1176
Navigating to the Model through a Web Browser . 1176
The Web GUI Pages . 1178
xxxii User Guide

Table of Contents
Viewing and Controlling of a Model via the Internet . 1183

Customizing the Web Interface . 1184
Adding Web Files to a Rational Rhapsody Model . 1184
Accessing Web Services Provided with Rational Rhapsody. 1185
Adding Rational Rhapsody Functionality to Your Web Design . 1189
Customizing the Rational Rhapsody Web Server . 1193

Reports . 1195
ReporterPLUS . 1195

Launching ReporterPLUS . 1196
ReporterPLUS templates . 1196
Generating reports using existing templates. 1200
Viewing reports online. 1201
Generating a list of specific items . 1201
Using the system model template . 1201

The internal reporting facility . 1203
Producing an internal report . 1203
Setting the RTF character set . 1205
Using the internal report output . 1205

Java-specific issues . 1207
Generation of Javadoc comments. 1207

Including Javadoc comments in Rational Rhapsody-generated code. 1207
Changing the appearance of Javadoc comments in generated code . 1208
Enabling/disabling Javadoc comment generation . 1208
"Built-in" keywords. 1209
Description templates in JavaDocProfile. 1209
Multiple appearance of Javadoc tags . 1209
Adding new Javadoc tags . 1210
Javadoc handling in reverse engineering and roundtripping. 1211
Javadoc troubleshooting . 1211

Static import. 1212
Adding static imports to a model . 1212
Reverse engineering/roundtripping and static import statements . 1212
Code generation checks . 1213

Static blocks . 1213
Adding static blocks to classes in a model . 1213
Changing a static block to an operation . 1213
Reverse engineering/roundtripping and static blocks . 1214

Generating JAR files . 1214

Java 5 annotations . 1215
Rational Rhapsody xxxiii

Table of Contents
Creating a JavaAnnotation type . 1215
Using a JavaAnnotation type . 1216
Using a JavaAnnotation within a model . 1217
Code generation and Java 5 annotations . 1220
Reverse engineering and Java 5 annotations. 1220
Limitations for Java 5 annotations. 1221

Java reference model . 1221

Systems engineering with Rational Rhapsody . 1223
Installing and launching systems engineering. 1223

Creating a SysML profile project . 1224
SysML profile features . 1225
SysML profile packages . 1226
Views and viewpoints . 1227
Adding elements . 1228

Harmony process and toolkit . 1230
Harmony process summary . 1230
Creating a Harmony project . 1232
Harmony profile features. 1234

Systems engineering requirements in Rational Rhapsody. 1242
Analysis and requirements using the Rational Rhapsody Gateway . 1243
Searching requirements . 1245
Creating Rational Rhapsody requirements diagrams . 1245
Creating specialized requirement types . 1249
Requirements tabular view . 1250

Creating use case diagrams. 1251
Boundary box and the environment . 1252
Actors and systems design in use cases . 1252
Use case features for systems engineering . 1253
Associating actors with use cases. 1254
Defining requirements in use case diagrams . 1255
Tracing requirements in use case diagrams . 1255
Dependencies between requirements and use cases. 1255
Defining flow in a use case diagram . 1256
Defining the stereotype of a dependency . 1256

Activity modeling in SysML . 1257
Action types in SysML. 1257
SysML activity diagrams . 1257
Creating an activity diagram . 1258
Setting activity diagram properties . 1258
Activity diagram drawing tools for systems engineering . 1259
xxxiv User Guide

Table of Contents
Drawing action states . 1260
Drawing a initial flow . 1261
Drawing a subactivity . 1261
Drawing activity flows . 1261
Drawing activity flows between states. 1262
Drawing swimlanes . 1262
Drawing a fork node . 1263
Drawing a join node . 1263
Creating a sequence diagram from an activity diagram . 1263

Creating a design structure . 1264
Block properties . 1264
Blocks and behaviors . 1265

Creating a block definition diagram . 1265
Block definition diagram drawing tools . 1266
Adding graphics to block definition diagrams . 1268

Creating an internal block diagram . 1269
Internal block diagram drawing tools. 1270
Drawing the parts . 1270
Drawing standard ports and links . 1271
Specifying the port contract and attributes . 1271

Parametric diagrams . 1272
Parametric diagram drawing tools. 1273
Creating the constraint block. 1274
Creating the parametric diagram. 1275
Binding constraint properties together . 1276
Adding equations . 1276

Implementation using the action language. 1277
Basic syntax rules . 1277
Frequently used statements . 1278
Reserved words . 1278
Assignment and arithmetic operations . 1279
Defining an action using the action language . 1279
Checking action language entries . 1280
Action language reference . 1281

System validation . 1286
Creating a component . 1286
Setting the component features . 1287
Creating a configuration . 1287

Preparing to Web-enable the model . 1288
Creating a Web-enabled configuration . 1288
Selecting elements to Web-enable . 1290
Rational Rhapsody xxxv

Table of Contents
Connecting to the Web-enabled model . 1291
Navigating to the model through a Web browser . 1291
Viewing and controlling a model . 1292
Sending events to your model. 1292

Importing DoDAF diagrams from Rational System Architect . 1293
Mapping the import scope. 1293
Importing the Rational System Architect elements . 1295
Converting imported data into a Rational Rhapsody diagram. 1296
Post processing mechanism for Rational System Architect users . 1297
Generating a Imported Elements report . 1297

Integration with Teamcenter systems engineering . 1298
UML or SysML . 1298
Prerequisites for working with Rational Rhapsody . 1300
Importing a Rational Rhapsody model into Teamcenter . 1300
Creating a Rational Rhapsody model from existing Teamcenter Project . 1301
Modifying shared elements from within Teamcenter. 1301
Limitations . 1302

The MicroC profile . 1303
The extended execution model . 1303

MicroC code generation . 1303
UI changes . 1303

The mxf. 1304

Modeling network ports . 1304

Optimizations for static systems . 1305
Direct flow ports . 1305
Direct relations . 1306

Monitoring of application running on target. 1307
Using target monitoring . 1307

Viewing MicroC properties . 1309

IBM Rational Rhapsody DoDAF Add On . 1311
Rational Rhapsody for DoDAF Add On and profile . 1311

DoDAF views . 1312
Operational view . 1312
Systems view . 1313
Technical view. 1313
All views . 1313

Products included in the Rational Rhapsody for DoDAF Add On . 1314
xxxvi User Guide

Table of Contents
Rational Rhapsody for DoDAF Add On helper utilities . 1318
Setup DoDAF packages . 1320
Create OV-2 from Mission Objective. 1320
Create OV-6c from Mission Objective. 1320
Update OV-2 from OV-6c . 1320
Generate Service Based OV-3 Matrix . 1320
Generate SV-3 Matrix . 1320
Generate SV-5 Summary Matrix . 1320
Generate SV-5 Full Matrix. 1321
Rational Rhapsody for DoDAF Add On Report Generator . 1321

Rational Rhapsody project for Rational Rhapsody for DoDAF Add On configuration. 1322
Creating a Rational Rhapsody for DoDAF project. 1322
Diagrams toolbar for a Rational Rhapsody for DoDAF project . 1325
DoDAF tags. 1327
Generating the OV-3 Operational Information Exchange Matrix. 1329
Generating the DoDAF report from the architecture model. 1331

Limitations . 1333

Troubleshooting . 1334
Verifying the Rational Rhapsody for DoDAF Add On installation . 1334
Manually adding the Rational Rhapsody for DoDAF Add On helpers. 1335
Correcting messages that appear as mission objectives . 1337
View, caption, or table of figures is missing from document . 1339

IBM Rational Rhapsody MODAF Add On . 1341
Rational Rhapsody for MODAF Add On . 1342

MODAF viewpoints . 1343
All Views viewpoint . 1345
Strategic viewpoint . 1345
Operational viewpoint . 1345
Systems viewpoint . 1346
Acquisition viewpoint . 1346
Technical viewpoint . 1346

Views Included in the Rational Rhapsody for MODAF Add On . 1347

Configure a Rational Rhapsody project for MODAF . 1355
Creating a Rational Rhapsody for MODAF project . 1355

Customize the Rational Rhapsody table and matrix views for MODAF 1360
Creating stereotypes and using tags. 1361
About creating table/matrix views in MODAF . 1362

Create documentation for Your MODAF project with ReporterPLUS. 1368
Setting up ReporterPLUS . 1368
Rational Rhapsody xxxvii

Table of Contents
Document structure. 1369
Generating a MODAF document. 1370
Troubleshooting ReporterPLUS and Rational Rhapsody for MODAF. 1371

The Dependencies Linker . 1372
Using the Dependencies Linker . 1372
Troubleshoot the Dependencies Linker . 1373

General troubleshooting. 1374
Verify the Rational Rhapsody for MODAF Add On installation . 1374
Find icons missing from diagram tools . 1374
Check your Rational Rhapsody for MODAF model. 1374

The Rational Rhapsody automotive industry tools . 1377
AUTOSAR modeling . 1377

The AUTOSAR workflow. 1378
Creating an AUTOSAR project . 1378
Creating AUTOSAR diagrams. 1378
Checking an AUTOSAR model . 1379
Import/export from/to AUTOSAR XML format . 1379

The AutomotiveC profile. 1380
Automotive-specific adaptor . 1380
Automotive-specific stereotypes . 1382
Simulink and StatemateBlock integration capabilities . 1383
Fixed-point variable support . 1383
AutomotiveC properties. 1383

StatemateBlock in Rational Rhapsody . 1385
Preparing a Rational StatemateBlock for Rational Rhapsody . 1385

Creating the Rational StatemateBlock in Rational Rhapsody. 1386

Connecting and synchronizing Rational Statemate and Rational Rhapsody 1388

Troubleshooting Rational Statemate with Rational Rhapsody . 1389

IBM Rational DOORS interface . 1391
Installation requirements . 1392

Rational DOORS version 7.0 . 1392
Solaris-specific information . 1392

Using Rational Rhapsody with Rational DOORS . 1393
Configuring Rational Rhapsody and Rational DOORS with the Gateway wizard 1394
Requirements synchronization in Rational DOORS and Rational Rhapsody . 1395
Navigating from Rational DOORS to Rational Rhapsody . 1396
xxxviii User Guide

Table of Contents
Rational DOORS projects . 1396
Invoking the Rational DOORS interface . 1396
Set export options . 1397
Identify which formal modules to create . 1397
Selecting Rational DOORS export options . 1398
Linking the Rational DOORS data . 1400

Information stored in Rational DOORS . 1402

Rational DOORS information stored in Rational Rhapsody . 1404
Data checking . 1404
Problem Description window. 1404

Mapping Requirements to imported elements . 1406

Ending a Rational DOORS session . 1407

Rational DOORS with Rational Rhapsody summary . 1407

Rational Rose models . 1409
Importing a Rational Rose model . 1410

Setting up the XML map file for importing Rational Rose properties. 1413

Incremental import of Rational Rose models . 1414
Before the import process starts . 1415
About processing time and project size. 1416

Code import . 1417

Merging imported code to the imported Rational Rose model . 1418

How Rational Rose constructs and options map into a Rational Rhapsody model 1419

Imported association classes . 1424

XMI exchange tools . 1425
Using XMI in Rational Rhapsody development . 1425

Exporting a model to XMI . 1426

Examining the exported file . 1428

Importing an XMI file to Rational Rhapsody . 1429

More information . 1430

Integrating Simulink components . 1431
Importing Simulink components . 1432

Integration of the Simulink-generated code . 1433

Troubleshooting Simulink integration. 1434
Rational Rhapsody xxxix

Table of Contents
Creating Simulink S-functions
with Rational Rhapsody . 1435
Using Rational Rhapsody in conjunction with Simulink . 1435

Creating a Simulink S-function . 1435

S-function creation: behind the scenes . 1436
Timing and S-Functions . 1436
Limitations . 1437

The Rational Rhapsody
command-line interface (CLI) . 1439
RhapsodyCL . 1439

Interactive mode . 1440
Socket mode . 1440

Command-line syntax . 1441
Switches . 1441
Commands . 1441
Order of commands . 1442

Include commands in a script file . 1442

Exit after use of command-line options . 1442

Return codes . 1443

Examples . 1443

Command-line switches . 1444

Command-line commands . 1446

Rational Rhapsody shortcuts . 1453
Accelerator keys . 1453
Mnemonics . 1454
Keyboard modifiers . 1454
Standard Windows keyboard interaction. 1455

Rational Rhapsody accelerator keys. 1455
Application accelerators . 1455
Accelerators and modifier usage in diagrams . 1457
Code editor accelerators . 1458

Useful Rational Rhapsody Windows shortcuts . 1459

Changing settings to show the mnemonic underlining. 1460

Technical support . 1461
xl User Guide

Table of Contents
Contacting IBM Rational Software Support . 1461

Prerequisites . 1461

Contacting Support . 1462
About Rational Rhapsody . 1464
License Details . 1464

Reporting Rational Rhapsody Problems from the Software . 1465

Rational Rhapsody glossary . 1467

Index . 1531
Rational Rhapsody xli

Table of Contents
xlii User Guide

Introduction to Rational Rhapsody
Welcome to IBM® Rational® Rhapsody®!

Systems engineers and software developers use Rational Rhapsody to create either embedded or
real-time systems. However, Rational Rhapsody goes beyond defining requirements and designing
a software solution. Rational Rhapsody actually implements the solution from design diagrams
and automatically generating ANSI-compliant code that is optimized for the most widely used
target environments.

With Rational Rhapsody, you have the ability to analyze the intended behavior of the application
much earlier in the development cycle by generating code from UML and SysML diagrams and
testing the application as you create it. Rational Rhapsody can be used for any of the following
items:

� Reactivity for statecharts and events
� Time-based behavior for timeouts
� Multi-threaded architectures for active classes and protected classes
� Real-time environments for direct support for several real-time, operating systems (RTOS)

Rational Rhapsody is semantically complete. Most items that you draw in Rational Rhapsody
UML diagrams, such as objects or events, have precise meaning in the underlying model. Objects
are the structural building blocks of a system.
Rational Rhapsody 1

Introduction to Rational Rhapsody
Rational Rhapsody translates these diagrams into source code in one of four high-level languages:
C++, C, Ada, or Java. Rational Rhapsody then allows you to edit the generated code and
dynamically roundtrip the changes back into the model and its graphical views. Rational Rhapsody
supplies four editions to create specific types of projects depending on your job requirements.

� Rational Rhapsody Developer edition (C, C++, Java, and Ada are available, and this
edition required for Eclipse users.)

� Rational Rhapsody Architect for Software edition (described in Creating projects in
Rational Rhapsody Architect for Software)

� Rational Rhapsody Architect for Systems Engineers edition (described in Creating projects
in Rational Rhapsody Architect for Systems Engineers)

� Rational Rhapsody Designer for Systems Engineers edition (described in Creating projects
in Rational Rhapsody Designer for Systems Engineers)

Only one Rational Rhapsody edition can be selected during installation.

Rational Rhapsody features
Rational Rhapsody includes the following features:

� UML®, SysML™, and Functional C design modeling environment with Domain-Specific
Language (DSL) support including DoDAF*, MODAF*, and AUTOSAR*.

� Predefined profiles supplying a coherent set of tags, stereotypes, and constraints for a
specific type of project. For more information, see Profiles.

� MathWorks Simulink® Interface, SDL Interface, and Statemate® Interface available with
the Interfaces Add On can be used to validate your complete architecture while using the
best-in-class tools for control engineering, protocol development, and functional system
design.

� Model verification with full model simulation and execution.
� Static checking to ensure that the design is consistent.
� Full application generation of C, C++, Java, and Ada in an integrated design environment.
� Easily customizable real-time framework that separates high-level application design from

platform-specific implementation details with numerous adapters available such as
VxWorks, Windows CE, and Integrity. A full list is available in the Rational Rhapsody
release notes, and in addition you can create your own adapter.

� Requirements modeling and traceability features with integration to leading requirements
management tools such as DOORS®* or text-based tools such as Microsoft® Word.

� Easily integrate and create models from your existing C, C++, Java, and Ada code into the
modeling environment using reverse engineering and code visualization.
2 User Guide

UML design essentials
� Integration with leading IDEs such as Eclipse, Wind River® Workbench, and Green Hills®
Multi®.

� Dynamic model-code associativity enabling design to be done using either code or
diagrams providing maximum flexibility while ensuring the two remain synchronized.

� Improved test productivity and early detection of defects using Rational Rhapsody
TestConductor™ to automate tedious testing tasks, define tests with code and graphically
with sequence diagrams, statecharts, activity diagrams and flowcharts; and execute the
tests interactively or in batch mode.

� XMI* (XML Metadata Interchange) and IBM® Rational Rose®* importing for integration
of legacy systems and reuse of existing code.

� Full Configuration Management Interface* support with advanced graphical difference
and merging capabilities for use with tools such as IBM® Rational® Synergy™ or IBM®
Rational® ClearCase®.

� Support for software product lines using class and object variants for components
� Customization to meet your specific development needs using the Java API.
� Generation of documentation using a range of tools, from a simple RTF report generator to

the full customization with Rational® Rhapsody® ReporterPLUS™.
* Capabilities are provided by optional add-ons.

UML design essentials
The Developer edition for C++, C, Java, and Ada and The Rational Rhapsody specialized editions
support UML to design your models.

The Unified Modeling Language (UML) is a third-generation modeling language for describing
complex systems. The Object Management Group® (OMG®) adopted the UML as the industry
standard for describing object-oriented systems in the fall of 1997. For more information on the
OMG, see their Web site at http://www.omg.org.

UML defines a set of diagrams by which you can specify the objects, messages, relationships, and
constraints in your system. Each diagram emphasizes a different aspect or view of the system
elements. For example, a UML sequence diagram focuses on the message flow between objects
during a particular scenario, whereas an object model diagram defines classes, their operations,
relations, and other elements.
Rational Rhapsody 3

http://www.omg.org

Introduction to Rational Rhapsody
UML diagrams

The UML specification includes the following diagrams:

� Use case diagram shows typical interactions between the system being designed and
external users or actors. Rational Rhapsody can generate code for actors in use case
diagrams to be used for testing a model.

� Object model diagram shows the static structure of a system: the objects in the system
and their associations and operations, and the relationships between classes and any
constraints on those relationships.

� Sequence diagram shows the message flow of objects over time for a particular scenario.
� Collaboration diagram provides the same information as a sequence diagram but

emphasizes structure, whereas a sequence diagram emphasizes time.
� Statechart defines all the states that an object can occupy and the messages or events that

cause the transition of the object from one state to another.
� Activity diagram specifies a workflow or process for classes, use cases, and operations.

Activity diagrams provide similar information to statecharts, but are better for linear
step-by-step processes, whereas statecharts are better suited for non-linear or event-driven
processes.

� Component diagram describes the organization of the software units and the
dependencies among these units.

� Deployment diagram depicts the nodes in the final system architecture and the
connections between them. Nodes include processors that execute software components,
and the devices that those components control.

� Structure diagram models the structure of a composite class; any class or object that has
an OMD can have a structure diagram. Object model diagrams focus more on the
specification of classes, whereas structure diagrams focus on the objects used in the
model.

In addition, a Flow Chart is available in the Rational Rhapsody product. You can use a flow chart
to describe a function or class operation and for code generation.
4 User Guide

UML design essentials
UML views

You can use Rational Rhapsody to draw UML diagrams that provide different views of your
system. By editing the UML diagrams in Rational Rhapsody to create increasingly complex views,
you can add layers of perspective, detail, and specificity to your model until you have a complete
solution.

Structural views
Structural views show model elements and their relationships to each other. Model elements
include classes, use cases, components, and actors; their relationships include dependencies,
inheritances, associations, aggregation, and composition.

The following UML diagrams provide structural views:

� Use case diagram
� Object model diagram
� Structure diagrams
� Component diagram
� Deployment diagram

Dynamic behavior views
Dynamic behavior views describe the system behavior. This includes state behavior, such as the
different states a class occupies, state transitions, forks and joins, and actions within a state; and
interactions, such as the collaborations occurring between classes during a particular scenario.

The following UML diagrams provide dynamic behavior views of the model:

� Statechart
� Activity diagram
� Sequence diagram
� Collaboration diagram

Model management views
Model management views show the hierarchical organization of the model. Object model diagrams
provide a model management view.
Rational Rhapsody 5

Introduction to Rational Rhapsody
Diagrams in Rational Rhapsody

Rational Rhapsody includes a graphic editor for each of the UML diagrams, enabling you to create
detailed views of your model. The graphic editors not only capture the design of your system, but
also generate implementation code.

Note
Rational Rhapsody diagrams have varying levels of code generation ability. Model elements
and implementation code can also be created from the browser.

Because Rational Rhapsody maintains a tight model-code associativity, you can easily generate
updated code when you make changes to the model. You can also edit code directly and bring
those changes into the model via the roundtrip feature. For more information about model-code
associativity, see Basic code generation concepts.

Partially constructive diagrams
Partially constructive diagrams generate code for some, but not all of the elements in the diagram.
Partially constructive diagrams include the following diagrams:

� Use case diagrams
� Sequence diagrams
� Collaboration diagrams

Fully constructive diagrams
Fully constructive diagrams generate code for every element in the diagram. Fully constructive
diagrams include the following diagrams:

� Object model diagrams
� Component diagrams
� Statecharts
� Activity diagrams
6 User Guide

Development methodology
Specify a model with Rational Rhapsody

To create a working model, you must create at a minimum an object model diagram. An object
model diagram generates the code necessary for a minimally functioning model.

A properly designed implementation, however, includes at a minimum object model diagrams,
statecharts or activity diagrams, and component diagrams. Object model diagrams and statecharts
can be considered to be design diagrams, because they are most often used in the design phase of a
project. Other diagrams are more helpful in other phases. For example, use case and sequence
diagrams are useful in the requirements analysis phase, where use case diagrams document
structural requirements and sequence diagrams document behavioral requirements.

Development methodology
A development methodology is a combination of a process, a tool, and a modeling language.
Rational Rhapsody is a UML-compliant modeling tool that is process-neutral and supports the
most common phases of any good development methodology. However, Rational Rhapsody is
particularly well-suited to an iterative process in which you build a number of model prototypes,
test, debug, reanalyze, and then rebuild the model any number of times, all within a single
development environment.

The ROPES™ process is an example of an iterative process that illustrates the use of Rational
Rhapsody and the UML across all typical process phases and activities. The following sections
provide a general overview of the phases involved in the ROPES process (including the subtasks
involved in general analysis, design, implementation, and test phases) and the Rational Rhapsody
tools appropriate for each phase. The Web site for IBM Rational modeling products contains
detailed information on ROPES.

Analysis

In the analysis phase, you define a problem, its possible solutions, and their characteristics.

Requirements analysis
Begin with the requirements analysis to identify the system requirements. What are the primary
system functions or system usages? Use case diagrams can capture these along with the external
actors that interact with the system.

Describe the expected behavior of the system as a whole by creating a series of “black-box”
sequence diagrams. In these, you will define the sequence of messages between external actors and
the system as a whole. You can create a number of sequence diagrams for each use case, where
each sequence diagram represents one scenario that could occur while carrying out that use case.
You can also use collaboration diagrams to specify the expected behavior of the system.
Rational Rhapsody 7

Introduction to Rational Rhapsody
Use the black-box sequence diagrams as the basis for creating statecharts, which realize all
possible scenarios. Statecharts specify the behavior of each object, or object implementation, as
opposed to sequence diagrams, which concentrate on requirements-based scenarios. Sequence
diagrams also serve as the primary test data in the testing phase; in later stages, use them to test
whether your system as a whole responds properly to the external messages that come into it. You
can also use activity diagrams to realize all possible scenarios. To review and analyze the
requirements in your project, you can use the advanced search facility and the table and matrix
tools.

Object analysis
While you are capturing system requirements, you should also define the entities and structural
relationships that will exist in the application you are creating and its domain or environment. This
should result in a structural (static) model of the system (a logical object model of the system).

Determine the subsystems of your system. What are their responsibilities and relationships? These
subsystems become the basis of the packages, or collections of classes, within your system.

Determine the key objects or classes in these subsystems and define their responsibilities,
descriptions, and their relations to other classes. Use object model diagrams to create these classes
and their relations. Using sequence diagrams and statecharts, define the behavior and interactions
of these essential objects.

You can also use the code generation and animation tools to execute and debug these higher-level
analysis models.

Design

In the analysis phase, you came up with several possible solutions to your problem. In the design
phase, you choose one of those solutions and define how it will be implemented. As with the
analysis phase, the design phase has more than one component. Just as the analysis phase should
conclude with some result, a full set of use cases and a logical object model of the system, the
design phase should also provide results: task and deployment models, and more refined logical
object models.

Architectural design
Define the major architectural pieces of the system. What are the high-level parts? Define what the
system domains are and which key classes fit in each domain. Which are your composite classes?
In this analysis, you should also map classes, packages, and components to the relevant physical
parts of your system (the processors and devices). Define which libraries and executables are
necessary in your model. You are creating the task and deployment models for your system. To
help with this, you can apply UML design patterns as appropriate for your system.
8 User Guide

Development methodology
Mechanistic design
Continue to detail the internal workings of your system, breaking it down into smaller pieces and
more classes, if necessary. Use “white-box” sequence diagrams to depict the class interactions
within the system. Define the collaborations that are required to realize certain core cases by
creating collaboration diagrams. Add to your model the “glue” objects that are used in the UML
design patterns that you use. Again, you can use the code generation and animation tools to debug
and test the model at this point. Your end result should be a more refined set of logical object
models.

Detailed design
Continue to fill in the details of your design. Get your individual classes working; fully define their
constraints, internal data structures, and message passing behavior. Use activity diagrams and
statecharts to define correct behavior. At this stage, you will probably begin typing in extra code in
the implementation boxes in various diagrams. Use component diagrams to define the physical
artifacts of your system and to include the libraries, executables, or legacy code you have deemed
necessary for your model. Make low-level decisions about implementations, such as choosing
static or dynamic instantiations. This should result in a more refined logical object model (or
models) of your system.

Implementation

The implementation phase is essentially the code generation and unit testing phase. Using Rational
Rhapsody, write the code that is not generated automatically, such as the bodies of non-statechart
operations. These include constructors, destructors, object methods, and global functions. Use the
animation and tracing tools to test and debug sections of code and to make decisions about any
optimization
trade-offs.

The testing phase

In the testing phase, you determine not only whether your model is working, but whether it meets
the requirements that you set in the analysis phase. Your end result should be a working system.

Rational Rhapsody includes the following features to assist with the testing phase:

� Animator creates test scripts to apply external test stimuli to the system.
� Tracer performs white, gray, and black-box regression testing. It also provides

performance testing based on timing annotations or on a simulated time facility.
� Sequence diagram comparison Automatically compares requirement sequences with

implementation sequences.
Rational Rhapsody 9

Introduction to Rational Rhapsody
Rational Rhapsody tools
Rational Rhapsody consists of the following set of tools that interact with each other to give you a
complete software design environment:

� The Rational Rhapsody browser

� The Favorites browser

� Graphic editors

� Code generator

� Animator

� Utilities, including reverse engineering, Web-enabling devices, XMI generation, COM and
CORBA® support, and Visual Basic® for Applications

� Third-party interfaces such as Eclipse, Rational Rose import, and CM tools

The Rational Rhapsody browser

The Rational Rhapsody browser shows a comprehensive display of the system with a clear
overview of your entire model. Views filter the display to optimize usability for a particular task.
During an animation session, the browser dynamically displays object instances as the model
executes.

For more details about the uses of the browser, see Browser and Browser filter; and for details on
the model display features for the browser, see Browser techniques for project management.
10 User Guide

Rational Rhapsody tools
The Favorites browser

You can use the Favorites browser to create a favorites list, which is a list of items (model
elements) that you are most interested in for the opened Rational Rhapsody model. This is
analogous to the favorites functionality for a Web browser. You might find the Favorites browser
most useful with Rational Rhapsody models that are very large, which can make it difficult to find
commonly used model elements in the Rational Rhapsody browser. The Favorites browser should
help you manage large and complex projects by making it easier to focus on and easily access
model elements of particular interest to you.

The following figure shows a sample Favorites browser:

Your favorites list is saved in the <projectname>.rpw file, as well as the position and visibility of
the Favorites browser, so that when you open the project the next time, your settings are
automatically in place. Note that when multiple projects are loaded, the Favorites browser shows
the favorites list for the active project, as described in Setting the active project.

For more information about the Favorites browser, see The Favorites browser.
Rational Rhapsody 11

Introduction to Rational Rhapsody
Diagram tools

When you have a diagram open on the drawing area in Rational Rhapsody, a panel of diagram
drawing tools for the currently displayed diagram type also appears. You can move this panel to
different locations and close it.

Different tools are available depending on the type of diagram displayed in the drawing area.

This accordion menu also contains a Common section for tools for common additions to diagrams
and a Free Shapes section for tools that let you draw elements freehand in a diagram.
12 User Guide

Rational Rhapsody tools
Graphic editors

You can use the graphic editors to analyze, design, and construct the system using UML diagrams.
Diagrams enable you to observe the model from several different perspectives, like turning a cube
in your hand to view its different sides. Depending on its focus, a diagram might show only a
subset of the total number of classes, objects, relationships, or behaviors in the model. Together,
the diagrams represent a complete design.

Rational Rhapsody adds the objects created in diagrams to the Rational Rhapsody project, if they
do not already exist. Conversely, Rational Rhapsody removes elements from the project when they
are deleted from a diagram. However, you can also add existing elements to diagrams that do not
need to be added to the project, and remove elements from a diagram without deleting them from
the model repository.

� Use case diagram editor provides tools for creating use case diagrams, which show the
use cases of the system and the actors that interact with them. See Use case diagrams.

� Object model diagram editor provides tools for creating object model diagrams, which
are logical views showing the static structure of the classes and objects in an object-
oriented software system and the relationships between them. See Object model diagrams.

� Sequence diagram editor provides tools for creating sequence diagrams, which show
interactions between objects in the form of messages passed between the objects over
time. If you run animated code with the Animator, you can watch messages being passed
between objects as the model runs. See Sequence diagrams.

� Collaboration diagram editor provides tools for creating collaboration diagrams, which
describe how different kinds of objects and associations are used to accomplish a
particular task. Collaboration diagrams and sequence diagrams are both interaction
diagrams that show sequences. Sequence diagrams have a time component, whereas
collaboration diagrams do not.

Like sequence diagrams, collaboration diagrams show the message flow between
different classes. However, collaboration diagrams emphasize object relationships
whereas sequence diagrams emphasize the order of the message flow. For a particular task
or interaction, a collaboration diagram can also show the individual objects that are
created, destroyed, or exist continuously for the duration of the task. See Collaboration
diagrams.

� Statechart editor provides tools for creating statecharts, which define the behaviors of
individual classes in the system.

Statecharts show the states of a class in a given context, events that can cause transitions
from one state to another, and actions that result from state transitions. Rhapsody
generates function bodies from information entered into statecharts. If you run animated
code with the animator, you can watch an object change states as it reacts to various
messages, events, and triggered operations that you generate. See Statecharts
Rational Rhapsody 13

Introduction to Rational Rhapsody
� Activity diagram editor provides tools for creating activity diagrams. Activity diagrams
show the lifetime behavior of an object, or the procedure that is executed by an operation
in terms of a process flow, rather than as a set of reactions to incoming events. When a
system is not event-driven, use activity diagrams rather than statecharts to specify
behavior. See Activity diagrams.

� Component diagram editor provides tools for creating component diagrams, which
show the dependencies among software components, such as library or executable
components. Component diagrams can also show component dependencies, such as the
files (or other units) that are contained by a component, or the connections or interfaces
among components. See Component diagrams.

� Deployment diagram editor provides tools for creating deployment diagrams, which
show the run-time physical architecture of the system. The physical architecture of a
running system consists of the configuration of run-time processing elements and the
software components, processes, and objects that live on them. A deployment diagram
graphs the nodes in the system, representing various processors, connected by
communication associations. See Deployment diagrams.

� Structure diagram editor provides tools for creating structure diagrams, which model the
structure of a composite classes. See Structure diagrams.

Note
All the diagrams use UML notation.

The FunctionalC profile has these diagrams available to construct a C model:

� Use case diagram
� Statechart
� Build diagram
� Call Graph diagram
� Flow Chart
� Message diagram
� File diagram
14 User Guide

Rational Rhapsody tools
Code generator

The code generator synthesizes complete production-quality code from the model to free you from
low-level coding activities. Rational Rhapsody generates code primarily from OMDs and
statecharts, but also from activity and other diagrams. Allowing the tool to generate code
automatically for you lets you concentrate on higher-level system analysis and design tasks. For
more information, see Basic code generation concepts.

Animator

The animation facility lets you debug and verify your software at the design level rather than the
compiler level. For more information, see Animation.

Utilities

In addition to the core UML-based design features, Rational Rhapsody provides a number of
utilities to assist with development including the following utilities:

� Dynamic reverse engineering (see Reverse engineering)
� Roundtrip (see Basic code generation concepts)
� Check model (see Checks)
� Web-enabling of Rational Rhapsody models (see Managing Web-enabled devices)
� Standard and customizable report generation with Rational Rhapsody Reporter and

ReporterPLUS (see Reports)
� Import of model elements from libraries and external source files including XMI exchange

tools, StatemateBlock in Rational Rhapsody, and Importing DoDAF diagrams from Rational
System Architect.

� Add to Model and multiuser collaboration
� Component download
� File comparison and merging, as described in Parallel project development and DiffMerge

� Web Collaboration, as described in Viewing and Controlling of a Model via the Internet
Rational Rhapsody 15

Introduction to Rational Rhapsody
Third-party interfaces

The following third-party software interfaces can be accessed through the Rational Rhapsody
interface:

� Configuration management tools including support for the Microsoft Source Code Control
(SCC) standard

� Visual Studio standard or professional edition (see Visual Studio IDE with Rational
Rhapsody)

� Integrated VBA Interface for development and macros
� IDE interface to the Tornado™ development environment (see Co-debugging with

Tornado)

� Code editors (such as CodeWright™)
� Source debuggers (in addition to IDEs)
� Eclipse (for information about the Eclipse implementations, see Eclipse platform

integration and Using the Rational Rhapsody Workflow Integration with Eclipse)
16 User Guide

Rational Rhapsody windows
Rational Rhapsody windows
When creating or editing a project, the Rational Rhapsody workspace has the following windows:

� Menu bar lists the primary functions as File, Edit, View, Code, Tools, Layout, Windows,
and Help. Many of the Rational Rhapsody functions available on the menus are also
accessible from Rational Rhapsody shortcuts and buttons across the top of the Rational
Rhapsody interface, as described in Rational Rhapsody project tools.

� Browser displays the contents of the project and has several views to choose from. See
Browser.

� Diagram drawing area contains the diagram editor windows, which can be moved and
resized. See Diagram drawing area.

� Diagram Tools contains the drawing tools for each diagram type and opens in a panel next
to the diagram open in the drawing area in Rational Rhapsody. See Diagram tools.
Different buttons are displayed in the panel depending on the type of diagram displayed in
the drawing area. See the descriptions of the diagrams for explanations of each diagram
drawing tool. This accordion menu also contains a Common section for tools for
common additions to diagrams and a Free Shapes section for tools that let you draw
elements freehand in a diagram.

� Diagram Navigator provides a bird’s eye view of the diagram that is currently displayed.
See Diagram navigator.

� Output window has several tabs, each displaying different types of Rational Rhapsody
output including search results. See Output window.

In addition, you can open two windows from the View menu:

� Features window displays details of selected model element. By default, it displays as a
floating window, but you can dock it to the main window in any position. See The
Features window.

� Active code view generates and displays code for the selected model element. See Active
Code View window.

When you open Rational Rhapsody for the first time, the Welcome window displays.
Rational Rhapsody 17

Introduction to Rational Rhapsody
The following figure shows the default arrangement of the Rational Rhapsody windows.

Note the following information:

� You can reposition each window within the Rational Rhapsody workspace to suit your
preferred work style.

� To dock or undock a window quickly, double-click the title bar.
� To reposition a window, click the title bar and drag-and-drop the window to the intended

location.
18 User Guide

Rational Rhapsody windows
View menu commands

The Rational Rhapsody View menu allows you to customize the display of the Rational Rhapsody
interface areas.

View > Status Bar
The status bar at bottom of the main window displays the current mode (for example, GE MODE)
and the date and time. Use this menu command to toggle the status display on and off.

View > Favorites
Use this menu command to display The Favorites browser for your project.

View > Features
Use this menu command to display The Features window for a selected project element.

View > Description
Use this menu command to display and edit the description of a selected element as it is on the
Description tab of the Features window.

View > Tags
Use this menu command to display and edit the tags of a selected element as it is on the Tags tab of
the Features window.

View > Relations
Use this menu command to display and edit the relations of a selected element as it is on the
Relations tab of the Features window.

View > Properties
Use this menu command to display the properties associated with a selected project element. For
more information, see Properties tab.

View > Browser
The browser displays a tree structure of your project. You can also use this area to edit and
restructure your model. For more information, see Creating hyperlinks on the Rational Rhapsody
browser.

View > Label Mode
If you want to work exclusively with the label names of the elements, choose the Label Mode
command on the View menu. For more information about this work mode, see Label mode.
Rational Rhapsody 19

Introduction to Rational Rhapsody
View > Workbar Mode
The tabs above the diagram drawing area are displayed when the Workbar Mode is selected. To
switch off the tabs in the drawing area, clear the check mark next to Workbar Mode on the View
menu.

View > Gradient Mode
The Gradient Mode displays the project diagrams with a shaded background.

View > Full Screen Mode
The Full Screen Mode displays Rational Rhapsody as the only application on your computer
screen. To redisplay the other programs you have running and end this mode, press the Esc key.

View > Maintain Window Content
The part of the diagram displayed in the drawing area is called the viewport. To specify whether to
display the viewport regardless of any sizing or reposition of the diagram drawing window, choose
the Maintain Window Content on the View menu. For more information, see Maintaining the
window content.

View > Output Window
Use this menu command to open the Output window manually. The Output Window opens
automatically when a process produces output for display. For more information, see Output
window.

View > Active Code View
To display code for an element selected in the browser, choose View Active Code View. For more
information, see Active Code View window.

View > Bird’s Eye
Use this menu command to show or hide the Bird’s Eye window, a view of the entire diagram with
a rectangular focus area showing the portion of the diagram is currently displayed in the drawing
area. For more information about this feature, see The Bird’s Eye (diagram navigator)

View > Pop Context
To return to the origin point of a hyperlink, choose this View menu command or press
Ctrl+P.

View > Toolbars > Diagrams
Use this menu command to show or hide the diagram control toolbar.
20 User Guide

Rational Rhapsody windows
View > Toolbars > Code
Use this menu command to show or hide the code access toolbar.

View > Toolbars > Browser Filter
Use this menu command focus the browser display on the portion of the project related to your
current task.

View > Toolbars > Start Target Monitoring
Target monitoring is background animation of a C application from a target with unknown or
limited resources or limited monitoring for application execution on the target. This menu
command displays the tools used to set up and start monitoring a C application created using the
MicroC profile.

View > Toolbars > Target Monitoring
Use this toolbar to watch the C application execution on the target. However, this feature cannot be
used to control application execution.

View > Toolbars > VBA
Use this menu command to display the Rational Rhapsody Visual Basic for Applications (VBA)
Interface editor and macro creation facility.
Rational Rhapsody 21

Introduction to Rational Rhapsody
Browser

The browser displays a hierarchy of your project and provides easy access to the elements and
diagrams it contains. You can filter the display with several view options. Browser techniques for
project management provides detailed descriptions of browser elements and views.

By default, the browser is docked at the upper, left corner of the Rational Rhapsody main window.

� To open the browser, choose View > Browser.
� Choose Tools > Browser open multiple instances of the browser to simplify the process of

navigating between elements. This feature is particularly useful during animation.
In addition, you can select multiple elements in the browser and perform any of these operations
on all of them:

� Move them to another browser element by dragging and dropping them over the target
element

� Copy them to another browser element by dragging and dropping them over the target
element

� Delete all of them at the same time
22 User Guide

Rational Rhapsody windows
Diagram drawing area

The drawing area displays the graphic editors and code editors. Editors can be moved and resized
within the drawing area. When you open more than one editor, tabs are displayed at the bottom of
the drawing area so you can easily move between the open diagrams or generated code files. In
addition, you can tile or cascade the windows that contain the different diagrams.

Each diagram includes a title bar, which contains the name of the diagram and its type. A modified
diagram has an asterisk (*) added to the end of its name in the title bar.

For a description of the graphic editor windows, see Graphic editors. For a description of the
default code editor, see The Internal code editor.

Maintaining the window content
When you resize the drawing area (for example, to increase the available drawing space), some of
the diagram might move out of the visible area of the window. The part of the diagram displayed in
the window is called the viewport. You can specify whether to display the viewport regardless of
window manipulation using two different methods:

� Choose View > Maintain Window Content.
� Set the General::Graphics::MaintainWindowContent property to Checked.

Using this functionality, the elements are scaled according to the zoom factor so you see the same
elements in the window regardless of scaling.

Changing the drawing area window display
Rational Rhapsody uses these standard Microsoft Windows features to change the shape and
display design of the diagram drawing area:

� Manual resizing by dragging the edge of the window
� Maximize/Minimize and Restore buttons
� Window > Tile
� Window > Cascade
Rational Rhapsody 23

Introduction to Rational Rhapsody
Diagram navigator

The Diagram Navigator provides a bird's eye view of the diagram that is currently being viewed.
This can be very useful when dealing with very large diagrams, allowing you to view specific
areas of the diagram in the drawing area, while, at the same time, maintaining a view of the
diagram in its entirety.

The Diagram Navigator contains a depiction of the entire diagram being viewed, and a rectangle
viewport that indicates which portion of the diagram is currently visible in the drawing area.

For detailed information about using the Diagram Navigator window, see The Bird’s Eye (diagram
navigator).

Output window

The Output window is where Rational Rhapsody displays various output messages. You can use
the tabs on the Output window to navigate easily among the different types of output messages:

� The Log tab shows all the messages from all the other tabs of the Output window (except
for Search Results) in text (meaning non-tabular) format.

� The Build tab shows the messages related to building an application in tabular format.
� The Check Model tab shows the messages related to checking the code for a model in

tabular format.
� The Configuration Management tab shows the messages related to configuration

management actions for a model in text format.
� The Animation tab shows the message related to animating a model in text format.
� The Search Results tab shows the results from searches of your model in tabular format.

Note that this tab might not appear until you perform a search.
By default, the Output window is located at the bottom portion of the main Rational Rhapsody
window. Also by default, when you generate, build, or run an application; do a search, a CM
action, or a check model, Rational Rhapsody opens the Output window.
24 User Guide

Rational Rhapsody windows
Log tab
The Log tab serves as a console log. It shows all the messages from all the other tabs of the Output
window (except for Search Results) in text (meaning non-tabular) format. The messages that
appear on the Check Model, Build, Configuration Management, and Animation tabs appear on
the Log tab too, but always in text format. For the check model and build functions, you can view
their messages on the Check Model and Build tabs in tabular format or on the Log tab in text
format, depending on your preference. The Log tab displays messages in text format after a build
function is performed.

Note that you can right-click on the Log tab to use the Clear, Copy, Paste, and Hide commands.

The following figure shows the Build tab for the same build function. As you can see, the
messages provide the same type of information, though the presentation is in a tabular format.

On the Log, Check Model, and Build tabs, you can double-click an item on the tab and, if
possible, Rational Rhapsody opens either the relevant model element (for example, the Features
window for an association that might be causing an error) or to the code source. From whichever
opens, you can make corrections or view the item more closely.
Rational Rhapsody 25

Introduction to Rational Rhapsody
Check Model tab
Rational Rhapsody analyzes and organizes the results of checking the code for a model and
displays the results on the Check Model tab. Check messages are grouped by a severity hierarchy,
and provide you with the location, domain, and integrity for an item, where possible.

Before generating code, Rational Rhapsody automatically performs certain checks for the
correctness and completeness of the model. In addition, you can perform selected checks at any
time during the design process. To check the code for a model, choose Tools > Check Model and
then the name of the configuration for the model. For more information about checking the code
for a model, see Checks.
26 User Guide

Rational Rhapsody windows
The following table explains what type of information available on the Check Model tab.

Column Explanation

Checks Shows the check results tree grouped by three levels and in the hierarchy
shown as follows:
Level 1, Severity: Where the elements listed are grouped under the three
optional severity levels as follows:

 Errors

 Warnings

 Info
The grouping is determined by the severity level of each added check. If there
is a + icon next to a label, click it to expand or collapse the list. In addition, to
the right of each severity level name is the number of problems in the security
level.
Level 2, Checks: Where each check that produces errors/problems when it is
executed is shown in the list indented under its relevant severity level (for
example, Default Names under Warnings). A check is considered a group that
holds under it all its related problems. Each check in the list shows also its
domain and integrity properties. In addition, to the right of each check name is
the number of problems the check contains. There are 10 Default Name
warnings.
Level 3: Check Elements, where each problem found when performing a
specific check is shown as a list item under the relevant check name. Problems
are represented by model elements and shown with the relevant name, type
icon, and model location path (for example, ServicePerson:
itsServiceDishwasher, the first item in the Default Names check group in the
Warnings severity level).

Location Shows, for each problem found, the location of an element in the model.

Domain Shows, for each check in the list, its domain property. This includes domains
that are from user-defined checks.

Integrity Shows, for each check in the list, its integrity property value.
Rational Rhapsody 27

Introduction to Rational Rhapsody
You can double-click an item on the Check Model tab and if possible, Rational Rhapsody brings
you to the relevant model element (for example, the Features window for an association) or to the
code on which you can make corrections or view the item more closely. Note that if you click a
level heading, you expand or collapse the list for the level.

Note that you can right-click on the Check Model tab to use the Copy All and Clear All
commands.
28 User Guide

Rational Rhapsody windows
Build tab
The Build tab shows the messages related to building an application.

This tabular view shows the following types of information:

Column Explanation

Severity Error messages. Errors appear when the model fails to build. You must fix
errors before the model can be built. Rational Rhapsody parses the information
provided by the compiler to develop the list of error messages. Note that there
can be two types of error (and warning) messages: model element and code
error. Model element-type errors (and warnings) are those that Rational
Rhapsody can correspond to specific model elements in a project. Code error-
type errors are those that Rational Rhapsody cannot find any corresponding
model element.

Warning messages. Warnings have no effect on whether the model is built, but
you should review them and address them if necessary as they might have an
effect on whether the model builds as expected. Rational Rhapsody parses the
information provided by the compiler to develop the list of warning messages.

Informational messages. These messages are messages that are not warnings
or errors and they have no effect on the building of the model.

Model Element Applicable to error and warning messages only, shows the Rational Rhapsody model
element and its applicable Rational Rhapsody icon. If no related model element is
found, the error is assumed to be a code error-type error.

File Applicable to error and warning messages only, shows the file name and line number
where an error/warning was found.

Description Descriptions are provided by the compiler.

More Details Applicable to error and warning messages only, and only if available, show more
details as provided by the compiler.
Rational Rhapsody 29

Introduction to Rational Rhapsody
By default, you see all the messages for a build. If this is not the case, you can select All Build
Messages View from the menu in the upper-left corner of the Output window for the Build tab.

You can use the menu in the upper-left corner of the Output window for the Build tab to choose
other views. The following figure shows the Build tab with Model Element Messages selected,
which shows only items with a severity of Error or Warning that also have references to a model
element. In addition, information messages, code error-type errors and warnings are filtered out.

The following figure shows the Build tab with All Errors and Warnings View selected, which
shows only error and warning messages (so that information messages are filtered out).
30 User Guide

Rational Rhapsody windows
Note that you can double-click an item on the tab and, if possible, Rational Rhapsody opens either
the relevant model element (for example, the Features window for an association that might be
causing an error) or to the code source. From whichever opens, you can make corrections or view
the item more closely. In the following figure, double-clicking the “Code Error” item on the Build
tab in the lower portion of the figure, opens the code for that item in the upper-right portion of the
figure.

You can right-click the Build tab to use the Copy All and Clear All commands.

Note
By default, the Build tab displays after you run a build. If you want the Log tab to
automatically display instead after a build, you can set the
CG::General::ShowLogViewAfterBuild property to Checked.

Supported compilers

The compilers from Microsoft, Java, and Cygwin are fully supported, which means that Rational
Rhapsody is able to analyze the output from their compilers and show the correct severity levels
for their messages. For all other compilers, their output will only show Informational messages.
Rational Rhapsody 31

Introduction to Rational Rhapsody
Configuration Management tab
The Configuration Management tab shows messages related to configuration management
actions for a model. You can right-click on the Configuration Management tab to use the Clear,
Copy, Paste, and Hide commands.

Animation tab
The Animation tab shows messages related to animating a model. For more information about
animation, see Animation. You can right-click on the Animation tab to use the Clear, Copy,
Paste, and Hide commands.

Search Results tab
The Search Results tab shows results from searches of your model. Note that this tab might not
appear until you perform a search (for example, choose Edit > Search and select the New Tab
check box). For more information about doing searches, see Searching models.
32 User Guide

Rational Rhapsody project tools
Active Code View window

The Active Code View window displays code for an element selected in the browser. Whenever
you make changes to the model, Rational Rhapsody regenerates the code and updates it in the
Active Code View window.

To open the Active Code View window, choose View > Active Code View.

Specification tab
The Active Code View window has two tabs, Specification and Implementation. The
Specification tab displays the specification code.

Implementation tab
The Active Code View window has two tabs, Specification and Implementation. The
Implementation tab displays the implementation code.

Welcome window

Rational Rhapsody typically starts up with the Welcome window open. The Welcome window
provides links to help you get started quickly. The Welcome Screen appears each time you open
Rational Rhapsody unless you clear the Show Welcome Screen at startup check box at the
bottom of the window. You can view the Welcome window at any time by choosing Help >
Welcome Screen.

Restoring the Welcome window
To restore the display-on-startup setting for the Welcome window, do either of the following
actions depending on your situation:

� If Rational Rhapsody starts up without opening the Welcome window, choose Help >
Welcome Screen. Notice that doing this automatically selects the Show Welcome Screen
at startup check box at the bottom of the window.

� If you have cleared the Show Welcome Screen at startup check box but have not yet shut
down Rational Rhapsody, return to the Welcome window (select the Welcome tab in the
drawing area or choose Help > Welcome Screen) and select the Show Welcome Screen
at startup check box.

Rational Rhapsody project tools
The Rational Rhapsody project tools allow you to perform model design and development tasks
using groups of toolbar buttons in the browser, drawing area, and output window. If a button is
Rational Rhapsody 33

Introduction to Rational Rhapsody
disabled or not displayed, the operation represented by the button is unavailable for the currently
displayed project items.

Browser filter

The browser filter lets you display only the elements relevant to your current task. Click the down
arrow at the top of the browser to display the menu of filter options.

The filter is set to Entire Model View (default). For detailed information about the other options,
see Rational Rhapsody browser menu options. You can also display the browser filter using View >
Toolbars > Browser Filter.
34 User Guide

Rational Rhapsody project tools
Standard tools

The Standard toolbar provides quick access to the standard tools in Rational Rhapsody. To
display or hide this toolbar, choose View > Toolbars > Standard.

The Standard toolbar includes the following tools:

Tool
Button Name Description

New Creates a project. This button executes the same command as File > New.

Open Opens an existing project. This button executes the same command as File > Open.

Save Saves the current project. This button executes the same command as File > Save.

Cut Cuts the selection to the clipboard. This button executes the same command as
Edit > Cut.

Copy Copies the selection to the clipboard. This button executes the same command as
Edit > Copy.

Paste Pastes the contents of the clipboard. This button executes the same command as
Edit > Paste.

Format Painter Used for copying formatting from one element to another element in the same
diagram.

Print Prints the active view. This button executes the same command as File > Print.

About Opens the About Rational Rhapsody window, which displays the product version
information. You can also choose Help > About Rhapsody to open the window. In
addition, when you have the About Rhapsody window open, you can click the
License button to open the License Details window.

Undo Undoes the last operation you performed in the model. This button executes the
same command as Edit > Undo.

Redo Reverses the undo command. This button executes the same command as Edit >
Redo.

Search Opens the Search window for a term in the model. This button executes the same
command as Edit > Search.
Rational Rhapsody 35

Introduction to Rational Rhapsody
Edit menu commands

The Rational Rhapsody Edit menu lets you access and change text and diagrams using the
following menu commands. Many of these menu commands are also represented as toolbar
buttons, as described in Standard tools.

Edit > Undo
Rational Rhapsody allows you to undo the last 20 operations performed on the project.

Edit > Redo
You can redo the operation that was most recently undone using Edit > Undo or the Undo button.
Redo is not active until you have used Undo at least once.

Edit > Cut
This menu command removes the selection from the model and puts it into the Windows clipboard
for possible pasting in another location.

Edit > Copy
This menu command makes a copy of the selection and puts it into the Windows clipboard for
possible pasting in another location.

Edit > Paste
This menu command copies and previously cut or copied selection from the Windows clipboard
into a different location.

References Opens a list of elements that reference the selected element.
This button executes the same command as right-clicking the selected element in
the browser and selecting References.

Locate in
Browser

Locates the selected diagram element in the browser.
This button executes the same command as the Locate button in the Features
window and Edit > Locate in Browser.

Delete Deletes the current selection from model. This button executes the same command
as Edit > Delete.

Tool
Button Name Description
36 User Guide

Rational Rhapsody project tools
Edit > Delete
The Delete menu command removes the selected item from the entire active project. In the
browser, it always deletes an object from the entire model including all diagrams. Before the delete
operation is completed, a confirmation message displays.

Edit > Search
Use this menu command to perform a quick search of the model or a more advanced search for text
or model elements. This facility displays the results in the Output window. See Searching models.

Edit > Advanced Search and Replace
Use this menu command to perform more complex searches, such as identifying only the units in
the model or locating unresolved elements. See Advanced search and replace features.

Edit > Search Inside Selected
Use this menu command to perform a search within the item you selected on the Rational
Rhapsody browser. See Searching models.

Tools for Generating and running code

The Code toolbar provides quick access to frequently used Code menu commands.

The Code toolbar includes the following tools:

Tool Button Name Description

Make Builds the active configuration. You must generate code
before you can build the configuration.
This button executes the same command as Code >
Generate > Build run XXX.exe.

Stop Make/
Execution

Stops the make process or the execution while it is in
progress. This button executes the same command as Code
> Stop.

Run Executable Runs the executable image. This button executes the same
command as Code > Run XXX.exe.

Generate/
Make/Run
(GMR)

Generates code, builds the configuration, and runs the
executable image. This button executes the same command
as Code > Generate/Make/Run.

Disable/Enable
Dynamic Model
Code
Associativity

Disables or enables dynamic model-code associativity. The
button displays as two connected arrows when DMCA is
active, and two disconnected arrows when DMCA is inactive.
See Deleting Redundant Code Files.
Rational Rhapsody 37

Introduction to Rational Rhapsody
Current
Component

Contains a list of all components in the project. To change the
active component, select it from the drop-down list.

Current
Configuration

Contains a list of all configurations in the active component.
To change the active configuration, select it from the
drop-down list.

Tool Button Name Description
38 User Guide

Rational Rhapsody project tools
Tools for managing and arranging windows

The Windows toolbar provides quick access to Rational Rhapsody windows, such as the browser
and the Features window. You can also access these commands from the View menu. To display or
hide this toolbar, choose View > Toolbars > Windows.

The Windows toolbar includes the following tools:

Note
The Back and Forward navigation is unavailable on Linux. This is for Windows systems
only.

Tool
Button Name Description

Browser Toggles between showing and hiding the browser.

Show/Hide
Features

Toggles between showing and hiding the Features window for the current element.

Show/Hide
Active Code
View

Toggles between showing and hiding the Active Code View window.

Show/Hide
Output Window

Toggles between showing and hiding the Output window.

Toggle Arrange
Options

Toggles between two standard desktop arrangements.
Alternatively, choose Window > Arrange Options.
Use Windows > Arrange Icons to manipulate the arrangement of the desktop.

Bird’s Eye
Window

Toggles between showing and hiding the Bird’s Eye window. You can also press
Alt+F5 to perform the same operation. For more information about this feature, see
The Bird’s Eye (diagram navigator).

Back Displays the previously displayed window. This operation is also available using
Window > Back.

Forward Displays the window in the opposite direction from Back. This operation is also
available using Window > Forward.
Rational Rhapsody 39

Introduction to Rational Rhapsody
Tools for the Favorites browser

The Favorites toolbar provides tools for the Favorites browser. To display or hide this toolbar,
choose View > Toolbars > Favorites.

For more information about the Favorites browser and about the Favorites toolbar, see The
Favorites browser.

Tools for the VBA interface options

The VBA toolbar provides quick access to Rational Rhapsody VBA Interface options. To display
or hide this toolbar, choose View > Toolbars > VBA.

The VBA toolbar includes the following tools:

Tools for animation

When you run an executable model with instrumentation set to Animation, Rational Rhapsody
displays the Animation toolbar. This toolbar automatically appears during an animation session.
To display or hide this toolbar during an animation session, choose View > Toolbars >
Animation.

For more information about animation and about this toolbar, see Animation.

Tools for creating and editing diagram elements

The Diagram Tools panel provides access to tools used in creating and editing diagrams in the
graphic editors. Each graphic editor has a unique set of diagram tools. To display or hide the
drawing tools for the current diagram, choose View > Toolbars > Drawing.

Tool
Button Name Description

VBA Editor Opens the VBA editor.

Show
Properties

Opens the VBA properties window.

Macros Opens the Macros window so you can create VBA macros.

Design Mode Runs VBA in design mode.
40 User Guide

Rational Rhapsody project tools
For more information about modeling toolbars, see Graphic editors.

Tools for common annotations

Use the Common tools, which are displayed in its own section on the Diagram Tools panel, to
add annotations (constraints, comments, and requirements) to a diagram. To display or hide the
Diagram Tools panel, choose View > Toolbars > Drawing.

For information about annotations for diagrams, see Annotations for diagrams.

The Common toolbar includes the following tools:

Tools for zooming diagram views

The Zoom toolbar contains the zoom tools you can use with all the different diagram types. These
tools are also available in View > Zoom/Pan. To display or hide this toolbar, choose View >
Toolbars > Zoom.

For more information about zoom function and the Zoom toolbar, see Zoom.

Tool
Button Name Description

Note Creates a documentation note. Click the button and use the mouse to draw the note
in the diagram.
This is the type of note available with previous versions of Rational Rhapsody. The
note displays in the diagram, but not in the browser.

Constraint Creates a constraint. This button executes the same command as Edit >
Add New > Constraint.

Comment Creates a comment. This button executes the same command as Edit > Add New >
Comment.

Requirement Creates a requirement. This button executes the same command as Edit >
Add New > Requirement.

Anchor
Constraint/
Comment/
Requirement to
Item

Creates an anchor for a constraint, comment, or requirement.
Rational Rhapsody 41

Introduction to Rational Rhapsody
Tools for formatting text

The Format toolbar provides tools that affect the display of text in your diagrams, such as font,
size, color, and so on. In addition, you can access these options by selecting Edit > Format >
Change. To display or hide this toolbar, choose View > Toolbars > Format.

For more information about the Format toolbar, see Format text on diagrams.

Tools for the layout of elements

The Layout toolbar provides quick access to tools that help you with the layout of elements in
your diagram, including a grid, page breaks, rulers, and so on. To display or hide this toolbar,
choose View > Toolbars > Layout.

For more information about the Layout toolbar, see Layout toolbar.

Tools for free shapes

Use the Free Shapes tool, which are displayed in its own section on the Diagram Tools panel, to
draw elements freehand in a diagram. To display or hide the Diagram Tools panel, choose View >
Toolbars > Drawing.

For more information about the graphic editors and about these tools, see Graphic editors.
42 User Guide

Creating diagrams
Creating diagrams
The Diagrams drawing buttons access the graphic editor to create and edit diagrams. The Profiles
create a starting point structure for new projects and control which diagrams are available for those
projects. The available diagrams are represented as buttons on the toolbar across the top of the
Rational Rhapsody window.

To create a new diagram:

1. Choose Tools > Diagrams and select the type of diagram you want to create, or click the
diagram button at the top of the Rational Rhapsody window.

2. The Open window for the selected diagram displays. Highlight the portion of the project
with which the diagram will be associated.

3. Click New.

4. In the New Diagram window, enter the Name of the new diagram.

5. If you want to populate the new diagram automatically with existing model elements,
click the Populate Diagram check box.

6. Click OK.
Rational Rhapsody 43

Introduction to Rational Rhapsody
Tools for creating/opening diagrams

The Diagrams toolbar includes the following tools:

Diagram
Button Name Description

Object Model
Diagram

This diagram shows the logical views of the static structure of the classes and
objects in an object-oriented software system and the relationships between them.
This diagram is available for the majority of profiles. Click this button to be able to
open an existing object model diagram or to create one.

Sequence
Diagram

This diagram shows the interactions between objects in the form of messages
passed between the objects over time. This diagram is available for the majority of
profiles. Click this button to be able to open an existing sequence diagram or to
create one.

Use Case
Diagram

This diagram shows the use cases of the system and the actors that interact with
them. This diagram is available for the majority of profiles and also the FunctionalC
profile. Click this button to be able to open an existing use case diagram or to create
one.

Component
Diagram

This diagram shows the dependencies among software components, such as library
or executable components. This diagram is available for the majority of profiles. Click
this button to be able to open an existing component diagram or to create one.

Deployment
Diagram

This diagram shows the run-time physical architecture of the system. This diagram is
available for the majority of profiles. Click this button to be able to open an existing
deployment diagram or to create one.

Collaboration
Diagram

This diagram describes how different kinds of objects and associations are used to
accomplish a particular task. This diagram is available for the majority of profiles.
Click this button to be able to open an existing collaboration diagram or to create
one.

Structure
Diagram

This diagram shows the architecture of the composite classes that define the model
structure. This diagram is available for the majority of profiles. Click this button to be
able to open an existing structure diagram or to create one.

Open
Statechart

A statechart defines the behaviors of individual classes in the system. This diagram
is available for the majority of profiles and also the FunctionalC profile. Click this
button to be able to create one a statechart.

Open Activity
Diagram

This diagram shows the lifetime behavior of an object, or the procedure that is
executed by an operation in terms of a process flow, rather than as a set of reactions
to incoming events. This diagram is available for the majority of profiles. Click this
button to be able to create an activity diagram.

Panel Diagram This diagram provides you with a convenient way to demonstrate a user device.
During animation or Webify, you can use a panel diagram to activate and monitor
your user application. This diagram is available for Rational Rhapsody in C, Rational
Rhapsody in C++, and Rational Rhapsody in Java projects. Click this button to be
able to open an existing panel diagram or to create one.

Build Diagram This diagram shows how the software is to be built. This diagram is primarily
associated with the FunctionalC profile. Click this button to be able to open an
existing build diagram or to create one.
44 User Guide

Creating diagrams
Opening the main diagram

To open the diagram for an element in the browser, select the element and choose Tools > Main
Diagram. This is commonly used to see the diagrams associated with classes. If no diagram is
identified as the main diagram for the selected class, no diagram is displayed.

Locating in the browser

If you want to locate an element from a diagram in the Rational Rhapsody browser, select the
diagram element and choose Edit > Locate in Browser, click the Locate in Browser button, or
press Ctrl+L. The browser opens and highlights the intended element.

Call Graph A call graph shows the relationship of function calls as well as the relationship of
data. This diagram is primarily associated with the FunctionalC profile. Click this
button to be able to open an existing call graph or to create one.

File Diagram This diagram shows how files interact with one another (typically how the #include
structure is created). This diagram is primarily associated with the FunctionalC
profile. Click this button to be able to open an existing file diagram or to create one.

Message
Diagram

This diagram shows how the files functionality might interact through messaging
(synchronous function calls or asynchronous communication). This diagram is
primarily associated with the FunctionalC profile. Click this button to be able to open
an existing message diagram or to create one.

Open Flowchart For a function or class the chart, a flow chart shows the operational flow and code
generation. This diagram is primarily associated with the FunctionalC profile. Click
this button to be able to open an existing flow chart.

Diagram
Button Name Description
Rational Rhapsody 45

Introduction to Rational Rhapsody
Add new elements
To create elements for your project, use either the Edit > Add New submenu commands or
right-click a browser item and select the intended addition from the Add New submenu. The
options displayed on the submenu depend on the selected item in the browser or diagram. After
you create the element, you might need to define it further using the The Features window.

Add New > Event

This menu command creates an event, which is a specification of a significant occurrence that has
a location in time and space.

Add New > Interface

This menu command creates a set of operations that publicly define a behavior or way of handling
something so knowledge of the internals is not needed or interface. Component diagrams define
interfaces between components only.

Add New > Actor

This menu command creates an actor element for a use case diagram.

Add New > Tag

Tags add information to the model relating to the domain or platform. To create a tag using
the browser, select the element and choose Edit > Add New > Tag.

Add New > Use Case

Use cases represent the externally visible behaviors or functional aspects of the system, but the
content of use cases is not used for code generation. To create a use case in the browser, select a
package or other element that might contain a use case and choose Edit > Add New > Use Case.

Add New > Requirement

To add an intended feature, property, or behavior of a system component as a requirement,
right-click the component in the browser and select Add New > Requirement.
46 User Guide

Add new elements
Add New > Flow Item

To describe the kinds of information that can be exchanged between objects, add a flow item to
represent either pure data, data instantiation, or commands (events). Flow items can represent
classes, types, events, relations, parts, objects, attributes or variables. To add the flow item, select
the element being represented and choose Edit > Add New > Flow Item.
Rational Rhapsody 47

Introduction to Rational Rhapsody
The Features window
The Features window enables you to edit the features of each element in the Rational Rhapsody
model. The Features window contains a number of tabs that are common to almost all types of
elements:

� General tab

� Description (see Creating hyperlinks on the Description tab)
� Relations (see Define relations)
� Tags (see Use tags to add element information)
� Displaying a tab on the Features window in a stand-alone window

Open the Features window

To define and change model elements, use any of these methods to launch the Features window for
the element that needs to be modified:

� Double-click an element in the browser (except a diagram).
� Double-click an element on a diagram.
� Right-click an element and select Features.
� Select an element in the browser and press Alt + Enter. This is unavailable for a Rational

Rhapsody project within the Eclipse platform.
� Select an element and choose View > Features. This is unavailable for a Rational

Rhapsody project within the Eclipse platform.
The Features window lists different fields depending on the element type.

Applying changes with the Features window

When you have made changes that need to be applied to the project, an asterisk (*) is displayed in
the title bar of the Features window. Use one of these methods to save the changes.

� Press Ctrl + Enter.
� Click the Apply button on the Features window.
� Change focus to another window or tab.
� Initiate an external activity, such as generating code, saving the project, or generating a

report.
To apply changes and close the Features window, click OK.
48 User Guide

The Features window
Canceling changes on the Features window

To cancel changes made to the Features window, press the Esc key. Alternatively, you can close
the window without applying changes.

Note that changes cannot be canceled once they have been applied to the model.

General tab

The General tab of the Features window enables you to define the characteristics of the selected
element. The fields for the General tab vary depending on the characteristics of the selected
element. The most common fields on the General tab are as follows:

� In the Name box you specify the name of the element.
� You use the L button to open the Name and Label window to specify the label for the

element, if any. For information on creating labels, see Descriptive labels for elements.
� In the Stereotype list you specify the stereotype of the element, if any. For information on

creating stereotypes, see Stereotypes.
– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
� Default Package specifies a group for the selected element.

Properties tab

The Properties tab of the Features window displays the properties for the currently selected item
(selected in the browser or in a diagram) or all of the properties for a model (choose File > Project
Properties).

For more information about the Properties tab, see Rational Rhapsody properties.
Rational Rhapsody 49

Introduction to Rational Rhapsody
Pinning the Features window

The Features window can be “pinned” to a specific element to keep the information for that
element displayed while examining other features for your element.

To pin a Features window to an element:

1. Right-click an element in the browser or a diagram and select Features to open the
Features window for that element.

2. Click the Pin button (horizontal orientation) in the upper right corner of the window.
Note that the button changes to a vertical orientation to indicate that the window for
this element will now remain displayed.

In pinned mode, the features displayed in the pinned window remain displayed and accessible
from all of the window tabs even when a different element is selected. Therefore, you can display
and pin two or three Features windows to compare the information for the elements.

When you no longer need to see the features of the element displayed, you can click the Pin button
again to disconnect it from the element or simply close the window.

Hiding the buttons on the Features window

At the bottom of the Features window, there are three buttons: Locate, OK, and Apply.

To remove these buttons from view, right-click the title bar for the Features window and uncheck
Features Toolbar.

Docking the Features window

By default, the Features window is a floating window. It can be positioned anywhere on the
window, or docked to the Rational Rhapsody work area.

To dock the Features window in the Rational Rhapsody window, do one of the following actions:

� Double-click the title bar of the Features window. The window will jump to the location
where it was last docked. To dock the window in a different location, click the title bar
and drag the window to the intended location.

� Right-click the title bar and select Enable Docking by Drag to display a check mark and
drag the window to the intended location.
50 User Guide

The Features window
Undocking the Features window

To undock the Features window, do one of the following actions:

� Double-click the title bar of the Features window.
� Click the title bar and hold down Ctrl while dragging to a new location.
� Right-click the title bar and select Enable Docking by Drag to remove the check mark

and drag the window to the intended location. The window is no longer docked with the
main window.

Opening multiple instances of the Features window

You can open multiple Features windows in the Rational Rhapsody workspace. Using this
functionality, you can easily compare the features of two different elements and quickly copy text
from one Features window to another.

To open more than one Features window, right-click an element and select Features in New
Window.

When opened as a new window, the Features window remains focused on the same element, even
when you change the browser or graphic editor selection. Any changes made to that element from
another view (such as the browser or a diagram editor) are automatically updated in the Features
window. This enables you to keep track of the features for a particular element while working with
other parts of the model.

When you have an open Features window that is focused on a particular element, you can locate
that element in the browser by clicking the Locate button at the bottom of the window.
Alternatively, you can locate the item by selecting the Locate in Browser tool from the standard
toolbar.

Displaying a tab on the Features window in a stand-alone window

For each of the Features tabs, you have the option to display the information in a dockable
stand-alone window.

To do display a tab on the Features window in a stand-alone window:

1. Select an element in the Rational Rhapsody browser or in a diagram.

2. Choose the relevant menu item in the View menu, for example, View > Description.
Rational Rhapsody 51

Introduction to Rational Rhapsody
Docking a stand-alone window for a Features window tab

Once you have a stand-alone window open for a tab of the Features window (as well as the
Features window), you can dock it.

To dock a the Features window or a stand-alone window for one of its tabs:

1. Right-click the title bar for the window and select Enable Docking by Drag.
Notice that a check mark displays to the left of the command on the pop-up menu.

2. Drag the window to one of the borders or other docking locations in the Rational
Rhapsody window.
Notice that upon reaching one of these locations, the outline of the window changes to
reflect the area the window occupies when docked.

Note
When one of these windows is docked, it continues to display the information in the same
manner as it does when it is “pinned,” as described in Pinning the Features window.

Undocking a stand-alone window for a Features window tab

To undock a the Features window or a stand-alone window for one of its tabs, do one of the
following actions:

� To undock without disabling the docking capability, drag the window to one of the
non-docking locations in the Rational Rhapsody window.

� To disable docking and undock:
a. Right-click the title bar for the window and select Enable Docking by Drag.

Notice that the check mark to the left of the command no longer displays.

b. Drag the window anywhere in the Rational Rhapsody window.
52 User Guide

The Features window
Hiding tabs on the Features window

If you normally do not use one of the tabs on the Features window for a particular metaclass, you
can hide it. To do this, you have to create a New Term stereotype that sets the
HideTabsInFeaturesDialog property to hide one or more tabs on the Features window. Then you
would apply this stereotype to a model element of that metaclass.

Note
This feature is used exclusively for elements with the New Term stereotype.

To hide one or more tabs on the Features window for a particular metaclass:

1. Display your model in Rational Rhapsody.

2. In the Rational Rhapsody browser, create a stereotype as a New Term.

a. To learn how to create a stereotype, see Stereotypes.

b. Be sure to select one metaclass in the Applicable To box and select the New Term
check box on the General tab of the Features window for your stereotype.

c. On the Properties tab for the stereotype, locate the
Model::Stereotype::HideTabsInFeaturesDialog property.
Rational Rhapsody 53

Introduction to Rational Rhapsody
d. Click the box to the right of the property name and type the names of the tabs,
separated by a comma, that you want to hide; for example,
Description,Relations,Tags.

Note: You cannot hide the General tab.

e. Click OK.
54 User Guide

Hyperlinks
3. Apply the stereotype to a model element of the metaclass. For example, if you selected the
Class metaclass (in the Applicable To box on the General tab of the Features window for
the stereotype), then you can apply this stereotype (select it from the Stereotype
drop-down menu on the General tab of the Features window for the class) to any classes
you currently have in your model or any that you create.

Note: When you define a stereotype as a New Term, it is given its own category in
the Rational Rhapsody browser, and any elements to which this stereotype is
applied are displayed under this category.

If you want to display a previously hidden tab, delete the name of that tab from the list you entered
in the Model::Stereotype::HideTabsInFeaturesDialog property.

Hyperlinks
Rational Rhapsody supports both internal hyperlinks, which point to Rhapsody model elements,
and external hyperlinks, which point to a URL or file.

In addition, you can:

� Use the DiffMerge tool to compare models to locate differences in diagrams and to merge
models that contain hyperlinks.

Note: You can edit a description that uses hyperlinks or RTF format in the DiffMerge
tool if it is from the left or right side of the comparison, but you cannot edit a
description from a merge.

� Export hyperlinks using the Rhapsody COM API.
Note: You cannot create or modify hyperlinks using the COM API.

� Report on hyperlinks using ReporterPLUS.
� Find references to hyperlinks using the Show References feature.
Rational Rhapsody 55

Introduction to Rational Rhapsody
Create hyperlinks

You can create hyperlinks inside the description of an element, or with the Rational Rhapsody
browser.

A typical use for the Description tab of the Features window is to enter a description for whatever
Rhapsody element you currently have open. For example, if you have the Features window open
for a class, you can enter a detailed description for the class on the Description tab. You can do the
same on the Description tab for an attribute, an event, a package, and so on.

Note
Hyperlinks created in the Description are not model elements and can neither be viewed in
the browser nor accessed by the API.

Creating hyperlinks on the Description tab
To create hyperlinks on the Description tab:

1. Open the Features window for the element.

2. On the Description tab, right-click in the open field and select Hyperlink.

Note: If you want to replace pre-existing text with a hyperlink, select the text before
right-clicking.

3. On the Hyperlink window, specify the hyperlink text and target.

� The Text to display group specifies the text for the hyperlink. The possible values
are as follows:

– Free text displays the specified text as the hyperlink text.
– Target name displays the full path of the target as the hyperlink text.
– Target label displays the label of the target as the hyperlink text. This option

is available only for internal hyperlinks that have labels.
– Tag value displays the value for the tag. Note that this value is available only

when you select a tag as the hyperlink target. For an example that uses this
field, see Using tag values in hyperlinks.

� The Link target group specifies the target file, Web page, or model element. You
can specify the target by typing the target in the text field, using the list to select
the model element in the model, or clicking the Ellipses button to open a new
window so you can navigate to the target file.

Note: You can include a relative path in the hyperlink target. If you use a relative path,
the base directory is the one where the
<Project name>.rpy file is located.
56 User Guide

Hyperlinks
4. Click OK.
The hyperlink is displayed on the Description tab as blue, underlined text. This type of
hyperlink is not displayed in the browser.

Creating hyperlinks on the Rational Rhapsody browser
To create a hyperlink in the browser:

1. Right-click the element to which you want to add the hyperlink and select Add New >
Relations > Hyperlink.
Rhapsody creates a hyperlink in the browser.

Note: Add New > Relations is the default menu command structure in Rhapsody. It
can be changed by users. This topic assumes that all defaults are in place.

2. Open the Features window for the new hyperlink.

3. Specify the hyperlink display text in the Text to display group.

4. Specify the hyperlink target in the Link target group by typing the path, using the
drop-down list, or using the navigation window.

5. Optionally, specify a stereotype or description.

6. Click OK.

The hyperlink is added to the Hyperlinks category under the owner element.

To improve readability, there are different icons for the different targets, such as the following
targets:

� Word files
� Classes
� URLs

You can drag-and-drop hyperlinks from the Hyperlinks category of one element to that of another.
Similarly, you can copy hyperlinks from the Hyperlinks category of one element to that of
another by dragging-and-dropping and pressing Ctrl, or using the Copy and Paste shortcuts.
Rational Rhapsody 57

Introduction to Rational Rhapsody
Following a hyperlink

To follow a hyperlink, double left-click it. The corresponding file, window, or URL is displayed.

Alternatively, you can use the Open Hyperlink option in the menu.

Edit a hyperlink

You can edit a hyperlink using the Features window or from within the Description area,
depending on the type of hyperlink.

Note
You cannot rename a hyperlink directly from the browser. You must open the Features
window.

Use the Features window to change the features of the hyperlink, including its text display and
target.

A hyperlink has the following features:

� Name specifies the name of the element. The default name is hyperlink_n, where n is an
incremental integer starting with 0.

� Text to display specifies the text for the hyperlink. The possible values are Free text,
Target name, Target label, and Tag value. For more information on these options, see
Creating hyperlinks on the Description tab.

� Link target specifies the target file, Web page, or model element.
� Description describes the hyperlink.

Editing the hyperlink in the Description area
To edit a hyperlink in the Description area:

1. Open the Features window for the element.

2. On the Description tab, right-click the hyperlink in the text and select Edit Hyperlink.

3. In the Hyperlink window (see Creating hyperlinks on the Description tab), edit the link.

4. Click OK.
58 User Guide

Hyperlinks
Using tag values in hyperlinks
You can display the value of a tag in a hyperlink.

To add a tag value to a hyperlink:

1. Wherever you want to create the hyperlink, right-click and select Features to open the
Features window.

2. On the Tags tab, use the Quick Add group to enter the name of the hyperlink and its
value. If the tag does not have a value, the value «empty» is displayed.

3. Click OK.

Changing the tag value
To change the value of the tag:

1. Click the tag value hyperlink or click the New button on the Tags tab to open this
Features window.

2. Replace the existing value with the new value.

3. Click OK.

Deleting a hyperlink

Delete a hyperlink using one of the following methods:

� In the text area of the Description tab, right-click the link and select Remove Hyperlink,
or use the backspace key or Delete icon.

� In the browser, select the hyperlink and select Delete from Model or click the Delete icon.

Hyperlink limitations

Note the following limitations:

� You can select tags as hyperlink targets, which are available in the Rhapsody browser. For
example, if you have the tag color in a profile that is applicable to all classes, you cannot
see the tag color under a given class instance in the browser. The Rhapsody browser
shows only local or overridden tags; however, these tags are shown in the Tags tab of the
Features window for the class.

� If you override a tag value in a package, the tag is considered to be local because it is tied
to that specific element. If you have a hyperlink to the local tag and subsequently delete
the tag, the reference will be unresolved.
Rational Rhapsody 59

Introduction to Rational Rhapsody
Create a diagram
This topic is for Eclipse users.

Besides being able to import a Rational Rhapsody project and all its diagrams, you can create
diagrams in the Rational Rhapsody Platform Integration.

Creating a diagram

This procedure is for Eclipse users.

To create a Rational Rhapsody diagram in Eclipse:

1. On the New Diagram window, select a diagram type from the drop-down list.

2. Enter a name for the diagram.

3. If available, select a location for the diagram from the drop-down list.

4. If available, if you want to populate the new diagram automatically with existing model
elements. Click the Populate Diagram check box.

5. Click Finish.

Create a Rational Rhapsody project
Besides being able to import a Rational Rhapsody project in the Rational Rhapsody Platform
Integration, you can create a Rational Rhapsody project.

Creating a Rational Rhapsody project

This procedure is for Eclipse users.

To create a Rational Rhapsody project:

1. On the New Rhapsody Project window, enter a name for your Rational Rhapsody project.

2. Optionally, enter a name for your first object model diagram.

3. Select the language for your project from the drop-down list.

4. If available, select the Rational Rhapsody project type from the drop-down list.

5. If you want to designate a location for your project other than your default location, clear
the Use default location check box and browse to your preferred location.
60 User Guide

Import a Rational Rhapsody project
6. Click Finish.

7. If the directory for your project is not already created, click Yes when you are asked if you
want to create it.

Import a Rational Rhapsody project
Besides being able to create a Rational Rhapsody project in the Rational Rhapsody Platform
Integration, you can import an existing Rational Rhapsody project.

Importing a Rational Rhapsody project

This procedure is for Eclipse users.

To import a project:

1. On the Import window, browse to your select root directory.

2. Select the projects you want to import.

� Click Select All to select all the projects listed.
� Click Deselect All to clear the check boxes for all the selected projects.
� Click Refresh to refresh your list.

3. If available, select your options selection:

� With All Subunits. Select this radio button to load all units in the project,
ignoring workspace information. For information on workspaces, see Using
workspaces.

� Without Subunits. Select this radio button to prevent loading any project units.
All project units will be loaded as stubs.

� Restore Last Session. Select this radio button if you would like to load only those
units that were open during your last Rational Rhapsody session.

4. Click Finish.
Rational Rhapsody 61

Introduction to Rational Rhapsody
Import source code
Importing source code involves the Rational Rhapsody Reverse Engineering tool.

Importing source code

This procedure is for Eclipse users.

To import source code:

1. On the Importing Source Code window, click the Finish button.

2. On the message box that displays click Continue to open the Reverse Engineering
window.

3. See Reverse engineering legacy code.

Search window
This topic is for Eclipse users.

The Search window shows results from searches of your model. Note that this window might not
appear until you perform a search (for example, choose Search > Search and select the Rhapsody
tab). For more information about doing searches in Rational Rhapsody, see Searching models.

Graphic editors
This topic is for Eclipse users.

You can use the graphic editors to analyze, design, and construct the system using UML diagrams.
Diagrams enable you to observe the model from several different perspectives, like turning a cube
in your hand to view its different sides. Depending on its focus, a diagram might show only a
subset of the total number of classes, objects, relationships, or behaviors in the model. Together,
the diagrams represent a complete design.

Rational Rhapsody adds the objects created in diagrams to the Rational Rhapsody project, if they
do not already exist. Conversely, Rational Rhapsody removes elements from the project when they
are deleted from a diagram. However, you can also add existing elements to diagrams that do not
need to be added to the project, and remove elements from a diagram without deleting them from
the model repository.

For more information about the graphic editors, see Graphic editors.
62 User Guide

Call stack and event queue
Call stack and event queue
This topic is for Eclipse users.

The call stack view describes the current stack of calls for the focus thread. The event queue view
describes the current state of the event queue for the focus thread.
Rational Rhapsody 63

Introduction to Rational Rhapsody
64 User Guide

Classes and types
Classes provide a specification (blueprint) for objects, which are self-contained, uniquely
identified, run-time entities that consist of both data and operations that manipulate this data.
Classes can contain attributes, operations, events, relations, components, super classes, types,
actors, use cases, diagrams, and other classes. The Rational Rhapsody browser icon for a class is a
three-compartment box with the top, or name, compartment filled in. For an example of this icon,
see Defining the attributes of a class.

Creating a class
To create a class, in the Rational Rhapsody browser:

� Right-click the Classes category to which you want to add a class and select Add New
Class.

� Right-click a package and select Add New > Class.
� Select a package and choose Edit > Add New > Class.

Rational Rhapsody creates a new class and names it class_n, where n is greater than or equal to 0.
The new class is located in the browser under the Classes category, and is selected so that you can
rename it.

For information on creating classes in OMDs, see Object model diagrams.

Class features
Use the Features window to define and modify a class. You can also use it to re-arrange the order
of attributes and operations, control the display of attributes and operations, create templates, and
so on. To open the Features window for a class, double-click it on the Rational Rhapsody browser,
or right-click it and select Features.
Rational Rhapsody 65

Classes and types
Defining the characteristics of a class

Use the General tab of the Features window to define the characteristics of a class.

On the General tab, you define the general features for a class through the various controls on the
tab.

� In the Name box you specify the name of the element. The default name is class_n,
where n is an incremental integer starting with 0. To enter a detailed description of the
class, use the Description tab.

� You use the L button to open the Name and Label window to specify the label for the
element, if any. For information on creating labels, see Descriptive labels for elements.

� In the Stereotype list you select the stereotype of the element, if any. For information on
creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In the Main Diagram list you specify the diagram (from the ones available) that contains
the most complete view of the class.

� In the Concurrency drop-down list box you specify the concurrency. The possible values
are as follows:

– Active means the class runs on its own thread.
– Sequential means the class runs on the system thread.

� In the Defined In drop-down list box you specify the owner for the class. Every class lives
inside either a package or another class.

Note: A class not explicitly drawn in a package belongs to the default package of the
diagram. If the diagram is not explicitly assigned to a package, the diagram
belongs to the default package of the project.

� In the Class Type area you specify the class type. The possible values are as follows:
– Regular creates a class.
– Template creates a template. To specify the necessary arguments, use the

Template Parameters tab that displays once you select the Template radio
button. For more information, see Creating a template class.

– Instantiation creates an instantiation of a template. To specify the necessary
arguments, use the Template Instantiation tab that displays once you select
the Instantiation radio button. For more information, see Instantiating a
template class.
66 User Guide

Class features
Note: To create an instance of a class, select the Instantiation radio button and select
the template that the instance is from. For example, if you have a template class
A and create B as an instance of that class, this means that B is created as an
instance of class A at run time.

Selecting nested classes in windows
Every primary model element is uniquely identified by a path in the following form:

<ns1>::<ns2>::...<nsn>::<name>

In this syntax, ns can be either a package or a class. Primary model elements are packages, classes,
types, and diagrams. Classes can contain only other classes, stereotyped classes (such as actors),
and types.

You can select a nested element in a window by entering its name in either of the following
formats:

� <name> in <ns1>::<ns2>::...<nsn>

� <ns1>::<ns2>::...<nsn>::<name>

Defining the attributes of a class

Attributes are the data members of a class. Rational Rhapsody automatically generates accessor
(get) and mutator (set) methods for attributes, so you do not need to define them yourself.

The Rational Rhapsody browser icon for attributes is a three-compartment class box with the
middle compartment filled in:

The icon for the Attributes category is black.

The icon for an individual attribute is red.

The icon for a protected attribute is overlaid with a key.

The icon for a private attribute is overlaid with a padlock.
Rational Rhapsody 67

Classes and types
The Attributes tab of the Features window contains a list of the attributes that belong to the class.
It allows you to perform the following tasks:

� Add a new attribute.

To create a new attribute, either click the <New> row in the list of attributes, or click the

New button in the upper, right corner of the window. The new row is filled in with
the default values.

� Modify an existing attribute.

To modify an attribute, you can use any of the following methods:
– Select the attribute and change the value name and/or change its parameters

from the drop-down list boxes.

– Select the attribute and click the open Feature Dialog button to open the
Features window for the attribute and make your changes there. You can also
double-click the attribute name or icon next to the name to open the Features
window.

� Delete an attribute.

To delete an attribute from the model, select the attribute and click the Delete button .
� View the attribute values.

To view the values for an attribute, open the Features window for it.
You can use the following keyboard shortcuts within an editable list:

� Arrow keys to move between rows and columns.
� Enter key to start or stop editing in a text box, or to make a selection in a combo box.
� Insert key to insert a new element below the selected element.
� Delete key to delete the selected element.
� Esc key to cancel editing.
68 User Guide

Class features
Defining the features of an attribute

When you click the Invoke Features window button or double-click an attribute, the Attribute
window opens. This window is also displayed when you select an attribute in the browser and
might have different options than shown in here.

On the General tab, you define the general features for a attribute through the various controls on
the tab.

� In the Name box you specify the name of the attribute. The default name is attribute_n,
where n is an incremental integer starting with 0. To enter a detailed description of the
attribute, use the Description tab.

� You use the L button to open the Name and Label window to specify the label for the
element, if any. For information on creating tables, see Descriptive labels for elements.

� In the Stereotype list you specify the stereotype of the attribute, if any. For information on
creating stereotypes, see Stereotypes for information on creating stereotypes.

– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In the Attribute type area you specify the attribute type. There are two ways to specify the
type:

– Select the Use existing type check box to select a predefined or user-defined
type or class. Use the Type list to select from among the Rational Rhapsody
predefined types, and any types and classes you have created in this project.
Or to define a new type, delete the value in the Type drop-down list box to
enable the Invoke Features window button and click it to open the Type
window.

For more information on creating types, see Composite types.
– Clear the Use existing type check box if there is no defined type. A

C++[Java] Declaration box displays in which you can give the attribute a
declaration appropriate for your language edition. See Modifying data types.

� In the Visibility area you specify the type of access (visibility) for the accessor/mutator
generated for the attribute: Public, Protected, or Private.

When you generate code, each attribute is generated into three entities:
– The data member itself
– An accessor (get) method for retrieving the data value
– A mutator (set) method for setting the data value
Rational Rhapsody 69

Classes and types
Note: The visibility setting affects only the visibility of the accessor and mutator
methods, not of the data member itself. The data member is always protected,
regardless of the access setting.

� In the Multiplicity box (displayed when appropriate) you specify the multiplicity of the
attribute. If this is greater than 1, use the Ordered check box to specify whether the order
of the reference type items is significant. The modifier choices are as follows:

– Constant specifies whether the attribute is read-only (check box is selected)
or modifiable (check box is cleared).

– Reference specifies whether the attribute is referenced as a reference, such as
a pointer (*) or an address (&) in C++.

– Static creates a static attribute, which belongs to the class as a whole rather
than to individual objects. See Initializing static attributes.

� In the Initial Value box you specify the initial value for the attribute.

Launching a text editor
To access the text editor, click the Ellipses button . Throughout the Rational Rhapsody
interface, the Ellipses button opens a text editor.

Modifying data types
To create or edit a user-defined data type:

1. Open the Features window for the attribute.

2. In the Attribute type area, clear the Use existing type check box.

3. Type a declaration for the new type in the C++[Java] Declaration box using the proper
syntax. Note the following information:

� You can omit the semicolon at the end of the line; Rational Rhapsody
automatically adds one if it is not present.

� Substitute %s for the name of the type in the declaration. For example:
typedef unsigned char %s[100]

This translates to the following declaration in the generated code:

typedef unsigned char msg_t[100];

4. Add a description for the type on the Description tab.

5. Click OK.

Rational Rhapsody adds it to the Types category under the package to which the class belongs,
rather than under the class itself.
70 User Guide

Class features
Initializing static attributes

If you select the Static check box on the Features window for an attribute, use the Initial Value
box to enter an initial value. You can open a text editor for entering initialization code by clicking
the Ellipses button associated with the box.

For information on code generation for static attributes, see Generating Code for Static Attributes.

Class operations

The Operations tab of Features window for a class enables you to add, edit, or remove operations
from the model or from the current OMD view. It contains a list of all the operations belonging to
the class.

Rational Rhapsody enables you to create sets of standard operations for classes and events. For
more information, see Using Standard Operations.

You can create the following types of operations:

� Primitive operations

� Receptions

� Triggered operations

� Constructors

� Destructors
Rational Rhapsody 71

Classes and types
Primitive operations

A primitive operation is one whose body you define yourself instead of letting Rational Rhapsody
generate it for you from a statechart.

Creating a primitive operation
To create a primitive operation using the Features window for a class:

1. On the Rational Rhapsody browser, double-click a class to open its Features window.

2. On the Operations tab, either click the <New> row in the list of operations or click the
New button in the upper, right corner of the window and select PrimitiveOperation. The
new row is filled in with the default values.

3. By default, Rational Rhapsody names the new primitive operation Message_n, where n is
greater than or equal to 0. Type the new name for the operation in the Name column.

4. Change the other default values as necessary.

5. Click OK.

Alternatively, you can create a primitive operation through the use of the Rational Rhapsody
browser, as follows:

1. In the Rational Rhapsody browser, right-click the class, actor, operation, or use case node
to which you want to add the operation and select Add New > Operation. Alternatively,
you can select the item and choose Edit > Add New > Operation from the menu bar.

2. Rename the operation.

Defining the features of a primitive operation
The Features window for a primitive operation enables you to change the features for it, including
its return values, arguments, and modifiers. On the General tab, you define the general features for
a primitive operation through the various controls on the tab. Notice that the signature for the
primitive operation is displayed at the top of the General tab of the Features window.

� In the Name box you specify the name of the element. The default name is Message_n,
where n is an incremental integer starting with 0. To enter a detailed description of the
operation, use the Description tab.

� You use the L button to open the Name and Label window to specify the label for the
element, if any. For information on creating labels, see Descriptive labels for elements for
information on creating labels.
72 User Guide

Class features
� In the Stereotype list you specify the stereotype of the attribute, if any. For information on
creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In the Visibility list you specify the visibility of the primitive operation: Public,
Protected, or Private.

� In the Type drop-down list box you specify the operation type. For primitive operations,
this box is set to Primitive Operation. If this is a template class, select the Template
check box. To specify the necessary arguments for the template, use the Template
Parameters tab that displays once you select the Template check box. For more
information, see Creating a template class.

� In the Returns area you specify the return type of a function.
– If the function will return a defined type, select the Use existing type check

box and select the return type from the Type drop-down list box that displays
once you select the check box. Or to define a new type, delete the value in the
Type drop-down list box to enable the Invoke Features window button and
click it to open the Type window.

For more information on creating types, see Composite types.
– If you want to use a type that is not defined, clear the Use existing type check

box. A C++[Java] Declaration box displays. Enter the code as you want it to
appear in the return statement. To access the text editor, click the Ellipses
button .

� In the Modifiers area you specify the modifiers of the operation. The possible values are
Virtual, Static, Inline, Constant, or Abstract, but the available modifier types vary
according to the type of operation.

Receptions

A reception specifies the ability of a class to react to a certain event (called a signal in the UML).
The name of the reception is the same as the name of the event; therefore, you cannot change the
name of a reception directly. Receptions are displayed under the Operations category for the
class.
Rational Rhapsody 73

Classes and types
Creating a reception using the Features window
To create a reception using the Features window:

1. On the Rational Rhapsody browser, double-click a class to open its Features window.

2. On the Operations tab, either click the <New> row in the list of operations or click the
New button in the upper, right corner of the window and select Reception from the
pop-up menu. The new row is filled in with the default values.

3. Type the name of the reception in the Event box on the New Reception window. If
Rational Rhapsody cannot find an event with the given name, a confirmation box opens,
prompting you to create a new event. Click Yes to create a new event and the specified
reception.

4. Open the Features window for the new reception operation you just created and set its
other values as necessary.

5. Click OK.

Creating a reception using the browser
To create a reception using the Rational Rhapsody browser:

1. In the browser, right-click a class, actor, operation, or use case node and select Add New >
Reception. The New Reception window opens.

2. Type the name of the new reception and click OK.

3. The following action happens depending on what Rational Rhapsody finds:

� If Rational Rhapsody finds an event with the specified name, it creates the new
reception and displays it in the browser.

� If Rational Rhapsody cannot find an event with the given name, a confirmation
box opens, prompting you to create a new event. Click Yes to create a new event
and the specified reception.

Note the following information:

� When you add a new reception with a new name to a class, an event of that name is added
to the package. If you specify an existing event name, the reception simply points to that
event.

� Receptions are inherited. Therefore, if you give a trigger to a transition with a reception
name that does not exist in the class but does exist in its base class, Rational Rhapsody
does not create a new reception.
74 User Guide

Class features
Reception features
The Features window for a reception enables you to change the features of a reception, including
its type and the event to which the reception reacts. On the General tab, you define the general
features for a reception through the various controls on the tab. Notice that the signature for the
reception is displayed at the top of the General tab of the Features window.

� In the Name box you specify the name of the reception. The default name is event_n,
where n is an incremental integer starting with 0. To enter a detailed description of the
reception, use the Description tab.

� If the Name box is inaccessible, click the L button to open the Name and Label window to
change the name, if any. For information on creating labels, see Descriptive labels for
elements.

� In the Stereotype list you specify the stereotype of the attribute, if any. For information on
creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In the Visibility list you specify the visibility of the reception (Public, Protected, or
Private), if available.

� In the Type drop-down list box you specify the operation type. For receptions, this box is
set to Reception.

� In the Event list you specify the event to which the reception reacts. To view or modify the
features of the event itself, click the Invoke Features window button.

Deleting receptions
You cannot delete receptions in the following cases:

� The reception is used by the statechart of the class.
� The reception is used by a derived statechart of a class that does not have its own

reception.

Triggered operations

A triggered operation can trigger a state transition in a statechart, just like an event. The body of
the triggered operation is executed as a result of the transition being taken. For more information,
see Triggered operations.
Rational Rhapsody 75

Classes and types
Constructors

Constructors are called when a class is instantiated, generally to initialize data members with
values relevant to that object.

Rational Rhapsody has the following constructor icons:

Creating a constructor
To create a constructor:

1. Depending on if you want to use the Features window or the Rational Rhapsody browser:

� On the Rational Rhapsody browser, double-click a class to open its Features
window and on the Operations tab, either click the <New> row in the list of
operations or click the New button in the upper, right corner of the window and
select Constructor.

� On the Rational Rhapsody browser, right-click either the class or the Operations
category under the class and select Add New > Constructor.

Note: Alternatively, you can open this window by right-clicking the appropriate
element in a diagram and selecting New Constructor.

2. The Constructor Arguments window opens.

3. Click Add. The Argument window opens.

4. Type in a name for the new constructor and change the default values as necessary.

5. Click OK twice.

The Rational Rhapsody browser icon for a constructor is a red triangle
with a black arrow.

The icon for a protected constructor is overlaid with a key.

The icon for a private constructor is overlaid with a padlock.
76 User Guide

Class features
The new constructor is listed under the Operations category for the class in the Rational
Rhapsody browser.

.

Defining constructor features
The Features window enables you to change the features of a constructor, including its arguments
and initialization code. Double-click the constructor in the Rational Rhapsody browser to open its
Features window.

On this General tab, you define the general features for a constructor through the various controls
on the tab. Notice that the signature for the constructor is displayed at the top of the General tab of
the Features window.

� In the Name box you specify the name of the constructor. The default name is the name of
the class it creates. To enter a detailed description of the constructor, use the Description
tab.

� If the Name box is inaccessible, click the L button to open the Name and Label window to
change the name, if any. For information on creating labels, see Descriptive labels for
elements.

� In the Stereotype list you specify the stereotype of the attribute, if any. For information on
creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In the Visibility list you specify the visibility of the reception (Public, Protected, or
Private), if available. The default value is Public.
Rational Rhapsody 77

Classes and types
� In the Initializer box you enter code if you want to initialize class attributes or super
classes in the constructor initializer. To access the text editor, click the Ellipses button .

For example, to initialize a class attribute called a to 5, type the following code:
 a(5)

Note: In C++, this assignment is generated into the following code in the class
implementation file to initialize the data member in the constructor initializer
rather than in the constructor body:

//---
// A.cpp
//---

A::A() : a(5) {
 //#[operation A()
 //#]
};

Note: You must initialize const data members in the constructor initializer rather than
in the constructor body.

Adding initialization code
To enter code for any initializations that you want to perform in the constructor body rather than in
the constructor initializer, use the Implementation tab. You can create and initialize objects
participating in relationships within the body of a constructor. You can pass arguments to these
objects if they have overloaded constructors using, for example:

new relatedClass(3)

This code in the body of the class constructor calls the constructor for the related class and passes
it a value of 3. The related class must have a conversion constructor that accepts a parameter. The
constructor of the related class then performs its initialization using the passed-in value.
78 User Guide

Class features
Destructors

A destructor is called when an object is destroyed, for example, to de-allocate memory that was
dynamically allocated for an attribute during construction.

Rational Rhapsody has the following destructor icons:

Creating a destructor
To create a destructor, follow the instructions for Creating a primitive operation, but for the type,
select Destructor.

Modifying the features of a destructor
Use the Features window to change the features of a destructor including its visibility and
modifier.

On this General tab, you define the general features for a destructor through the various controls
on the tab.

� In the Name box you specify the name of the destructor. By definition, destructors have
the same name as the class, preceded by a tilde (~) symbol. To enter a detailed description
of the reception, use the Description tab.

� If the Name box is inaccessible, click the L button to open the Name and Label window to
change the name, if any. For information on creating labels, see Descriptive labels for
elements.

� In the Stereotype list you specify the stereotype of the attribute, if any. For information on
creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In the Visibility list you specify the visibility of the reception (Public, Protected, or
Private). By default, destructors are Public.

The Rational Rhapsody browser icon for a destructor is a tombstone
(RIP = Rest In Peace).

The icon for a protected destructor is overlaid with a key.

The icon for a private destructor is overlaid with a padlock.
Rational Rhapsody 79

Classes and types
� In the Modifiers area you specify the modifiers of the destructor. Select Virtual, if
wanted.

To type code for the body of the destructor, use the Implementation tab.

Define class ports

Use the Ports tab to create, modify, and delete class ports.

The Ports tab contains the following columns:

� Name specifies the name of the port.
� Contract specifies the contract of the port. For more information about contacts, see The

Port Contract tab. The possible values are as follows:
– Implicit means that the contract is a “hidden” interface that exists only as the

contract of the port.
– Explicit mean that the contract is an explicit interface in the model. An

explicit contract can be reused so several ports can have the same contract.
� Multiplicity specifies the multiplicity of the port. The default value is 1.
� Behavior specifies whether the port is a behavioral port, which means that the messages

of the provided interface are forwarded to the owner class. If it is non-behavioral, the
messages are sent to one of the internal parts of the class.

� Reversed specifies whether the interfaces are reversed, so the provided interfaces become
the required interfaces and vice versa.

For instructions on how to use the interface on this tab to create, modify, or delete a port, see
Defining the attributes of a class.

For detailed information about specifying ports, see Ports.

Define relations

The term “relations” refers to all the relationships you can define between elements in the model
(not just classes); for example, associations, dependencies, generalization, flows, and links. (In
previous versions of Rational Rhapsody, the term referred to all the different kinds of
associations.)

The Relations tab lists all the relationships (dependencies, associations, and so on) the class is
engaged with.

The Relations tab contains the following columns:

� Name specifies the name of the relation.
80 User Guide

Class features
� Type specifies the relation type (for example, Association End and Dependency).
� Direction specifies the direction of the relationship (From or To).
� From/To specifies the target of the relationship. For example the dependency

Dishwasher.AbstractFactory goes from the Dishwasher class to the
AbstractFactory.

� Data specifies any additional data used by the relationship.

For example, if you have a port that provides the interface MyInterface, the Data column
would list Provided Interface.

For more information on relationships, see Associations.
Rational Rhapsody 81

Classes and types
Showing all relations for a class, object, or package in a diagram

To understand the full meaning or purpose of a class, Rational Rhapsody lets you create an object
model diagram that shows a class and its relations to all the other elements in a project.

Note that you can show the relations for a class, an object, and a package. You would use the same
procedure as noted below, except that you would select that particular element (for example, an
object) instead.

To show all the relations of a class:

1. Right-click a class in the Rational Rhapsody browser and select Show Relations in New
Diagram.

2. Notice the following information:

� Rational Rhapsody created an object model diagram that shows all the relations
for the selected class.

� Rational Rhapsody also named the new object model diagram from the name of
the class you selected and it created an Object Model Diagram category to hold
the new diagram within the package where the class resides.
82 User Guide

Class features
Note the following information:

� The Show Relations in New Diagram pop-up menu command is available for classes,
objects, and packages from the Rational Rhapsody browser as well as on a diagram. For
both the browser and on a diagram, you would right-click the element (for example, an
object) and select Show Relations in New Diagram.

Note: For a diagram you can select multiple elements (for example, two classes). Use
Ctrl+Click to make multiple selections and then right-click one of the selected
elements to open the pop-up menu and click Show Relations in New
Diagram.

� The location of the new object model diagram created by Show Relations in New
Diagram depends on whether you started the command from the browser or a diagram:

– When started from the browser, Show Relations in New Diagram creates the
diagram in the same location as the selected element and places it in an
Object Model Diagram category (which Rational Rhapsody creates if the
category is not already available).

– When started from a diagram, Show Relations in New Diagram creates the
object model diagram in the same location in which the source diagram
resides.

� The new object model diagram created by Show Relations in New Diagram will be
named the same name as the class, object, or package from which it was created. If there
is already an object model diagram with that name, a number will be appended to the
name (for example, Dishwasher_9).

� See also Automatically populating a diagram.

Defining class tags

The Tags tab lists the available tags for this class. For detailed information on tags, see Profiles.

Defining class properties

The Properties tab lets you set and edit class properties and displays the definitions for individual
properties with their default values. The definition of an individual property displays at the bottom
of the Features window when a property is selected in the Property tab.
Rational Rhapsody 83

Classes and types
Adding a class derivation
A class derivation is modeled as a dependency relationship with a stereotype of <<derive>>. Code
is not generated from that relationship.

The <<derive>> stereotype specifies a derivation relationship among model elements that are
usually, but not necessarily, of the same type. A derived dependency specifies that:

� The client might be computed from the supplier.
� The mapping specifies the computation.

The client might be implemented for design reasons, such as efficiency, even though it is logically
redundant.

To create a class derivation:

1. Right-click the class for which you are creating a derivation and select Add New >
Relations > Derivation.

2. In the window, select from the Depends on drop-down menu. The items in the drop-down
menu are as follows:

� Elements currently in the model.
� Profiles for the development language, as defined in Opening an existing Rational

Rhapsody project.
� <<Select>> displays another window with model browser to allow you to make a

selection that is not listed in the drop-down menu.
3. Make your selection and click OK. The selected element is then listed under the Class

Derivation in the browser.
84 User Guide

Making a class an instance
Making a class an instance
To make a class an instance in an OMD, select the Instance tab in the Features window.

If the class represents an instance, select the This box is also an instance check box. This is
equivalent to giving the class an instance name in the OMD. If this box is checked, the following
boxes become active:

� Instance Name specifies the name of the instance.
� Multiplicity specifies the number (or range) of times to instantiate the class.

The multiplicity indicates the number of instances that can participate at either end of a
relation. Multiplicity can be shown in terms of a fixed number, a range, or an asterisk (*),
meaning any number of instances including zero.

Defining class behavior
To define the behavior of a class, you give it either a statechart or an activity diagram:

1. In the OMD, right-click the class

2. Select either New Statechart or New Activity Diagram.

For more information on these diagrams, see Statecharts or Activity diagrams.

Generating, editing, and roundtripping class code
Rational Rhapsody enables you to generate code and open a text editor for editing the generated
code directly from within an OMD. The following sections describe these tasks in detail.

Generating class code

To generate code for a single class:

1. Right-click the class and then select Generate.

2. If a directory for the configuration that the class belongs to has not yet been created,
Rational Rhapsody asks if you want to create the directory. The configuration directory is
under the component directory. Click Yes.

3. Rational Rhapsody creates the configuration directory and generates the class code to it.
An output window opens at the bottom of the Rational Rhapsody window for the display
of code generation messages.
Rational Rhapsody 85

Classes and types
Editing class code

To edit code once it has been generated, right-click the class and select Edit Code. By default, the
code generated for the class opens in the Rational Rhapsody internal code editor. If both a
specification and an implementation file were generated for the class, both files open, with the
specification file in the foreground.

To set Rational Rhapsody to open the editor associated with the file extension instead of the
internal code editor:

1. Select File > Project Properties.

2. Set the General::Model::ClassCodeEditor property to Associate.

3. Click OK.

Roundtripping class code

When generating code, Rational Rhapsody places all user code for method bodies and transition
code written in statecharts between special annotation symbols. The symbols are as follows:

For example, the following Initialize() operation for the Connection class in the PBX sample
contains user code that was entered in the Implementation field of the Operation window. The user
code is placed between the annotation symbols when code is generated for the class:

void Connection::Initialize() {
//#[operation Initialize()
DigitsDialed = 0;
Digits[0] = 0;
Digits[1] = 0;
Busy = FALSE;
Extension = 0;
//#]

}

Language Body Annotation Symbols

Ada --+[<ElementType> <ElementName>
--+]

C /*#[<ElementType> <ElementName> */
/*#]*/

C++ and Java //#[<ElementType> <ElementName>
//#]
86 User Guide

Opening the main diagram for a class
You can edit the code between the annotation symbols in a text editor and then roundtrip your
changes back into the model. The roundtripped edits will be retained upon the next code
generation. This is how Rational Rhapsody keeps the code and the model in sync to provide
model-code associativity.

Note
Any text edits made outside the annotation symbols might be lost with the next code
generation. For more information, see Deleting Redundant Code Files.

To roundtrip code changes back into the model:

1. Edit the generated class code between the //#[and //#] annotation symbols.

2. In the browser or diagram, right-click the class containing the code that you just edited and
select Roundtrip.

If you view the Implementation box of the specification window for the operation (or the statechart
for the class if you edited transition code), you can see that your text edits were added to the
model.

Opening the main diagram for a class
You can specify a main diagram for a class in the Features window. This is usually the diagram
that shows the most important information for a class. For example, in the PBX sample, the PBX
diagram is specified as the main diagram for the Connection class. The main diagram for a class
must be either an object model diagram (OMD) or a use case diagram (UCD).

1. In the OMD, right-click the class.

2. Select Open Main Diagram.

Display option settings
Rational Rhapsody allows a great deal of flexibility in how elements are displayed. Display
options relate to how the element name, stereotype, and compartments are displayed in the
diagram. For example, to change the display options for a class, right-click the class in the diagram
and select Display Options (or select it and choose Edit > Display Options). The Display options
for the selected class opens.
Rational Rhapsody 87

Classes and types
General tab display options

The first tab of the Display Options window enables you to set general display options, including
the class name and stereotype. The General tab contains the following controls:

� Display name specifies how the class name is displayed. A class is always inside at least
one package, but the package can be nested inside other packages, and the class can also
be nested inside one or more classes. The class name displayed in the OMD can show
multiple levels of nesting in the class name.

The possible display options are as follows:
– Full path means the full path name and includes the entire class nesting

scheme in the following format:

<p1>::<p2>::..::<pn>::<c1>::<c2>::.. ::<classname> In this syntax,
p[n] are packages and c[n] are classes.

– Relative means the relative name that shows nesting of a class inside other
classes, depending on its context within the diagram. For example, if class A
contains class B, then inside of A, the relative name for B is B, but outside of A,
the relative name for B is A::B.

– Name only means this option displays only the class name without any path
information.

– Label means this option displays the label for the class.
� Show Stereotype Label indicates whether or not to display the class stereotype as text at

the bottom of the class box between guillemet symbols (for example, «Interface»).
� Show Compartment Label indicates whether or not to display the labels of available

compartments. If you check the box, you then select the compartment for which you want
the labels displayed from the list in the Available column of this window. Select your
selections and click the Display button to move them into the Displayed column.

� Image View specifies how the image is displayed. Check the box “Enable Image View”
and either of the following options:

– Use Associated Image means this option uses the default Rational Rhapsody
provided image for the object selected in Rational Rhapsody.

– Select An Image means if this option is selected, Rational Rhapsody displays
the Image File Path for you to locate it on your computer and click OK.
88 User Guide

Display option settings
� Advanced opens the Advanced Image View Options window. See Advanced Image View
Options window

� Ports specifies whether to show new ports and their interfaces.
Rational Rhapsody allows you to specify which ports to display in the diagram using the
Show New Ports functionality. For more information, see Ports.

Advanced Image View Options window
To open the Advanced Image View Options window, click the Advanced button on the General
tab of the Display Options window, when it is available. This window has the following options:

� Select Image Only to display the just the image.
� Select Structured to see the picture in a separate compartment below the name

compartment for the object.
� Select Compartment to see the picture in a separate compartment of its own between the

object name compartment and bottom compartment.

Displaying attributes and operations

The Attributes tab in the Display options window enables you to select which, if any, attributes to
display in the diagram.

To specify which elements to displayed in the diagram:

1. Select the element in the All Elements list.

2. Click the Display button to move the element to the Shown in Diagram list.

3. Repeat for each element or simply click the All button to select all of the elements in the
list and display them.

4. You can move elements up and down in the Shown In Diagram list or remove them using
the other three buttons in this window.

5. Click OK.

Similarly, the Operations tab allows you to select which, if any, operations to display in the
diagram.
Rational Rhapsody 89

Classes and types
Removing or deleting a class
You can remove a class from the current view (diagram) or delete the class entirely from the
model. Removing a class from the view does not delete it from the model.

To remove a class from the diagram, right-click the class and select Remove from View.

To delete the class entirely from the model, do one the following actions:

� Right-click the class, then select Delete from Model.
� Select the class, then click Delete in the main toolbar.

Note
When you delete a class, all of its objects are also deleted.

Ports
A port is a distinct interaction point between a class and its environment or between (the behavior
of) a class and its internal parts. A port allows you to specify classes that are independent of the
environment in which they are embedded. The internal parts of the class can be completely
isolated from the environment and vice versa.

A port can have the following interfaces:

� Required interfaces characterizes the requests that can be made from the class for a port
(via the port) to its environment (external objects). A required interface is denoted by a
socket notation.

� Provided interfaces characterizes the requests that could be made from the environment
to the class via the port. A provided interface is denoted by a lollipop notation.

These interfaces are specified using a contract, which by itself is a provided interface. For more
information, see The Port Contract tab.

If a port is behavioral, the messages of the provided interface are forwarded to the owner class; if
it is non-behavioral, the messages are sent to one of the internal parts of the class. Classes can
distinguish between events of the same type if they are received from different ports.

Note
See the HomeAlarmwithPorts sample model (under <Rational Rhapsody installation
path>\Samples\CppSamples) for an example of a model that uses ports.
90 User Guide

Ports
Partial specification of ports

If you specify ports without any contract (for example, an implicit contract with no provided and
required interfaces), Rational Rhapsody assumes that the port relays events using the code
generator. You could link two such ports and the objects would be able to exchange events via
these ports. However, Rational Rhapsody will notify you during code generation (with warnings or
informational messages) because the specification is still incomplete.

Considerations

Ports are interaction points through which objects can send or receive messages (primitive
operations, triggered operations, and events). Ports in UML have a type, which in Rational
Rhapsody is called a contract. A contract of a port is like a class for an object.

If a port has a contract (for example, interface I), the port provides I by definition. If you want the
port to provide an additional interface (for example, interface J), then, according to UML, I must
inherit J (because a port can have only one type). In the case of Rational Rhapsody, this
inheritance is created automatically once you add J to the list of provided interfaces (again, this is
a port with an explicit contract I). According to the UML standard, if I and J are unrelated, you
must specify a new interface to be the contract and have this interface inherit both I and J.

Implicit port contracts
Some found that enforcing a specification of a special interface as the contract for a port to be
artificial, so Rational Rhapsody provides the notion for an implicit contract. This means that if the
contract is implicit, you can specify a list of provided and required interfaces that are not related to
each other, whereas the contract interface remains implicit (no need to explicitly define a special
interface to be the contract for the port in the model).

Working with implicit contracts has pros and cons. If the port is connected to other ports that
provide and require only subsets of its provided and required interfaces, it is more natural to work
with implicit contracts. However, if the port is connected to another port that is exactly “reversed”
(see the check box in the Features window for the port) or if other ports provide and require the
same set of interfaces, it makes sense to work with explicit contracts. This is similar to specifying
objects separately from the classes, or objects with implicit classes in the case when only a single
object of this type or class exists in the system.

Rapid ports
Rapid ports are ports that have no provided and required interfaces (which means that the contract
is implicit, because a port with an explicit contract, by definition, provides a contract interface).
These ports relay any events that come through them. The notion of rapid ports is Rational
Rhapsody-specific, and enables users to do rapid prototyping using ports. This functionality is
especially beneficial to users who specify behavior using statecharts, without the need to elaborate
the contract at the early stages of the analysis or design.
Rational Rhapsody 91

Classes and types
Creating a port

To create a port in an object model diagram:

1. Click the Port button.

2. Click the class boundary to place the port. A text box opens so you can name the new port.

3. Type the name for the port, then press Enter to dismiss the box. Note that the port label
uses the convention portName{[multiplicity]}. For example:

a. p

b. p[5]

c. p[*]

The new port displays as a small square on the boundary of its class.

Alternatively, you can create a port in the following ways:

� Use the Ports tab of the Features window for the class. For more information, see Define
class ports.

� Right-click the class in the browser and then select Add New > Port.
92 User Guide

Specifying the features of a port
Specifying the features of a port
As with all elements, you use the Features window to specify the features that define a port. The
Features window for a port includes five tabs: General, Contract, Relations, Tags, and
Properties.

The Port General tab

On the General tab, you define the general features for a port through the various controls on the
tab.

� In the Name box you specify the name of the port. The default name is port_n, where n is
an incremental integer starting with 0. To enter a detailed description of the attribute, use
the Description tab.

� You use the L button to open the Name and Label window to specify the label for the
element, if any. For information on creating labels, see Descriptive labels for elements.

� In the Stereotype list you specify the stereotype of the port. For information on creating
stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the Select

Stereotype button .
– To sort the order of the selected stereotypes, click the Change Stereotype

Order button .
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In the Contract drop-down list box you specify the port contact. The list contains the
following possible values:

– <Implicit> means the contract is implicit.
– <New> enables you to define a new contract. If you select this value, Rational

Rhapsody displays a separate class Features window so you can define the
new interface.

– A list of classes with a stereotype that includes the word “interface.”
The arrow button next to the Contract box opens the Features window for the
contract. However, this button is disabled if the contract is implicit.

� In the Multiplicity drop-down list box you specify the multiplicity of the port. The
multiplicity is included in the port label if it is greater than 1.

� In the Visibility drop-down list box you specify the visibility for the port (Public,
Protected, or Private). The default value is Public.
Rational Rhapsody 93

Classes and types
� In the Attributes area you specify the port attributes:
– If you select the Behavior check box, messages sent to the port are relayed to

the owner class. By default, the check box is cleared.
– If you select the Reversed check box, the provided interfaces become the

required interfaces, and the required interfaces become the provided
interfaces.

The Port Contract tab

The Contract tab enables you to specify the port contract. The contract specifies the provided and
required interfaces through relations to other interfaces.

There are two types of contract:

� Explicit means the contract is an explicit interface in the model. An explicit contract can
be reused so several ports can have the same contract.

� Implicit means the contract is a “hidden” interface that exists only as the contract of the
port.

For both provided and required interfaces, three buttons are available:

� Add to add a new interface to the list of available interfaces. For provided interfaces, this
means that the contract inherits the selected interface; for required interfaces, this means
that the contract has a new dependency stereotyped «Usage» towards the interface.

� Edit to open the Features window for the selected element so you can modify it.
� Remove to remove the relation with the contract for the selected interface.

Note that if you selected the Reversed check box on the General tab, the bottom of the Contract
tab displays a message in red stating that the contract is reversed.

Specifying the port contract
To specify the contract information for the port:

1. To specify the provided interfaces, select the Provided folder icon, then click the Add
button in the top group box. The Add new interface window opens.

2. Either type in the new name of the interface, or use the list to specify the interface.

3. Click OK.

4. You return to the Contract tab, which now lists the provided interface you just specified.

5. To specify the required interface, click the Required folder, then select Add. The Add
New Interface window opens.
94 User Guide

Specifying the features of a port
6. Specify the required interface and then click OK.

Note: If a provided interface (including the contract) has an association to another
interface, the other interface is a required interface.

7. Click OK.

Note: If an interface provided by a port inherits from another interface, then by
definition, the port also provides the base interface. This means that if you want
to remove the base interface from the contract, you must remove the
generalization between the two interfaces. (Before removing such an interface,
Rational Rhapsody will notify you that the generalization will also be
removed.)

Display options for ports
The owning class or object specifies whether ports and their interfaces are displayed. By default,
new ports and their interfaces are displayed.

To disable these default settings:

1. In the diagram, right-click the class or object that owns the port and select Display
Options.

2. Clear the Show Ports Interfaces or Show New Ports check box, as intended.

3. Click OK.

You can specify how the port name and stereotype are displayed using the Display Options
window for the port itself.

For more information on displaying ports, see Selecting which ports to display in the diagram.
Rational Rhapsody 95

Classes and types
The Tags tab

The Tags tab lists the tags available for the port. For detailed information on tags, see Profiles.

The Properties tab

The Properties tab lets you set and edit the properties that affect your model. The definition of
each property displays at the bottom of the Features window when you select a property in the list.

The following table shows the properties (under the ObjectModelGe subject) that control how
ports are displayed.

Note that you cannot selectively show ports in diagrams, either all the ports are displayed, or none
of them are.

Metaclass Property Description

Class/Object ShowPorts Determines whether ports
are displayed in OMDs

ShowPortsInterfaces Determines whether ports
are displayed in OMDs

Port color Specifies the color used to
draw the port

Fillcolor Specifies the default fill
color for the port

name_color Specifies the default color
of the port name

UseFillcolor Specifies whether to use
the fill color for the port
96 User Guide

Viewing ports in the browser
Viewing ports in the browser
Ports are displayed in the browser under the appropriate class.

Connecting ports
To exchange messages using ports, you must specify links between their objects. You can use one
of these methods:

� Draw a link to the ports as described in Links and associations.
� Right-click each object individually and select Make an Object. This allows you to link

the two new objects via their ports without explicitly creating a link between the ports.
You can specify a link between a part (or a port of a part) to a port belonging to the enclosing class.

However, you cannot specify associations via ports nor specify a link between classes, even if the
ends are connected to ports.

Using rapid ports
Rational Rhapsody supports rapid ports: you can simply draw ports, connect them via links, create
a statechart, and the ports will exchange events without any additional information. In addition, if
a port is not connected to any of the internal parts for a class, the code generator assumes it is a
behavioral port and messages will be relayed to or from the class. In rapid mode, the classes must
be reactive because Rational Rhapsody assumes that events are exchanged.
Rational Rhapsody 97

Classes and types
Rapid ports would be useful in the following situations:

� In component-based design. For example, when you have a class to be reused in different
systems and has a behavior of its own (not that of one of its parts) that provides and
requires the interfaces of the contract for the port.

� The class has a statechart in which the triggers of the transitions are based on the ports
through which the events were received. In other words, because the statechart is able to
distinguish between the ports through which an event was sent, it could react differently
to the same events based on which port the event came from.

Note
Once you specify the contract on a port, you must specify the contract on all the ports that
are connected to it. Otherwise, the code generator will issue a warning that there is a
mismatch in the contracts and the links will not be created.

Rational Rhapsody uses the values of the following framework properties to implement the rapid
ports:

� DefaultProvidedInterfaceName specifies the interface that must be implemented by the
“in” part of a rapid port.

� DefaultReactivePortBase stores the base class for the generic rapid port (or default
reactive port). This base class relays all events

� DefaultRequiredInterfaceName specifies the interface that must be implemented by the
“out” part of a rapid port

� DefaultReactivePortIncludeFile specifies the include files that are referenced in the
generated file that implements the class with the rapid ports

Consider the following figure, which shows an OMD that uses rapid ports.
98 User Guide

Using rapid ports
The following figure shows the statechart for the Ping class.

The following figure shows the statechart for the PongMachine part.

During animation, the two objects exchange evPing and evPong events.
Rational Rhapsody 99

Classes and types
Selecting which ports to display in the diagram
If you right-click a class and select Ports, the following options are available:

� New Port creates a new port on the specified class.
� Show All Ports shows all the ports that currently exist in the specified model class.
� Hide Ports hides all the ports that are currently displayed by the specified model class.

However, ports that are created later will be displayed.
Using this show/hide functionality in conjunction with the Show New Ports display option for the
owning class, you can show and hide ports as intended to simplify your model. For more
information on display options for classes, see General tab display options.

If you set Show New Ports mode to on, each new port that is added to the class is also displayed in
the diagram class. Ports created before this graphic class, or while the Show New Ports feature is
off, are not synthesized in the diagram, unless they were created using the graphic editor New Port
option.

If Show New Ports mode is off, any ports created after disabling this mode will not be displayed.

Creating a new port for a class

To create a new port:

1. Right-click a class and select Ports.

2. Select New Port creates a new port on the specified class.

Showing all ports

To show all the ports in the diagram, select the Show New Ports check box in the Display Options
window for the owning class, and select Ports > Show All Ports for the class.

Showing new ports only

To show only new ports in the diagram, select the Show New Ports check box in the Display
Options window for the owning class, and select Ports > Hide Ports for the class.

Hiding all ports

To hide all ports in the diagram, clear the Show New Ports check box in the Display Options
window for the owning class, and select Ports > Hide Ports for the class.
100 User Guide

Selecting which ports to display in the diagram
Deleting a port

To remove a specific port from a class, use the Delete from Model or Remove from View option
in the menu for the owning class.

Programming with the port APIs in C++

The following sections describe the APIs you use to program using ports. The topics are as
follows:

� Basic API tasks

� Intermediate-level tasks

� Advanced-level tasks

Basic API tasks
This section describes the basic APIs used to exchange messages with and instantiate ports.

Note
The following example is not complete; it is simply a reference for the subsequent table of
API calls.

Consider the following example:

The following table shows the calls to use to perform the specified tasks.

Task Call

Call an operation. OUT_PORT(src)->f();

Send an event from a to b using the ports. OUT_PORT(src)->GEN(evt);

Listen for an event from port src to port
mon.

evt[IS_PORT(mon)]/
doYourStuff();
Rational Rhapsody 101

Classes and types
You could also use the OPORT macro, which is equivalent to OUT_PORT.

Communicating with ports with multiplicity

The following table shows the calls to use if the multiplicity of the ports is 10 and you want to
communicate with the ports using index 5.

You could also use the OPORT_AT macro, which is equivalent to OUT_PORT_AT.

Intermediate-level tasks
This section describes the intermediate-level APIs used when programming with ports. You use
these APIs whenever the code generator cannot create the links on its own, including the following
cases:

� An external source file is used to initialize the system and you must write the code to
create the links between the objects.

� The port multiplicities are not definite (for example, *).
� The port multiplicities do not match across the links. This could happen when ranges of

multiplicities are used (for example, 1..10).

Connecting objects via ports

If you are using an external application (such as the MFC GUI) where the links are created at run
time, you can link objects with ports specified by Rational Rhapsody using calls similar to the
following examples:

a.getSrc()->setItsJ(b.getMon()->getItsJ());

b.getMon()->setItsI(a.getSrc()->getItsI());

To link the objects:

1. Create a temporary package that creates the links for you.

2. Copy the .cpp file for the new package to the correct class.

3. Modify the code as needed.

Task Call

Call an operation. OUT_PORT_AT(src, 5)->f();

Send an event from a to b using the ports. OUT_PORT_AT(src, 5)->GEN(evt);

Listen for an event from port src to port
mon.

evt[IS_PORT_AT(mon, 5)]/
doYourStuff();
102 User Guide

Selecting which ports to display in the diagram
Linking objects via ports with multiplicity

Using the example in the previous API illustration if the multiplicity of both ports is 10, you would
link the objects as follows:

for (int i+0; i<10; ++1) {
a.getSrcAt(i)->setItsJ(b.getMonAt(i)->getItsJ());
b.getMonAt(i)->setItsI(a.getSRcAt(i)->getItsI());

}

Advanced-level tasks
This section describes the advanced-level APIs used when programming with ports. You use these
APIs when the code generator cannot determine how to instantiate the ports. This situation occurs
when the port multiplicity is *.

Creating ports programmatically

By default, ports are created by value. However, if at design time you do not know how many ports
there will be (multiplicity of *), you can create the ports programmatically.

For example, to instantiate 10 of the src ports, use the following call:

for (int i=0; i<10; ++1) {
 // instantiate and add to the container of the owner
 newSrc();
}

Linking behavioral ports to their owning instance

Similarly, if you do not know what the multiplicity of the behavioral port at design time, you can
specify it programmatically.

Behavioral ports are connected to their owning instance using the method connect[ClassName].
For example, to connect behavioral port p to its owner object a (of type A), use the following call:

a.getP()->connectA(a);

If the ports in previous API illustration are behavioral, you would use the following code:

for (int i=0; i<10; ++i) {
newSrc();
//hooks the class so it takes care of the messages
getSrcAt(i)->connectA(this);

}

For more efficiency, use the following code:

for (int i=0; i<10; ++i) {
newSrc()->connectA(this);
Rational Rhapsody 103

Classes and types
Port code generation in C

In C, code can be generated for the following types of ports:

� Rapid ports (see Using rapid ports)
� Standard ports where the provided and required interfaces contain only event receptions

Action language for sending events
The following macros are used for working with ports and events:

� Generating and sending an event via a port:
– RiCGEN_PORT([pointer to port], [event])

Examples:
RiCGEN_PORT (me->myPort, myEvent())

For ports with multiplicity greater than one:
RiCGEN_PORT (me->myPort[2], myEvent())

� Detecting the input port through which an event has been sent:
– RiCIS_PORT([pointer to port])

Examples:
RiCIS_PORT(me->myPort)
This returns True if the event currently being handled by the Rational
Rhapsody Developer for C Reactive (instantiated as me) was sent via the port
myPort.

For ports with multiplicity greater than one:
RiCIS_PORT(me->myPort[2])
104 User Guide

Selecting which ports to display in the diagram
Port code generation in Java

The following operations are used for working with ports and events in Java:

� Calling an operation:
– for port called MyPort and operation called myop:
getMyPort().myop();

– for port called MyPort, operation called myop, and multiplicity greater than 1:
getMyPortAt(port index).myop(), for example,
getMyPortAt(2).myop();

� Generating and sending an event via a port:
– for port called MyPort and event called evt:
getMyPort().gen(new evt());

– for port called MyPort, event called e2, and multiplicity greater than 1:
getMyPortAt(port index).gen(new e2()), for example,
getMyPortAt(2).gen(new e2());

� Detecting the input port through which an event has been sent:
– for port called MyPort:
isPort(getMyPort())

– for port called MyPort, and multiplicity greater than 1: isPort(getMyPort(port
index)), for example,
isPort(getMyPort(3))
Rational Rhapsody 105

Classes and types
Composite types
Rational Rhapsody enables you to create composite types that are modeled using structural
features instead of verbatim, language-specific text. In addition, Rational Rhapsody includes
classes wherever types are used to increase the maintainability of models: if you change the name
of a class, the change is propagated automatically throughout all of the references to it.

To create a composite type:

1. Right-click a package or the Types category, then select Add New > Type.

2. Edit the default name for the type.

3. Open the Features window for the new type. The Type window opens.

4. If wanted, specify a stereotype for the type.

5. Specify the kind of data type using the Kind list. The possible values are as follows:

a. Enumeration specifies the new type is an enumerated type. Specify the enumerated
values on the Literals tab. For more information, see Creating enumerated types.

b. Language specifies the new type is a language-specific construct. This is the default
value. For more information, see Creating language types.

c. Structure specifies the new type is a structure, which is a data record. For more
information, see Creating structures.

d. Typedef specifies the new type is a typedef. For more information, see Creating
Typedefs.

e. Union specifies the new type is a union, which is an overlay definition of a data
record. For more information, see Creating unions.

See the appropriate data type to continue the creation process.

The following table shows the mapping of composite types to the different languages.

Type Kind Ada C and C++ Java

Language As in previous versions As in previous
versions

As in previous
versions

Structure Not supported struct1 N/A

Union Not supported union N/A

Enumeration Enumeration types enum N/A

Typedef Subtypes (in simple
cases) or subtype

typedef N/A
106 User Guide

Composite types
Code generation analyzes the types to automatically generate:

� Dependencies in the code (#include)
� Type descriptions
� Field descriptions

Each field in a structure and union has an attribute annotation.

Creating enumerated types

If you selected Enumeration as the Kind, continue the creation process as follows:

1. On the Literals tab, select the <New> line, and then type the name for the enumerated
value.

2. Repeat for each value of the enumerated type.

The following figure shows values for an enumerated type.

3. Click OK.

1. The generated struct is a simple C-style struct that contains only public data members.
Rational Rhapsody 107

Classes and types
Creating language types

If you selected Language as the Kind, continue the creation process as follows:

1. On the Declaration tab, type the declaration statement in the Declaration text box. Use
the expression %s as a placeholder for the type name in the declaration.

The following figure shows an example of a type of kind Language.

2. Click OK.

Using %s

The Rational Rhapsody code generator substitutes %s in type declarations with the type name. This
automates the update of declarations when you rename a type.

To escape the %s characters, type a backslash (\) character before the %s. For example:

#define PRINT printf("\%s\n", myString())
108 User Guide

Composite types
Creating structures

If you selected Structure as the Kind, continue the creation process as follows:

1. On the Attributes tab, select the <New> line, and then type the name for the member.

2. Use the Type list to select the type of the member. Note that the type can be another
composite type.

3. Repeat Steps 1 – 2 for each structure member.

The following figure shows an example of a type of kind Structure.

4. Click OK.

Note
Bit fields (for example, int a :1) are not supported. You can model them using language
types. For more information, see Creating language types.
Rational Rhapsody 109

Classes and types
Creating Typedefs

If you selected Typedef as the Kind, continue the creation process as follows:

1. On the Details tab, specify the typedef in the Basic Type box, or use the list to select the
type. Note that the Basic Type cannot be an implicit type.

Note: If you select a type defined within the model, the arrow button next to the Basic
Type box is available. Click the arrow button to open the Features window for
that class.

2. Specify the multiplicity in the Multiplicity box. The default value is 1.

Note: If the multiplicity is a value higher than 1, the Ordered check box is available.
Click this check box if the order of the reference type items is significant.

3. If the typedef is defined as a constant (is read-only, such as the const qualifier in C++),
enable the Constant check box; if the typedef is modifiable, leave the check box
disabled (empty).

4. If the typedef is referenced as a reference (such as a pointer (*) or a C++ reference (&),
enable the Reference check box.

The implementation of the reference is set by the property
<lang>_CG::Type::ReferenceImplementationPattern. See the definition of this
property in the Features window.

5. Click OK.

Creating unions

If you selected Union as the Kind, continue the creation process as follows:

1. On the Attributes tab, select the <New> line, then type the name for the member.

2. Use the Type list to select the type of the member. Note that the type can be another
composite type.

3. Click OK.

Note
Ada variant record keys and conditions are not supported.
110 User Guide

Composite types
Properties

The following table lists the properties that support composite types.

Subject and Metaclass Property Description

CG subject
Attribute/Type Implementation The Implementation property enables

you to specify how Rational
Rhapsody generates code for a given
element (for example, as a simple
array, collection, or list). (Default =
Default)
When this property is set to Default
and the multiplicity is bounded (not *)
and the type of the attribute is not a
class, code is generated without
using the container properties (as in
previous versions of Rational
Rhapsody).
Note that Rational Rhapsody
generates a single accessor and
mutator for an attribute, as opposed
to relations, which can have several
accessors and mutators. In smart
generation mode, a setter is not
generated when the attribute is
Constant and either:

• The attribute is not a Reference.
• or The multiplicity of the attribute

is 1.
• or The CG::Attribute::
Implementation property is
set to EmbeddedScalar or
EmbeddedFixed.

<ContainerType> subject
<ImplementationType> Various properties Contain the keywords $constant

and $reference to support the
Constant and Reference modifiers

<ImplementationType> FullTypeDefinition Specifies the typedef
implementation template

<lang>_CG subject
Attribute MutatorGenerate Specifies whether mutators are

generated for attributes

Attribute/Type ReferenceImplementationPatt
ern

Specifies how the Reference option is
mapped to code

Class/Type In Specifies how code is generated
when the type is used with an
argument that has the modifier In
Rational Rhapsody 111

Classes and types
InOut Specifies how code is generated
when the type is used with an
argument that has the modifier
InOut

Out Specifies how code is generated
when the type is used with an
argument that has the modifier Out

ReturnType Specifies how code is generated
when the type is used as a return type

TriggerArgument Is used for mapping event and
triggered operation arguments to
code instead of the In, InOut, and
Out properties

Type EnumerationAsTypedef Specifies whether the generated
enum should be wrapped by a
typedef.
This property is applicable to
enumeration types in C and C++.

StructAsTypedef Specifies whether the generated
enum should be wrapped by a
typedef.
This property is applicable to
structure types in C and C++.

UnionAsTypedef Specifies whether the generated
union should be wrapped by a
typedef.
This property is applicable to union
types in C and C++.

Subject and Metaclass Property Description
112 User Guide

Language-independent types
Language-independent types
Rational Rhapsody enables you to build static models using language-independent, predefined
types, with no dependency on the implementation language.

The types are defined in the following files (under <Rational Rhapsody installation
path>\Share\<lang>\oxf):

� Ada, the RiA_Types package
� C, the RiCTypes.h
� C++, the rawtypes.h
� Java, the types are converted during code generation, based on properties defined in the

PredefinedTypes package loaded by Rational Rhapsody (under <Rational Rhapsody
installation path>\Share\Properties\PredefinedTypes.sbs).

The following table shows the mapping between the predefined types and the language
implementation types.

Model Type Ada C C++ Java

RhpInteger integer int int int

RhpUnlimitedNatural long_integer long long long

RhpPositive unsigned unsigned
int

unsigned
int

int

RhpPositive unsigned unsigned
int

unsigned
int

int

RhpReal long_float double double double

RhpCharacter character char char char

RhpString string char* OMString String

RhpBoolean boolean RiCBoolea
n

bool boolean

RhpVoid Used in procedure
declaration only

void void void

RhpAddress address void* void* Object
Rational Rhapsody 113

Classes and types
When you create attributes or operations, these language-independent types are included in the
Types list.

Changing the type mapping

The file PredefinedTypes.sbs contains the set of predefined types included in Rational
Rhapsody. This file is opened automatically when you create a new model or open an existing one.

If you previously changed this file, you can merge your changes:

1. Open the model or create a new one.

2. Select File > Add to Model. The Add To Model window opens.

3. Navigate to <Rational Rhapsody installation path>\Share\Properties.

4. Set the Files of type box to Package (*.sbs).

5. Select the PredefinedTypes.sbs file.

6. Click Open.
114 User Guide

Language-independent types
7. Because the package already exists in the model, a window opens so you can add the
package to the model under a new name, such as PredefinedTypes_new.

8. Click OK.

9. Change the property <lang>_CG::Type::LanguageMap to TBS.

10. Save the modified package.

11. Close the model.

12. Run DiffMerge on your original file and the new one, which is located in the <project
name>_rpy directory.

13. Add your changes to the .sbs file located in <Rational Rhapsody installation
path>\Share\Properties.

Note
The following behavior and restrictions apply to the language-dependent types.

� In Rational Rhapsody in J, language-independent types are supported only as
modeling constructs. You cannot use them in actions or operation bodies.

� This feature does not apply to COM and CORBA.

Changing the order of types in the generated code

Types are generated in code in the order in which they appear in the browser. This can be a
problem if one type depends on another that is defined later.

For example, you can define a type FirstType as:

typedef SecondType %s

Next, define a type SecondType as:

typedef int %s

These two types defined in this order would result in a compilation error. To avoid this kind of
error, you can control the order in which types are generated using the Edit Type Order in Code
window, which is accessible via the menu for the Types category for an individual package or a
class.
Rational Rhapsody 115

Classes and types
To edit the order of types:

1. Right-click the Types category (or a package or a class) and select Edit Type Order. The
Edit Type Order in Code window opens.

2. Select the type you want to move.

3. Click Up to generate the type earlier or Down to generate it later.

4. Click OK.
116 User Guide

Using fixed-point variables
Using fixed-point variables
For target systems that do not include floating-point capabilities, Rational Rhapsody in C provides
an option to use fixed-point variables.

This is done by scaling integer variables so that they can represent non-integral values. Rational
Rhapsody uses the 2 factorial approach to achieve this. For example, setting the bit that usually
represents 2^0 to represent 2^-3 (.125).

For each such variable, the user specifies the word-size and the precision of the variable. The
specific steps involved are described in Defining fixed-point variables.

Defining fixed-point variables

The elements required for defining fixed-point variables are included in a profile called
FixedPoint. This profile contains:

� Predefined types representing 8, 16, and 32-bit fixed-point variables: FXP_8Bit_T,
FXP_16Bit_T, FXP_32Bit_T. (These are the only types that can be used with fixed-point
operations.)

� A “new term” stereotype, applicable to attributes, called FixedPointVar, with a tag called
FXP_Shift which is used to define the scale of the fixed-point variable.

The word-size is determined by the type chosen, while the shift to use is determined by the value
entered for the tag FXP_Shift.

The profile uses a file called FixedPoint.h, which contains:

� Typedefs representing the predefined fixed-point variable types
� Macros that are used for carrying out operations on fixed-point variables.

The file is “included” into the generated code where fixed-point variables are generated.

To define a fixed-point variable:

1. Add the FixedPoint profile to your project as a reference.

Note: The FixedPoint profile is added with Rational Rhapsody only if you selected
the Automotive add-on during installation.

2. In the browser, right-click the element that will contain the fixed-point variables and select
Add New > General Elements > FixedPointVar.

3. Name the new variable.
Rational Rhapsody 117

Classes and types
4. Open the Features window for the new variable, and for Type select one of the fixed-point
variable types (FXP_8Bit_T, FXP_16Bit_T, or FXP_32Bit_T). (If you do not see these
types in the list, click Select and locate the relevant type in the tree that is displayed.)

5. Set the shift to use by providing a value for the tag FXP_Shift (default value is 4). (The
variable that was created already has the Fixed-Point stereotype applied to it.)

Operations permitted for fixed-point variables

The following operations can be performed on fixed-point variables:

� Arithmetic: addition, subtraction, multiplication, division
� Assignment (=)
� Relational operators (<, >, <=, >=, = =, !=)

To carry out the operations, you use the relevant macros that are contained in FixedPoint.h. For
example to add fixed-point variables, use the macro FXP_ASSIGN_SUM. (Note that some of the
macros in this file are macros that are called by the operation macros. These macros should not be
called directly.)

Restrictions on use of fixed-point variables

Keep the following points in mind when working with fixed-point variables:

� The supported operations can only be performed on fixed-point variables, and not on the
result of fixed-point calculations. For example, these are not permitted:
FXP_ASSIGN_SUM(FXP_ASSIGN_SUM(varA,varB),varC).

� Operations can be performed on fixed-point variables only. If you try to use one of the
operations with a combination of fixed-point and ordinary variables, compilation errors
will result.

� The shift specified can range from 0 to (word size - 1). Rational Rhapsody does not check
that the shift you entered for the variable is within this range.

� When calling a function that takes a fixed-point variable as an argument, make sure that
the variable provided to the function has the same fixed-point characteristics (word size
and shift) as the defined argument.

� When calling a function that returns a fixed-point variable, make sure that the return value
is being assigned to a variable that has the same fixed-point characteristics (word size and
shift) as the defined return type.

� Programmers must take into account that operations on fixed-point variables can result in
an arithmetic overflow.

� Programmers must take into account that operations on fixed-point variables can result in
a loss of precision.
118 User Guide

Using fixed-point variables
Fixed-point conversion macros

Rational Rhapsody provides the following macros for converting to/from fixed-point variables:

� FXP2INT(FPvalue, FPshift) - Converts a fixed-point variable to an integer
� FXP2DOUBLE(FPvalue, FPshift) - Converts a fixed-point variable to a double
� DOUBLE2FXP(Dvalue, FPshift) - Converts a double to a fixed-point variable

These macros can be used in conjunction with the macros that require fixed-point variables as
arguments, for example:

FXP_ASSIGN_EXT(myFixedPointVar, FXP_16Bit_T, 4, DOUBLE2FXP(3.5, 1), 1);

The arguments provided represent:

� Fixed-point variable to be initialized
� FXP type of the variable to be initialized
� FXP shift of the variable to be initialized
� Initializing value in integer representation
� Shift of the integer initializing number
Rational Rhapsody 119

Classes and types
Java enums
Rational Rhapsody allows use to include Java enums (introduced in Java 5.0) in your models.

Adding a Java enum to a model

To add a Java enum to your model, right-click the package to which you would like to add the
enum and select Add New > Enum.

Enums are displayed as their own category in the Rational Rhapsody browser.

Defining constants for a Java enum

To define constants for an enum:

1. Double-click the relevant enum in the browser to open its Features window.

2. Select the Enum Values tab.

3. Click <New> in the list.

4. Click the Name column to change the default name assigned by Rational Rhapsody.

5. Click the Value column to define the argument values that will be used to instantiate this
instance of the enum (if you are providing more than one argument, separate them with
commas).

6. Optionally, add comments for the constants you have defined.

7. Click OK.

After they have been defined, enum constants appear underneath the relevant enum in the browser.
120 User Guide

Java enums
Note
Rational Rhapsody does not support the definition of anonymous classes that extend enum
constants.

Adding Java enums to an object model diagram

To add a Java enum to an object model diagram, drag the enum from the browser to the diagram.

Code generation

Rational Rhapsody generates Java code for the enums you have defined.

The reverse engineering feature does not support Java enums.

Creating Java enums with the Rational Rhapsody API

The following lines of code will add a new enum to the selected package, and define two constants
for the new enum:

Dim p As RPPackage

Dim c As RPClass

Dim a1 As RPAttribute

Dim a2 As RPAttribute

Set p = getSelectedElement

Set c = p.addNewAggr("Enum", "SampleEnum")

Set a1 = c.addNewAggr("EnumValue", "FIRST_CONSTANT")

Set a2 = c.addNewAggr("EnumValue", "SECOND_CONSTANT")
Rational Rhapsody 121

Classes and types
Template classes and generic classes
Rational Rhapsody allows you to include generic design elements in your models. Specifically,
you can:

� Create and use template classes (C++)
� Create and use generic classes (Java)
� Create template functions (C++)
� Create generic methods (Java)

The terminology used for these concepts differs slightly between C++ and Java. In this section, we
will use the UML terms template class and template operation to represent the generic elements in
both C++ and Java.

In general, the procedures described in this section apply to both C++ and Java. Where there are
language-dependent differences, these differences are noted.

Creating a template class

You can use a class to create a template class. In addition, some template parameters can be
specified as specific types and a specialized function to create a specialization or new class/
function with content that is unrelated to the original template.

Note that you can use the DiffMerge tool to locate and merge template information.

To create a class template:

1. Double-click the class in the Rational Rhapsody browser to open its Features window.

2. On the General tab, in the Class Type area, select the Template radio button.
Notice that the Template Parameters tab displays.

3. On the Template Parameters tab, click <New>.

4. Type a name to replace the default name that Rational Rhapsody creates as <class_n>.
For guidelines for these names, see Template limitations.
122 User Guide

Template classes and generic classes
5. Accept the default type or select another one from the Kind list.

6. To add arguments for the template, click the Invoke Features window button to open
the Template Argument window. Note the following for the Template Argument window:

a. If you select the Use existing type check box, you can change the type and enter a
description. In C++, you can also provide a default value for the template argument.

b. If you clear the Use existing type check box, you can enter code that further refines
the argument type, for example a pointer to a type or an array of a certain type. When
entering code in the C++[Java] Declaration box, you can also see other arguments
that have been defined.

c. Click OK to close the Template Argument window and return to the Template
Parameters tab.

7. Add more templates as needed by clicking <New> on the Template Parameters tab.

8. To determine the argument order on the Template Parameters tab, use the Move Item Up

 and Move Item Down buttons.

9. If there is a primary template that you want to use, select it in the Primary Template
drop-down list box. This box contains templates for which this class is a specialization. Its
parameters to be instantiated appear in the box below the Primary Template drop-down
list box.

You can define specialization parameters only if you select a template as a primary class.

Note: When you try to delete a template that has specialization, Rational Rhapsody
warns you that the template has references. If you do delete the template, such
specialization will generate an error when you check a model.
Rational Rhapsody 123

Classes and types
10. Click OK.

The template is listed in the browser in the Classes category.

Once you have created the template class, you can begin using it directly in your code.

You can create templates in other situations. For example, you can:

� Re-use any type defined for a template parameter as a type within the template.
� Use the template class as a generalization, as described in Using template classes as

generalizations.
� Create an operation template, as described in Creating an operations template.
� Create a function template, as described in Creating a functions template.

See also Instantiating a template class.

Using template classes as generalizations

To use a template class as a generalization:

1. Create a class in an OMD, or in the Rational Rhapsody browser.

2. Create the generalization by adding a super class in the browser or by drawing a
generalization connector from the new class to the template class.

3. Open the Features window of the generalization by using the context menu of the super
class in the browser or the generalization connector in the OMD.

4. On the Template Instantiation tab of the Features window, provide a value for each of
the arguments listed by selecting an item from the Value list or entering a new value.

Creating an operations template

To create an operation template:

1. Create an operation in a class.

2. Open the Features window for the operation.

3. On the General tab, select the Template check box.
Notice that the Template Parameters tab displays.

4. Set your template parameters for your operation on the Template Parameters tab. For
detailed instructions, see Creating a template class.

Once you have created the template operation you can begin using it in your code.
124 User Guide

Template classes and generic classes
Creating a functions template

To create a functions template:

1. Create a function and open its Features window.

2. On the General tab, select the Template check box.
Notice that the Template Parameters tab displays.

3. Set your template parameters for your function on the Template Parameters tab. For
detailed instructions, see Creating a template class.

Once you have created the template operation you can begin using it in your code.

Instantiating a template class

To instantiate a template class:

1. Create a class in an OMD, or in the Rational Rhapsody browser.

2. Open the Features window for the class.

3. On the General tab, in the Class Type area, select the Instantiation radio button.
Notice that the Template Instantiation tab displays.

4. On the Template Instantiation tab, select a template from the Template Name
drop-down list box.

5. To view/modify the parameters for a template, double-click the template name or click the
Invoke Features window button to open the Template Instantiation Argument window.
Click OK to return to the Template Instantiation tab.

When code is generated, the template instantiation is represented by a typedef in C++ and by a
class in Java.
Rational Rhapsody 125

Classes and types
Code generation and templates

The creation of templates and specializations are supported in code generation. If both the
template and its specialization are in the same package, they are generated into the same file. In the
file, the template is generated before its specialization to ensure that the code runs as expected. A
check is added to warn that the template and template specialization are in different packages.

Note
If a nested class or attribute is marked as a template parameter, it is not generated.

Template limitations

The following limitations apply for templates:

� If there is a template parameter named “T” in an operation/function, the user cannot assign
a class named “T” to the owner of the operation/function.

� If there are more than one operation/function with a template parameter of the same name
under the same owner, renaming the created nested class renames all of the parameters
with this name.

� For templates in a Java project, these are additional limitations:
– Wildcards are not supported.
– Bounded wildcards are not supported.
– Generic methods are not supported.
126 User Guide

Eclipse platform integration
This subject describes the Rational Rhapsody Platform Integration, which lets software
developers work on a Rational Rhapsody project within the Eclipse platform. This integration is
currently available only for C, C++, or Java development in a Windows environment only and not
on Linux.

If you want to work in the Rational Rhapsody interface and use some Eclipse features, you can use
the Workflow Integration, which is the other Rational Rhapsody plug-in implementation. In this
integration, software developers work in the Rational Rhapsody product and open Rational
Rhapsody menu commands to use some Eclipse features. You can also navigate between the two
environments. This integration can be used for C, C++, and Java development in either Windows
or Linux environments. Both Eclipse and Rational Rhapsody must be open when you are using this
integration. For information about this implementation, see Rational Rhapsody projects.

Note
See the Rational Rhapsody installation instructions for Eclipse-specific installation and
set-up information.
Rational Rhapsody 127

Eclipse platform integration
Platform integration prerequisites
The following software needs to be used to create a fully functioning Eclipse platform integration
with Rational Rhapsody:

� Eclipse Ganymede
� CDT plug-in for C and C++ application development
� JDT plug-in for Java development
� Compilers required for the development language or languages you are using
� Rational Rhapsody Developer edition (multi-language)

The Platform Integration of Rational Rhapsody for Eclipse requires a multi-language Rational
Rhapsody license.

Note
The stand-alone version of Rational Rhapsody and the Rational Rhapsody Platform
Integration within Eclipse both use the same repository so that you can switch between the
two interfaces if you want.

Confirming your Rational Rhapsody Platform
Integration within Eclipse

To confirm that you have the Rational Rhapsody Platform Integration within Eclipse:

1. In Eclipse, choose Help > About Eclipse SDK to open the About Eclipse SDK box.

2. You should see a Rational Rhapsody icon on the About Eclipse SDK box. If this icon does
not appear, you are not set up for the Rational Rhapsody Platform Integration. See the
Eclipse set-up instructions in the Rational Rhapsody installation instructions to set up for
this integration.

For descriptions of the areas in the Rational Rhapsody interface, see Rational Rhapsody Platform
Integration within Eclipse.
128 User Guide

Rational Rhapsody Platform Integration within Eclipse
Rational Rhapsody Platform Integration within Eclipse
The standard Rational Rhapsody interface elements displayed in Eclipse have the same features as
in the stand-alone version except that the icons associated with a specific window are displayed at
the top of the window.

The Rational Rhapsody Platform Integration within Eclipse adds two Rational Rhapsody
perspectives on tabs in the upper right corner of the Eclipse IDE:

� Rational Rhapsody modeling perspective

� Rational Rhapsody Debug perspective

Rational Rhapsody perspectives in Eclipse

When you create a Rational Rhapsody project in Eclipse, the Rhapsody Modeling perspective is
automatically displayed and is set as the open Eclipse perspective.

If you have the tabs for perspectives displayed in the upper-right corner, you can click a tab to go
to another perspective.

Opening perspectives
To open a different perspective manually:

1. Choose Window > Open Perspective > Other.

2. On the Open Perspective window, select another perspective, such as Rhapsody Debug,
and click OK.
Rational Rhapsody 129

Eclipse platform integration
Rational Rhapsody modeling perspective
The Rational Rhapsody Modeling Perspective displays the main Rational Rhapsody interface
components, as illustrated in the following figure:

� Browser (Model Browser tab in Eclipse)
� Diagram Drawing Area
� Output window and Features window

The Rational Rhapsody menu commands and drawing capabilities have been added to the Eclipse
code editing, interface customization, and other capabilities.

Browser

Output Window

Drawing Area

Rational Rhapsody Modeling Perspective tab
130 User Guide

Rational Rhapsody Platform Integration within Eclipse
Rational Rhapsody Debug perspective
The Rational Rhapsody Debug perspective displays a number of windows. When you open the
Rational Rhapsody Debug perspective, the following windows might open in the Eclipse IDE:

Developers can then use the Eclipse code level debugger and Rational Rhapsody design level
debugging with animation and breakpoints for a thorough and efficient debugging strategy.

� Debug � Tasks
� Variables � Problems
� Animation Breakpoints � Animation
� Animation Manager � Rhapsody Log
� Console � Check Model

Rational Rhapsody Debug Perspective tab
Rational Rhapsody 131

Eclipse platform integration
Rational Rhapsody Eclipse support for add-on tools

The Eclipse Platform Integration of Rational Rhapsody supports for the add-on configuration
management tools and XMI file import and export capabilities.

Configuration management tools
The Rational Rhapsody Eclipse Platform Integration supports the common open source
configuration management (CM) tools, Concurrent Versions System (CVS) and
Subversion (SVN), in addition to these CM tools:

� IBM Rational ClearCase
� IBM Rational Synergy

XMI import and export
You can use the Rational Rhapsody XMI import and export facility with Eclipse projects. For
more information, see Using XMI in Rational Rhapsody development.
132 User Guide

Eclipse projects
Eclipse projects
The Eclipse plug-in platform integration provides Rational Rhapsody and Eclipse features for
software developers.

Creating a new Rational Rhapsody project within Eclipse

To create a new Rational Rhapsody project within Eclipse:

1. In Eclipse, choose File > New > Project.

2. In the New Project window, select Rhapsody Project and click Next.

3. Type a name for your Rational Rhapsody project and select the language (C, C++, or Java)
from the list. In addition, you can type the name for your first object model diagram.

4. If you want to change the location of where you want to store your project, clear the Use
default location check box and then use the Browse button to navigate to another
location.

5. Click Finish on the New Rhapsody Project window when you are done defining your new
Rational Rhapsody project.

6. If the directory for your new project has not yet been created, click Yes when you are
asked if you want to create it.

Rational Rhapsody creates a new project in the work area you specified and opens the new project.

Opening a Rational Rhapsody project in Eclipse

To open an existing Rational Rhapsody project in Eclipse:

1. In Eclipse, choose File > Import to open the Import window.

2. Expand the Rhapsody folder, select Rhapsody Project, and then click Next.

3. On the Import window, click the Browse button to open the Browse for Folder window.

4. In the Browse For Folder window, select the folder that contains the Rational Rhapsody
project that you want to import, and then click OK.

5. On the Import window, select the project that you want to open and click Finish to open
the project in Eclipse.
Rational Rhapsody 133

Eclipse platform integration
Adding new elements

To add new elements to your project including diagrams, packages, and files:

1. With Eclipse Model Browser displayed, right-click an element for which you want to add
an element.

2. Select Add New > (element type) from the menu depending on what type of element you
selected. (See also Filtering out file types.)

The following figures show how you can add an element to your project. While this example
shows adding a package. The same method is true for other elements, such as diagrams, files,
actors, operations, and so on.

If you want to create a new package, right-click the project for a new main package or an existing
package to create a sub package and select Add New > Package. You can add other elements
(such an object, dependence, and a class) from the menu.

Filtering out file types

To prevent Eclipse from presenting unwanted Rational Rhapsody project file types when adding
files:

1. In Eclipse, choose Window > Preferences.

2. In the Preferences window, expand the Team section of the tree structure.

3. Select Ignored Resources to display the list of file extensions that can be set to be
ignored.

4. If the list does not contain the file types you want to filter out, click the Add Pattern
button.

5. On the Add Ignore Pattern window, type the file extension using the format shown in the
following figure and click OK to add the extension to Ignored Resources.

6. Using this method, you can enter the Rational Rhapsody *.dat, *.ehl, *.rpw, and *.vba
file extensions to Ignored Resources.

7. Click OK.
134 User Guide

Eclipse projects
Exporting Eclipse source code to a Rational Rhapsody project

To export an Eclipse source code project from Eclipse to Rational Rhapsody:

1. With the model open in Eclipse, choose File > Export to open the Export window.

2. Expand the General folder, select File System, and then click Next.

3. In the File System view of the Export window, in the list in the left box:

� Select the top-level project to select everything in the project, or
� Select a subfolder folder to select only those items in that subfolder.

Note: You can select specific files to export from the list on the right. You can click
the Filter Types button to select specific file extensions to be exported.

4. Use the Browse button to navigate to a location directory for the exported files.

Rational Rhapsody 135

Eclipse platform integration
5. Select any of the Options that apply to this operation.

6. Click Finish to complete the export operation.

Note: If any problems were encountered during the operation, an Export Problems
message box displays. Click the Details button for more information.

7. To see your exported files, go to the location directory for your exported files.

Importing Rational Rhapsody units

To import Rational Rhapsody units into Eclipse:

1. In Eclipse, set the project for which you want to import units as the active configuration.
Right-click the project and select Set as Active Project.

2. Choose File > Import to open the Import window.

3. Expand the Rhapsody folder, select Rhapsody Unit, and then click Next.

4. In the Add to Model window, you can select a single file type (unit type) that you want to
import by using the Files of Type list or you can select the Rational Rhapsody project
(.rpy) to select all of the units in the project:

5. Click Open.

6. In the Add To Model From Another Project window, select the units you want and make
your applicable selections to the Add Subunits and/or Add Dependents check boxes,
and As unit or As reference radio buttons.

7. Click OK.

8. After the import is completed, a window displays the status of the import. Click Finish.

Importing source code (reverse engineering)

To import source code:

1. In Eclipse, set the project and the component as the active configuration.

a. Right-click the project and select Set as Active Project.

b. Right-click the component and select Set as Active Component.

2. In your Eclipse project, choose File > Import to open the Import window.

3. Expand the Rhapsody folder, select Source Code, and then click Next.
136 User Guide

Eclipse projects
4. When the message window opens, confirm that you want to launch the Rational Rhapsody
Reverse Engineering interface, click Finish.

5. When asked to confirm that you want the reverse engineered code to be saved to the active
component and configuration, click Continue.

6. On the Reverse Engineering window, click Add Files or Add Folder to add items to be
reverse engineered.

7. After selecting the items to reverse engineer, click Start.

Note: You have a choice of a flat view or a tree view for the selected items. To toggle

between the views, click the Flat View button or the Tree View button .

8. Confirm that you want to continue with the reverse engineering process, click Yes.

9. Click Finish. The reverse engineering messages display in the Rhapsody Log window.

For more information about reverse engineering, see Reverse engineering.

Search and replace in models

The Rational Rhapsody search facility is available to use in Eclipse for these operations:

� Perform standard search-and-replace operations
� Search for the following types:

– unresolved elements in a model
– unloaded elements in a model
– units in the model
– both unresolved elements and unresolved units

� Work with the search results
For more detailed instructions for the Rational Rhapsody Search and Replace facility, see Search
and replace facility.
Rational Rhapsody 137

Eclipse platform integration
Accessing the Rational Rhapsody search facility in Eclipse

To access Rational Rhapsody search in Eclipse:

1. With your Rational Rhapsody model open in Eclipse, choose Search > Search to open the
Search window. (You can also right-click an element in the model browser and select
Search.)

2. For the Rational Rhapsody search facility, click the Rhapsody tab. (You can also
right-click an element on the model browser and select Search inside.)

Customize the search criteria
In the Rational Rhapsody search facility you can use any of the standard search facilities. You can
also customize your search using the following buttons.

� Exact string allows a non-regular expression search. When selected, the search looks for
the string entered into the search field (such as char*).

� Wildcard allows wildcard characters in the search field such as * and produces results
during the search operation that include additional characters. For example, the search
*dishwasher matches class dishwasher and attribute itsdishwasher.

� Regular Expression allows the use of Unix-style regular expressions. For example,
itsdishwasher can be located using the search term [s]dishwasher.
138 User Guide

Eclipse projects
Search results display
The search results display in the Search tab of the Eclipse output window.

Working with search results
After locating elements using the Search facility, you can perform the following operations in the
Search window:

� Sort items
� Check the references for each item
� Delete
� Load

To sort the items in the list, click the heading for the column to sort according to information in
that column.

To work with an item located in the search:

1. Double-click an item in the list to open the its Features window and highlight its location
on the model browser.

2. Make any required changes from these entry points.
Rational Rhapsody 139

Eclipse platform integration
Generate and edit code
You can check your model, generate code, and edit the resulting code using Eclipse facilities. For
detailed instructions describing Rational Rhapsody code generation, see Basic code generation
concepts.

Checking the model

To launch the check model process, use one of these methods:

� Choose Tools > Check Model and select one of these options:
– <name of active configuration>
– Selected Elements
– Configure

� Right-click the active configuration and select Check.
The results display in the Check Model tab of the Output window.

As with search results, you can double-click an item on the Check Model tab to open the Features
window for the item and highlight it in the model browser.
140 User Guide

Generate and edit code
Generate code

Rational Rhapsody uses an Eclipse IDE project for code generation. Before you can generate code,
you must perform the following tasks:

� Create an Eclipse IDE project
� Associate the Rational Rhapsody Eclipse configuration with the Eclipse IDE project

Creating an Eclipse IDE project
To create an IDE project to use for Rational Rhapsody code generation:

1. In the model browser, right-click an Eclipse configuration and select Create IDE Project.

2. If you have an existing Eclipse project in your work area, that project is listed in the
Existing Project list. However, you need to create a special Eclipse IDE project, so you
should select the New Project radio button.

3. Click Finish.

4. In the New Project window, select the project type based on your environment.

5. Click Next.

6. Enter a project name on the Project window and click Next.

7. If necessary, make a configuration selection on the Select Configurations window, and
then click Finish.

8. If your project type selection is different from your current perspective, an Open
Associated Perspective window opens to give you an opportunity to switch perspectives;
click Yes. If you want to keep using your currently active perspective, click No.
Rational Rhapsody 141

Eclipse platform integration
Generating code
After setting up the IDE project to receive the generated code, choose Code Generator >
Generate and one of these options:

� <Active Configuration> (In the following figure, the active configuration is called GUI.)
� Selected classes
� <Active Configuration> with Dependencies
� Entire Project

The system generates the requested code and displays messages in a log file.

Note: To show a complete log report, the following figure shows a very short report.
Typically, especially for the first code generation, there might be more
messages for each group (for example, the listing of code generated might be
longer).
142 User Guide

Generate and edit code
Selecting Dynamic Model-Code Associativity

Rational Rhapsody lets you work in the model or code and maintain synchronization between each
so that changes in one are reflected in the other automatically. This is called Dynamic Model-Code
Associativity (DMCA).

To select the DMCA option you want to use:

1. Choose Code Generator > Dynamic Model Code Associativity.

2. From the submenu, select one of these commands:

� Bidirectional changes made to the code or model are synchronized with the other.
� Roundtrip changes made in the code are automatically synchronized with the

model.
� Code Generation changes made in the model are updated in the code

automatically.
� None turns off DMCA.

Edit code

You can edit your Rational Rhapsody code using the Eclipse editor.

Launching the Eclipse code editor from the browser or diagram
To display generated code for a specific element in the code editor:

1. In the model browser, right-click an item and select Edit Code to launch the
corresponding source code in the Eclipse code editor.

2. On the Eclipse code editor, highlight any items of interest and right-click to display the
editing menu.

Editing code from a diagram element
To launch the Eclipse code editor from a diagram element:

1. Open the diagram.

2. Right-click an item in the diagram and select Edit Code.

3. The Eclipse code editor opens.
Rational Rhapsody 143

Eclipse platform integration
Locating an element in the browser from the editor
If you are editing code and need to see an item in the project, usually in the model browser:

1. Highlight the item in the code.

2. Right-click and select Show in and then select one of the options. The option listed on this
submenu are controlled by the type of project displayed. For example, this option list is
for a C++ project:

� Model Browser
� C/C++Projects
� Outline
� Navigator

Viewing code associated with a model element
To see the code automatically for a selected model element:

1. Click the Link with Editor button located at the top of the Eclipse model browser.

2. Click an item in the model browser and notice that the code for the item is immediately
displayed and highlighted in the Eclipse code editor.
144 User Guide

Build, debug, and animate
Build, debug, and animate
After checking your model and generating code, you can build your project.

Building your Eclipse project

You can use any of these methods to build your Eclipse project:

� In the model browser, right-click the active configuration for your Eclipse project and
select Build Configuration.

� Choose Project > Build Automatically to build from Eclipse using Java or C/C++ build
tools.

� Select an element or group of elements in the model browser and choose the Project menu
to display this menu and select a build option.
Rational Rhapsody 145

Eclipse platform integration
Debugging your Eclipse project

After you have built your project, you can use the Eclipse debugging facilities with the Rational
Rhapsody Debug perspective. Choose the Run menu and then any of the debugging tools you
usually use in Eclipse. The External Tools window provides access to programs used to create,
manage, and run configuration you built project.

Rational Rhapsody animation in Eclipse

When running animated Rational Rhapsody applications, Eclipse switches to the Rhapsody Debug
perspective. You can debug an animated application using both Rational Rhapsody Animation
functionality and Eclipse Debugging tools.

For detailed instructions, see Animation.
146 User Guide

Build, debug, and animate
Preparing for animation
Before you can begin animation, you must prepare for it:

1. In the model browser for the project, expand the Components folder.

2. Right-click the configuration you want to animate in the configuration folder and open the
Features window.

3. On the Settings tab, in the Instrumentation Mode box, select Animation.

4. Click Apply.

5. Right-click the configuration you want to animate in the configuration folder and select
Generate Configuration.

Run animation
Eclipse displays the Animation Manager window with Call Stack and Event Queue and an
Animation toolbar (at the top of the Animation Manager window, as shown in the following
figure) to perform all of the Rational Rhapsody standard animation tasks, watch the animation, and
note the messages on the Animation Log tab.
Rational Rhapsody 147

Eclipse platform integration
Debug animated applications
You might want to use the animated applications for debugging. The Java example shows the
moment that a breakpoint is hit. The breakpoints are listed in the lower left window with the
application output to the right.
148 User Guide

Eclipse configuration management
Eclipse configuration management
The Rational Rhapsody Eclipse plug-in integrates a Rational Rhapsody model into the Eclipse
environment, enabling software developers to streamline their workflow with the benefit of
working within the same development environment. You can work in the code or model in a single
development environment. This enables you to use the Rational Rhapsody modeling capabilities
or to modify the code using the Eclipse editor, while maintaining synchronization between both
and easily navigating from one to the other.

Parallel development

When many developers are working in distributed teams, they often need to work in parallel.
These teams use a configuration management (CM) tool, such as Rational ClearCase, to archive
project units. However, not all files might be checked into CM during development.

Developers in the team need to see the differences between an archived version of a unit and
another version of the same unit that might need to be merged. To accomplish these tasks, they
need to see the graphical differences between the two versions, as well as the differences in the
code.

A Rational Rhapsody unit is any project or portion of a project that can be saved as a separate file.
These are examples of Rational Rhapsody units with the file extensions for the unit types:

� Class (.cls)
� Package (.sbs)
� Component (.cmp)
� Project (.rpy)
� Any Rational Rhapsody diagram

Note
The illustrations in this section show the use of the Rational ClearCase Eclipse Team
plug-in. Different Team plug-ins (for example, Rational Synergy) might have different
graphical user interfaces and menus.
Rational Rhapsody 149

Eclipse platform integration
Configuration management and Rational Rhapsody unit view

For the Eclipse plug-in, your individual Team plug-ins handle configuration management
operations.

The Rational Rhapsody Unit View provides a hierarchical view of Rational Rhapsody model
resources as per the model structure. Use this view to perform configuration management
operations.

Navigating to the unit view
To navigate to the Unit View, on the model browser, right-click an element and select
Configuration Management > Select in Unit View.

From the model browser, you can choose Select with Descendants in Unit View. This menu
command selects all the descendants for Unit View.

Navigating to the model browser
To navigate to the model browser from the Unit View, right-click an element and select Show in
Model Browser.

The following figure shows the result of selecting Show in Model Browser.
150 User Guide

Eclipse configuration management
Sharing a Rational Rhapsody model

Team members can share a Rational Rhapsody model using configuration management.

To share a Rational Rhapsody model using configuration management:

1. If you have multiple Rational Rhapsody models loaded, make whichever project you want
to share be the active one.

2. For the active Rational Rhapsody project, at the top-level project node in the Unit View,
choose Team > Share Project.

3. On the Share Project window, select the repository plug-in that you want to use to share
the selected project and click Next.

4. On the next window (which shows the name of the configuration management tool you
selected in the previous step), enter the required information. For example, if you are
using Rational ClearCase, specify a Rational ClearCase VOB for your project.

5. Click Finish.

6. Address any other windows that might open. For example, for Rational ClearCase, decide
which elements you want to add to source control by clearing or selecting the applicable
check boxes.

7. Click OK.
Rational Rhapsody 151

Eclipse platform integration
8. Restart Eclipse.

Performing team operations

To perform team operations in configuration management:

1. Before performing Team operations (such as Check In), save your Rational Rhapsody
model in the model browser.

2. For a Rational Rhapsody project in Unit View, right-click the element you want, choose
Team > (configuration management operation); for example, Team > Check Out.

3. On the window that opens, confirm the elements that you want to perform the
configuration management operation by clearing or selecting the applicable check boxes,
and then click OK.

Notice the white check mark within a green background that denotes an element that
is checked out.

Note
You can set Team plug-in related preferences through the Eclipse Preferences window
(choose Windows > Preferences).
152 User Guide

Generate Rational Rhapsody reports
Rational Rhapsody DiffMerge facility in Eclipse

The DiffMerge tool can be operated inside and/or outside your CM software to access the units in
the repository. It can compare two units or two units with a base (original) unit. The units being
compared only need to be stored as separate files in directories and accessible from the PC running
the DiffMerge tool.

In addition to the comparison and merge functions, this tool provides these capabilities:

� Graphical comparison of any type of Rational Rhapsody diagram
� Consecutive walk-through of all of the differences in the units
� Generate a Difference Report for a selected element including graphical elements
� Print diagrams, a Difference Report, Merge Activity Log, and a Merge Report

Generate Rational Rhapsody reports
To generate reports from the model, use the Rational Rhapsody ReporterPLUS documentation tool
to create Microsoft Word, Microsoft PowerPoint, HTML, RTF, and text documents. The
ReporterPLUS pre-defined templates extract text and diagrams from a model, arrange the text and
diagrams in a document, and format the document.

Generating a report

To generate a report from the Rational Rhapsody model:

1. Choose Tools > ReporterPLUS > Report on all model elements or Report on selected
package.

2. On the ReporterPLUS Wizard: Select Task window, select the output format you want and
click Next.

3. Use the Browse button on the ReporterPLUS Wizard: Select Template window to
select a template from the template directory (for example, <Rational Rhapsody
installation path>\reporterplus\Templates) and click Next.

4. On the Confirmation window, review the report criteria, and then click Finish to produce
the report.

5. On the Generate Document window:

� Enter a document name.
� Browse to where you want to locate the files that will be produced.
� Click the Generate button to generate your document.
Rational Rhapsody 153

Eclipse platform integration
6. Wait while your document is generated. ReporterPLUS spends some time loading the
template and the model. Then it analyzes the model and the model element relationships.

7. When available, click Yes to open your report.
154 User Guide

Properties
As an open tool, Rational Rhapsody provides a high degree of flexibility in how you set up the
visual programming environment (VPE). Project properties are name-value pairs that enable you
to customize many aspects of environment interaction and code generation. You can set existing
properties, or create whole sets of new ones, to tailor Rational Rhapsody to your particular needs.

Note

This section contains generic information about the Rational Rhapsody properties and how
to work with them.

Rational Rhapsody properties overview
Properties are user-defined, tagged values that can be attached to any modeling element. You can
think of each element as having its own set of properties. Rational Rhapsody tools, such as the
code generator, reference many properties. You can modify properties to customize the tool to
work in a certain way, such as setting the default color of a state box in a statechart. You can
change properties at the site, diagram, package, configuration, or class level (or even at the
individual operation or attribute level). Only properties that are relevant for a particular element
are accessible from that element. The element on which you set a property determines its
effectiveness. In other words, setting a property for a configuration provides a default for elements
in the configuration. Precedence goes to the element with the lowest level of granularity. Meaning,
properties explicitly defined for an individual operation would override those set at the project
level.
Rational Rhapsody 155

Properties
Property groups and definitions

The Rational Rhapsody properties are classified according to subject and metaclass with the
individual property names listed under each metaclass. Selecting a subject, metaclass, or property
name listed in the Features window displays the definition of the selected item:

The right column indicates the type of information in the property value. Metaclasses are listed in
alphabetical order under each subject. For information on changing property values, see Rational
Rhapsody properties.
156 User Guide

Rational Rhapsody properties overview
Subjects

The following table lists the Rational Rhapsody subjects.

Subject Description

Activity_diagram Controls the appearance of activity diagrams.

Animation Controls the behavior of black box animation.

ATL Controls ATL classes.
This subject applies only to Rational Rhapsody in C++.

Browser Controls the information displayed in the Rational Rhapsody
browser.

CG Controls how code is generated. These properties are
language-independent.

Collaboration_Diagram Controls the appearance of collaboration diagrams

COM Controls how mixed, distributed applications and objects find
and interact with each other over a network.
This subject applies only to Rational Rhapsody in C++.

ComponentDiagram Controls the appearance of component diagrams.

ConfigurationManagement Defines the command strings needed by various configuration
management (CM) tools to interface with Rational Rhapsody.

<ContainerTypes> Controls how items stored in containers are accessed and
manipulated.
The subject names are Java(1.1)Containers,
Java(1.2)Containers, OMContainers,
OMCorba2CorbaContainers, OMCpp2CorbaContainers,
OMCppOfCorbaContainers, OMUContainers,
RiCContainers, or STLContainers, depending on your
programming language and environment.

CORBA Controls how CORBA interacts with Rational Rhapsody.
This subject applies only to Rational Rhapsody in C++.

DeploymentDiagram Controls the appearance of deployment diagrams.

DiagramPrintSettings Controls how diagrams are printed.

Dialog Controls which properties are displayed on the Properties tab

General Controls the general aspects of the Rational Rhapsody display.

IntelliVisor Controls the IntelliVisor feature.

<lang>_CG Controls the language-specific aspects of code generation.
The subject name is C_CG, CPP_CG, or JAVA_CG.

<lang>_ReverseEngineering Controls how Rational Rhapsody imports legacy code.
The subject name is C_ReverseEngineering,
CPP_ReverseEngineering, or
JAVA_ReverseEngineering.
Rational Rhapsody 157

Properties
<lang>_Roundtrip Controls how changes made to the model are roundtripped to
the code, and vice versa.
The subject name is C_Roundtrip, CPP_Roundtrip, or
JAVA_Roundtrip.

Model Controls prefixes added to attributes, variables, and arguments
to reflect their type.

ObjectModelGe Controls the appearance of object model diagrams (OMDs).

QoS Provides performance and timing information.

ReverseEngineering Controls how Rational Rhapsody deals with legacy code.

RoseInterface Controls how Rational Rhapsody imports models from Rational
Rose® 98 or 2000.

RTInterface Controls how Rational Rhapsody interacts with requirements
traceability tools.

SequenceDiagram Controls the appearance of sequence diagrams.

SPARK Enables you to control the generation of SPARK annotations
from Rational Rhapsody in Ada models so they can be
analyzed by the SPARK Examiner.

Statechart Controls the appearance of statecharts.

TestConductor Controls contains properties that affect the TestConductor™
tool.

UseCaseExtensions Controls extended UCDs.

UseCaseGe Controls the appearance of use case diagrams (UCDs).

WebComponents Controls whether Rational Rhapsody components can be
managed from the Web, and specifies the necessary
framework for code generation.

Subject Description
158 User Guide

Rational Rhapsody properties overview
Metaclasses

Under each subject, Rational Rhapsody lists metaclasses. Metaclasses define properties for groups
of things, such as attributes, classes, and configurations.

For example, under the Statechart subject and the State metaclass, the color, line_width, and
name_color properties determine the default color and line width of state boxes and the text color
of state names. The notation is Subject::Metaclass::Property; for example,
Statechart::State::Color. Note that you can always change the properties of an element in a
statechart or diagram on-the-fly (project properties specify the default appearance).
Rational Rhapsody 159

Properties
Regular expressions
Many properties use regular expressions to define valid command strings. For example, the
ParseErrorMessage property uses the following regular expression for Microsoft® environments:

([^(]+)[(]([0-9]+)[)] [:] (error|warning|fatal error)

This expression defines the rules used to parse error messages on Microsoft systems. If you
redefine properties that require regular expressions, you must use the correct expression syntax.

Regular expression syntax

Regular expression syntax is defined1 as a “regular expression is zero or more branches, separated
by |. It matches anything that matches one of the branches. A branch is zero or more pieces,
concatenated. It matches a match for the first, followed by a match for the second, and so on.”

� A piece is an atom possibly followed by *, +, or ?.
� An atom followed by * matches a sequence of 0 or more matches of the atom.

For example, the atom .* matches zero or more instances of any character (a period
matches any character).

� An atom followed by + matches a sequence of 1 or more matches of the atom.

For example, the atom .+ matches one or more instances of any character.
� An atom followed by ? matches a match of the atom, or the null string.

For example, the atom .? matches a single character or the null string, such as at the end
of an input string.

� An atom is a regular expression in parentheses (matching a match for the regular
expression), a range, or:

– . (matching any single character)
– ^ (matching the beginning of the input string)
– $ (matching the end of the input string)
– A \ followed by a single character (matching that character)
– A single character with no other significance (matching that character)

Consider the following regular expression:

([a-zA-Z_][a-zA-Z0-9_]*)

1.Copyright (c) 1986 by U. of Toronto. Written by Henry Spencer.
160 User Guide

Regular expressions
This regular expression, enclosed in parentheses, matches a sequence of two ranges, any single
uppercase or lowercase letter, or underscore character; followed by zero or more uppercase or
lowercase letters, digits 0-9, or the underscore character.

Parsing regular expressions

Parts of the expression contained within parentheses are called tokens.

The regular expression for the ParseErrorMessage property is as follows:

([^(]+)[(]([0-9]+)[)] [:] (error|warning|fatal error)

It consists of the following parts:

� ([^(]+) This is the first token. The caret at the beginning of the set is a NOT operator that
matches any character except those in the set. This token tells the parser to ignore all
characters until the first occurrence of an open parenthesis.

� [(] The parser should search for exactly one opening parenthesis.
� ([0-9]+) This is the second token It tells the parser to search for a sequence of one or

more digits in the range of 0 to 9.
� [)] The parser should search for exactly one closing parenthesis.
� [:] The parser should search for exactly one colon.
� (error|warning|fatal error} This is the third token. It tells the parser to search for

one of the strings “error,” “warning,” or “fatal error.”
The ErrorMessageTokensFormat property works with ParseErrorMessage to determine how many
tokens can be contained in an error message, and the relative positions in the message string of
tokens that represent the file name and line number of the error, respectively. The second token in
the sample regular expression would most likely represent a line number, depending on how
ErrorMessageTokensFormat was defined.

Based on this regular expression, the parser would interpret the string “(3457):warning” as a
valid error message indicating a warning condition at line 3457 in the program.
Rational Rhapsody 161

Properties
Property file format
All the property (*.prp) files use an LL1 syntax for a simple, recursive descent parser. The parser
currently has no error recovery and effectively stops at the first error. Tokens enclosed within curly
braces {} are optional. Those enclosed within angle brackets <> are further decomposed according
to their own BNF (Backus Naur Form) descriptions.

The BNF for the *.prp files is as follows:

<file> ::= {"Subject" <subject>} "end"

For example, the factory.prp file begins with an optional list of subjects, each beginning with
the keyword “Subject,” and ends with the required keyword “end”:

Subject General
Subject Statechart
Subject ObjectModelGe
.
.
.
end

<subject> ::= <name> {"Metaclass" <metaclass>} "end"

As another example, the subject General begins with a name, followed by a list of metaclasses,
followed by the keyword “end”:

Subject General
Metaclass Graphics
Metaclass Model
end

<metaclass> ::= <name> {"Property" <property>} "end"

The file contains the following type declarations:

� “Bool”
A string that indicates a type with two possible values, TRUE or FALSE.

� <enum values> ::= <quoted string>

The enum values string is a comma-separated list of legal, enumerated values. A second quoted
string indicates the default. For example, the quoted string “on,off” contains enumerated values.

� <value> ::= <quoted string>

A value. For example, a property value could be the quoted string “Arial 10 NoBold NoItalic”.

� <quoted string> ::= <quote> <escaped chars> <quote>

A quoted string is a string that starts and ends with double-quotes and can contain newlines. A
backslash must precede any literal double-quote or backslash characters within the string. For
example, “FALSE” is a quoted string.
162 User Guide

Rational Rhapsody keywords
Rational Rhapsody keywords
Many properties reference other properties, using the $ symbol. For example, the command string
for the ConfigurationManagement::ClearCase::AddMember property begins as follows:

"$OMROOT/etc/Executer.exe"

This substring references the predefined variable OMROOT, set in your rhapsody.ini file to the
location of the Share directory in the Rational Rhapsody installation. Expanded, this string
becomes:

"<install_dir>\Share/etc/Executer.exe"

For a description, see The Executer.

Keywords are used in the following areas:

� Makefile generation
� Standard operations
� Relation implementation properties
� Names of generated operations
� Headers and footers
� Configuration management

Predefined variables

The following table lists the predefined variables used in Rational Rhapsody.

Keywords Where Used Description

$archive ConfigurationManagement The file name (including the full path)
of the archive that you selected in the
Connect to Archive window. This can
be either a file or a directory.

$archiveddirectory ConfigurationManagement The directory part of $archive. If
$archive is a directory, $archive
and $archiveddirectory are the
same.

$arguments ATL The arguments of the operation.

$Arguments <lang>_CG The event or operation argument’s
description, used by the
DescriptionTemplate property.
Rational Rhapsody 163

Properties
$attribute CG The object of an operation on
attributes.
The qualifier :c capitalizes the name
of the attribute.

$base <lang>_CG The name of the reactive object.

$CheckOut ConfigurationManagement The command executed to check
configuration items out of the archive
using the main Configuration Items
window.

$class ATL The name of the ATL class.

$ClassClean Makefiles The list of class files used in a build.

$cname CG, <Container Types>,
<lang>_CG

The name of the container used to
hold relations. Typical containers are
arrays, lists, stacks, heaps, and maps.

$coclass ATL The name of the coclass that exposes
the COM interface.

$CodeGeneratedDate CG, <lang>_CG The date of code generation. This
information is printed in the headers
and footers of generated files.

$component ATL The name of the component,

$ComponentName CG The name of the component that
caused the code to be generated.
This information is printed in the
headers and footers of generated
files.

$ConfigurationName CG, <lang>_CG The name of the configuration that
caused the generation of the model
element found in a file. This
information is printed in headers and
footers of generated files.

$datamem ATL The data member.

$DeclarationModifier ATL The declaration modifier.

$Description <lang>_CG The element description, used by the
DescriptionTemplate property.

$Direction <lang>_CG The argument direction (in, out, and
so on), used by the
DescriptionTemplate property.

$dupinterface ATL The name of the duplicate interface.

$executable <lang>_CG The path to the executable binary file
generated by the Rational Rhapsody
code generator.

Keywords Where Used Description
164 User Guide

Rational Rhapsody keywords
$FILENAME CPP_CG The name of the file used:
• To generate source code for

individual classes to user-
specified directories

• To specify that a statement should
not be imported during reverse
engineering (the #ifndef that
protects h files from multiple
includes)

$Fork Framework: start method Used to specify whether the
OMMainThread singleton event loop
should run on the application main
thread or in a separate thread.

$FullCodeGeneratedFileName CG, <lang>_CG The full path name of the file. This
information is printed in headers and
footers of generated files.

$FULLFILENAME CG The full name of the file used:
• To generate source code for

individual classes to user-
specified directories

• To specify that a statement should
not be imported during reverse
engineering (the #ifndef that
protects h files from multiple
includes)

$FullModelElementName CG, <lang>_CG The full name of a model element in
<package>::<class> format. is
printed in headers and footers of
generated files. For example,
Radar::Engine, for a class named
Engine found in a package named
Radar.

$FullName <lang>_CG The full path of the element
(P1::P2::C.a) used by the
DescriptionTemplate property.

$id ATL The identifier.

$IDInterface ATL The interface ID of a COM interface.

$index <Container Types> An index used to randomly access
items in a container.

$instance Property:
CORBA::TAO::InitialInstance

Refers to the default initial instance of
the TAO ORB.

$interface ATL The name of the interface.

$interfaceSeq Property:
CORBA::Class::IDLSequence

Represents the name of the CORBA
interface with the string Seq added to
the end of the term.

Keywords Where Used Description
Rational Rhapsody 165

Properties
$item CG, <Container Types> A class or instance whose behaviors
are implemented by a container.
Rational Rhapsody generates various
add, remove, find, and get
operations to manipulate items in
containers.

$iterator <Container Types> The name of the iterator used to
traverse a container.

$keyname <Container Types> The name of a key used to access
items in maps. A key is usually a
string that maps to a dictionary that is
used to locate items.

$label ConfigurationManagement An optional revision label of a
configuration item, provided in the
Check In/Check Out window.

$log ConfigurationManagement An optional comment provided in the
Check In window.

$LogPart ConfigurationManagement The user-specified comment for the
CM operation.

$Login CG, <lang>_CG The login name of the user who
generated the file. This information is
printed in headers and footers of
generated files.

$makefile <lang>_CG The name of the makefile generated
by the Rational Rhapsody code
generator.

$maketarget <lang>_CG Depending on the option selected in
the Code menu, this expands to one
of the following operations:

• Build
• Clean
• Rebuild

$member <lang>_CG The name of the reactive member
(equivalent to the base class) of the
object.

$mePtr <lang>_CG The name of the user object (the
value of the Me property). The
member and mePtr objects are not
equivalent if the user object is active.

$mode ConfigurationManagement A flag indicating the locking mode
provided in the Check In/Check Out
window. If the item is locked, $mode is
replaced with the contents of the CM
property ReadWrite. If unlocked,
$mode is replaced with the contents
of the ReadOnly property.

Keywords Where Used Description
166 User Guide

Rational Rhapsody keywords
$ModePart ConfigurationManagement The locking mode of the CM
operation.
For example, you can check out a file
from an archive as either locked or
unlocked.

$Name <lang>_CG The element name, used by the
DescriptionTemplate property.

$noOfArgs ATL The number of arguments for the
operation.

$OMAdditionalObjs Makefiles The list of files to be included in the
executable.

$OMAllDependencyRule Makefiles The dependency rule of a specific
source file (A.cpp: A.h B.h
C.idl).

$OMBuildSet Makefiles The compiler switches for Debug
versus Release mode, as specified in
the Settings window for the active
configuration.

$OMCleanOBJS Makefiles The list of delete commands for each
object file in the makefile. Each entry
in the list is created from the value of
the ObjCleanCommand property.

$OMCOM Makefiles Specifies that the COM application to
be linked is a windows application
rather than a console application. This
keyword is resolved based on the
value of the <lang>_CG::
<Environment>::COM property.

$OMConfigurationCPPCompile
Switches

Makefiles The compiler switches specified by
the CompileSwitches property for a
configuration.

$OMConfigurationLink
Switches

Makefiles The link switches of the configuration,
set in the Settings tab for the
configuration.

$OMContextDependencies Makefiles The list of dependencies and the
compilation command for each model
file that should be built as part of the
component. Each entry is made up of
the value of the DependencyRule
property followed by the value of the
CPPCompileCommand property.

Keywords Where Used Description
Rational Rhapsody 167

Properties
$OMContextMacros Makefiles The set of generated macros,
including:
• OMROOT

• CPP_EXT/C_EXT

• H_EXT

• OBJ_EXT

• LIB_EXT

• INSTRUMENTATION

• TIME_MODEL

• TARGET_TYPE

• TARGET_NAME

• The “all” rule

• TARGET_MAIN

• LIBS

• INCLUDE_PATH

• ADDITIONAL_OBJS

• OBJS

For more information, see
MakeFileContent.

$OMCPPCompileCommandSet Makefiles The compilation switches related to
the CPPCompileDebug/
CPPCompileRelease properties.
The property to be used is based on
the value of the BuildCommandSet
property. Set the value of
BuildCommandSet using the
configuration Settings tab in the
browser.

$OMCPPCompileDebug Makefiles The compile switches needed to
create a Debug version of a
component in a given environment, as
specified by the CPPCompileDebug
property.

$OMCPPCompileRelease Makefiles The compile switches needed to
create a Release version of a
component in a given environment, as
specified by the
CPPCompileRelease property.

Keywords Where Used Description
168 User Guide

Rational Rhapsody keywords
$OMFileCPPCompileSwitches Makefiles This is used in the
CPPCompileCommand property to
bring in additional GUI-defined
settings. The content is generated by
Rational Rhapsody (either based on
content of fields or based on internal
rules).
It is one of the predefined keywords
including, but not limited to:

• $OMCPPCompileDebug
• $OMCPPCompileRelease
• $OMLinkDebug
• $OMLinkRelease
• $OMBuildSet
• $OMContextMacros

$OMDefaultSpecification
Directory

Makefiles Supports the default specification/
implementation source directory
feature.
To set a default directory for a
configuration, set the <lang>_CG::
Configuration::
DefaultSpecification-
Directory and <lang>_CG::
Configuration::
DefaultImplementation-
Directory properties

$OMDEFExtension Makefiles The extension of the definition file
(.def). This keyword applies to the
MicrosoftDLL/COM environments.

$OMDllExtension Makefiles The extension of the dynamic linked
library file (.dll). This keyword
applies to the MicrosoftDLL/COM
environments.

$OMExeExt Makefiles The extension of the compiled
executable.

$OMFileDependencies Makefiles Used as part of a source file
dependency line. It is a calculated list
of files on which the source file
depends.

$OMFileImpPath Makefiles The relative name and path of the
implementation file. It is used in a
source file dependency and
compilation commands.

Keywords Where Used Description
Rational Rhapsody 169

Properties
$OMFileObjPath Makefiles The relative path and name of an
object file that is related to a given
implementation and specification files.
It is used as part of a file compilation
command.

$OMFileSpecPath Makefiles The relative path and name of a
specification file. It is used in a source
file dependency line.

$OMFlagsFile Makefiles Maintained for backwards
compatibility.

$OMImpIncludeInElements Makefiles The list of all #includes done in the
related implementation file. It is used
as part of a source file dependency
line.

$OMImplExt Makefiles The extension of an implementation
file generated for a model element.

$OMIncludePath Makefiles The include path. The path is
calculated from dependencies
between components and from the
Include Path setting in the active
component/configuration feature
window.

$OMInstrumentation Makefiles The active configuration
instrumentation mode (None, Tracing,
or Animation).

$OMInstrumentationFlags Makefiles Represents the preprocessor
directives required for the selected
type of instrumentation: animation,
tracing, or none.

$OMInstrumentationLibs Makefiles Represents the libraries required for
the selected type of instrumentation:
animation, tracing, or none.

$OMLibExt Makefiles The extension of library files.

$OMLibs Makefiles The names of additional libraries
(besides the framework library) to link
when building a component. It is
calculated from dependencies
between components and the
Libraries list in the active component/
configuration feature windows.

$OMLibSuffix Code Generation Represents the suffix to use for library
names. The keyword is replaced by
the value of the DebugLibSuffix
property or the ReleaseLibSuffix
property depending upon the build.

Keywords Where Used Description
170 User Guide

Rational Rhapsody keywords
$OMLinkCommandSet Makefiles The link switches related to the
LinkDebug/LinkRelease
properties. The property to be used is
based on the value of the
BuildCommandSet property. Set the
value of BuildCommandSet using
the configuration Settings tab in the
browser.

$OMLinkDebug Makefiles The environment-specific link
switches used to build a Debug
version of a component. This is the
value of the LinkDebug property.

$OMLinkRelease Makefiles The value of the LinkRelease
property.

$OMMainImplementationFile Makefiles The main file name and path:
[<imp dir>/]$TARGET_
MAIN)$(CPP_EXT)

$OMMakefileName Makefiles The name of the makefile.

$OMModelLibs Makefiles The library component the model
depends on.
For example, if executable
component A depends on the library
component L, this keyword is
replaced with the string
<filepath>\L.lib.

$OMObjExt Makefiles The extension of object files
(temporary compiler files) for a given
environment. This is the value of the
ObjExtension property.

$OMObjs Makefiles The list of object files to link into the
build by the makefile.

$OMObjectsDir Makefiles A calculated keyword based on the
property <lang>_CG::
<Environment>::
ObjectsDirectory).

$OMROOT ConfigurationManagement,
General, <lang>_CG,
<lang>_Roundtrip, makefiles

The location of the \Share
subdirectory in the Rational Rhapsody
installation. This is set in your
rhapsody.ini file.

$OMRPFrameWorkDll Makefiles Links the COM application with the
DLL version of the framework instead
of the default static libraries. This
keyword is resolved based on the
value of the <lang>_CG::
<Environment>::
RPFrameWorkDll property.

Keywords Where Used Description
Rational Rhapsody 171

Properties
$OMRulesFile Maintained for backwards
compatibility.

$OMSourceFileList Makefiles (Rational Rhapsody in J) Lists the
source (*.java) files used in a build.

$OMSpecExt Makefiles The extension of the specification file
generated for a model element.

$OMSpecIncludeInElements Makefiles Lists all the #includes done in the
related specification file.

$OMSubSystem Makefiles The type of program for the Microsoft
linker (for example, windows).

$OMTargetMain Makefiles The name of the file that contains the
main() function for an executable
component.

$OMTargetName Makefiles The name of the compiled version of
a component.

$OMTargetType Makefiles The type of component to be built
(library or executable),

$OMTimeModel Makefiles The time model setting for a
configuration (simulated or real time).

$OMUserIncludePath INTEGRITY build files (.gpj) Represents the content of the Include
Path field found on the Settings tab of
the Features window for
configurations. This content is
included in generated .gpj files for
environments that use such files, for
example, INTEGRITY5.

$operations ATL The list of operations.

$opname ATL The name of the operation.

$opRetType ATL The return type of the operation.

$package ATL The name of the package.

$PackageLib ATL The package library.

$ProgID ATL The value of the ProgID property
(Default = $component.$class.1).

$projectname ConfigurationManagement The project name.

$<Property> <lang>_CG The value of the element property
with the specified name (under C or
CPP_CG::CG::
<metatype>). This keyword is used
by the DescriptionTemplate
property.

Keywords Where Used Description
172 User Guide

Rational Rhapsody keywords
$RegTlb ATL Specifies whether the COM server
needs to register its type library.
Automatically expands to TRUE/
FALSE depending upon COM ATL
server includes type library.

$RhapsodyVersion CG, <lang>_CG The current version of Rational
Rhapsody, not including the build
number. This information is printed in
headers and footers of generated
files.

$rhpdirectory ConfigurationManagement The path to the _rpy directory, which
consists of the project repository. The
repository contains all the
configuration items for a project.

$Signature <lang>_CG The operation signature, used by the
DescriptionTemplate property.

$state Properties
CPP_CG::Framework::IsInCall
CPP_CG::Framework::IsComple
tedCall

In the code generated by Rational
Rhapsody for checking whether an
application is in a given state, this
keyword is replaced by the state
name.

$target <Container Types>, <lang>_CG The target of an operation on
relations. This is generally the role
name.
For example, in a class with a relation
called myServer, the role name
myServer would replace the variable
$target when expanding properties
that involve that relation. The value
add$target:c would become:
addMyServer()

The qualifier :c capitalizes the role
name.

$Target <lang>_CG The other end of the association,
used by the DescriptionTemplate
property.

$targetDir ConfigurationManagement The target directory.

$ThreadModel ATL The value of the ThreadingModel
property (Default = Apartment).

$tlbPath ATL The full path of the COM type library
file.

Keywords Where Used Description
Rational Rhapsody 173

Properties
The following table lists the predefined Rational Rhapsody macros used in the framework files and
makefiles.

$type CG, <lang>_CG The name of the type.
For example, if you create a type
named MyType and set its in
property to "const $type&", the
generation of an in argument will be
as follows:
"const MyType& <argname>"

$Type <lang>_CG The argument type, used by the
DescriptionTemplate property.

$TypeName ATL The value of the TypeName property,
which specifies the declaration of the
class type being registered (Default =
$class).

$unit ConfigurationManagement Unit of collaboration. This is the name
of the file that corresponds to the
configuration item (package,
configuration, or diagram) on which a
CM command operates. If more than
one unit is provided, the command is
performed repeatedly in a for each
loop.

$VersionIndepProgID ATL Replaced with the value of the
VersionIndepProgID property
(Default = $component.$class).

$VtblName <lang>_CG The name of the object's virtual
function table, specified by the
ReactiveVtblName property.

Macro Description

AR The command to build a library.

ARFLAGS The flags used to build a library.

CP Environment-specific copy command.

CPP_EXT Environment-specific extension for C++ implementation files (for example,
.cpp).

DLL_CMD Expands to the DLL link command that initiates the DLL link phase of a
build

DLL_FLAGS Expands to the switches applied to the DLL link command

H_EXT Environment-specific extension for C++ implementation files (for example,
.h).

Keywords Where Used Description
174 User Guide

Rational Rhapsody keywords
INCLUDE_QUALIFIER The qualifier used in a given environment to designate an include file in the
compiler or link switches.

LIB_CMD The command to build a library.

LIB_EXT Environment-specific extension for library files (for example, .lib).

LIB_FLAGS The flags used to build a library.

LIB_NAME The name of a library.

LIB_POSTFIX The postfix added between the main file name and the extension. The
possible values are as follows:

• sim for simulated time (for example, oxfsim.lib)
• inst for instrumentation (for example, oxfinst.lib)
• siminst for simulated time and instrumentation (for example,
oxfsiminst.lib)

This macro is not used for DLLs.

LIB_PREFIX The prefix added to the beginning of a file name. For example, the prefix
“Vx” is added to VxWorks libraries.
This macro is not used for DLLs.

LINK_CMD Expands to the link command that initiates the link phase of a build

LINK_FLAGS Expands to the link switches applied to the link command

OBJ_EXT The environment-specific extension for object files (for example, .o or
.obj).

OBJS The intermediate object files to be built (for example, aombrk.obj).

PDB_EXT The environment-specific extension for PDB debug files (for example,
.pdb).

RM The environment-specific remove command for deleting files.

RMDIR The environment-specific remove command for deleting directories. This is
used in the clean rules when you set the
<lang>_CG::<Environment>::ObjectsDirectory property.

Macro Description
Rational Rhapsody 175

Properties
Map custom properties to keywords

You can define custom keywords in makefile template properties and standard operations. The
property name for the custom keyword should be the same as the keyword string. For example, for
the keyword $AAA, the property name should be AAA.

Define the property in a specific Subject and Metaclass, as follows:

Property Type Subject Metaclass

Makefile CG/<lang>_CG Component/
Configuration/
<Environment>

Standard operations CG/<lang>_CG The keyword context
(class, relation, attribute,
and so on)
176 User Guide

Rational Rhapsody properties
Rational Rhapsody properties
Properties affect aspects of your model, such as the appearance of graphics in various graphic
editors, how code is generated, or configuration management settings.

Using the Properties tab in the Features window

Rational Rhapsody provides easy access to the properties through the interface. Use either of the
following methods to display properties:

� With a project open, choose File > Project Properties to access all the properties for a
model. The Features window displays with the Properties tab already selected.

� Right-click an item in the browser or on a diagram and select Features to open the
Features window, and then select the Properties tab to list the properties for the selected
item.
Rational Rhapsody 177

Properties
Properties definitions display
The Properties tab uses a tree structure to display the subjects, metaclasses, and properties.

In the left column, the subjects are listed in boldface font; expand the plus sign to view the
metaclasses for a particular subject. When you expand a metaclass, the corresponding properties
are listed in the left column, with their current values (if any) listed in the right column.

For example, in the figure, the ObjectModelGe::Class::ShowName property can have the values
Full_path, Relative (the default value), and Name_only.

Note that items are usually in alphabetical order; however, metaclasses that are of the same type as
the context are “pushed up” to be first. For example, if you are viewing the properties of a selected
class, the first metaclass displayed is CG::Class.

Selecting a property displays the definition for the property in the bottom pane of the window.
Each time a new property is selected, its definition displays below. Definitions are displayed for all
three of the property levels: subject, metaclass, and the individual property.

Searching for properties
The Properties tab contains a menu to filter the properties displayed in the window.

The All option displays all of the available properties for your selection. You can display only the
Overridden properties for the model or only the properties you overrode locally with the Locally
Overridden option. The Common properties are those most often changed for the selected type of
item.

The Filter menu option lets you search for specific properties by entering a filter string. Rational
Rhapsody displays only the properties that contain the text you entered. When you are filtering the
properties and select the Match property description check box, Rational Rhapsody searches the
property definitions for the string you entered, as well as the property name.

Note

The Filter mechanism is not case-sensitive and does not allow the use of wildcards or
expressions.

If you enter more than one word as the Filter, Rational Rhapsody performs an “or” search and
displays all of the properties that contain any one of the words entered. To limit the search to only
the definitions containing the entire phrase, enclose the words in the search string within quotation
marks.

As long as the Features window (or standalone properties window) remains open, the selection
you made from the menu (filter text and check box setting) is retained. When the Features window
is closed, these are reset.
178 User Guide

Rational Rhapsody properties
Resizing the Features window
Some of the properties might have long tables of information. You might find it necessary to resize
the Features window in order to see these tables without awkward text wrapping outside the table
columns. You can use the typical Windows methods to resize the Features window.

In addition, you can select the vertical line separator to resize the columns for the property names
and their values. When you click the vertical separator, a solid-looking line displays so you can
control the column widths and display. You can click the horizontal separator to resize the bottom
pane of the Properties tab where the property definitions appear.

Note
Any continuation of a long “Default Value” is indented under that heading until a new table
entry begins.
Rational Rhapsody 179

Properties
Filtering views
To select the types of properties that are displayed in the Features window, you can specify the
view for the View menu.

The possible views are as follows:

� All displays all the available properties, according to context.
� Overridden displays only those properties whose default values have been overridden, up

to the project level. When you select this view, the GUI displays all the overridden
properties from the selected element up to the scope of the project; overridden properties
at a scope higher than the selected element are displayed as regular, non-overridden
properties. From the menu, you can also select the Un-override option to reverse this
action.

� Locally Overridden displays only the locally overridden properties for the selected
element. A selected element is a project, component, configuration, package, diagram,
view element, and any other model element displayed in the browser.

Note: To specify the default filter used, set the
Dialog::General::PropertiesDialogDefaultFilter property.

� Common displays the properties contained in the
Dialog::<Metaclass>::CommonProperties property. This is the default view.

� Filter displays the Filter Properties window to search for specific properties and
definitions.
180 User Guide

Rational Rhapsody properties
Filtering properties
To search for specific property names or text in descriptions, select Filter from the Properties tab
View menu. This feature allows you to input and search for any text in the Property names and the
descriptions. Selecting the “Match property description” check box searches property descriptions
in addition to the names. Text located through a Filter Properties search is displayed in bold type in
the property definition area of the Features window.
Rational Rhapsody 181

Properties
Adding and removing the common view
The common view enables you to see only a subset of the hundreds of Rational Rhapsody
properties that are available. This makes the properties GUI much easier to use. You can easily add
properties that you use frequently to the common view, or remove properties that you do not use.

To add a property to the common view:

1. In the properties GUI, select the All filter so you can find the property to add to the
common view.

2. Right-click the property you want to add to the common view and select Add To common
list.

To remove a property to the common view:

1. In the properties GUI, select the Common filter so you can find the property to add to the
common view.

2. Right-click the property you want to remove and select Remove from common list.

Property controls
The Property tab uses different controls depending on the value type of the property (enum,
Boolean, and so on). The following table lists the property types and the corresponding controls.

Type Control

Boolean Check box (a check mark = checked)

Color Color selection box, with samples and their RGB
equivalents

Enum Drop-down list

MultiLine Multiline edit control

Numeric value Edit box

Text string Text editing box
182 User Guide

Rational Rhapsody properties
Overridden properties
When you override the default value of a property, the property name is displayed in purple. The
following figure shows an overridden property.

Removing an override

To remove an override:

1. Right-click the property value to display the Un-override command.

2. Click Un-override. The property is reset to the default value.

3. Click OK.
Rational Rhapsody 183

Properties
The following figure shows the Un-override command.
184 User Guide

Rational Rhapsody properties
Changing a property value
To change the value of a property using the Features window:

1. Choose File > Project Properties to set properties at the project level.

or

To set properties at the component level, right-click the component whose property you
want to change, choose Features > Properties, and then select the Properties tab.

2. If wanted, select a different group of properties using the View drop-down list.

3. Locate the appropriate property under the subject and metaclass.

For example, to change the class code editor for your model, expand the General node in
the list of subjects, then expand the Model metaclass to locate the ClassCodeEditor
property.

4. Select the new value for the property in the right-hand column (for example, to change the
value of the ClassCodeEditor property from Internal to CommandLine).

The overridden property is displayed in purple.

5. Click OK.
Rational Rhapsody 185

Properties
Visibility of properties
In general, a subject is displayed for an element if it contains a metaclass that matches the
metaclass of the element. The following table lists the exceptions to this rule.

Subjects Visible Only
Under the Project

Subjects Visible Under
Diagrams and the Project

Subjects Visible Under Only the
Configuration/Component and the

Project

• General
• RTInterface

• RoseInterface

• Browse
• Report

• IntelliVisor

• Diagrams
• Statechart

• ObjectModelGe

• SequenceDiagram
• UseCaseGe

• ComponentDiagram

• DeploymentDiagram
• Collaboration_Diagram

• Activity_diagram

• ConfigurationManagement
• ReverseEngineering

• CPP_ReverseEngineering
186 User Guide

Rational Rhapsody properties
PRP files

Default properties are assigned in the factory and site default files, factory.prp and site.prp,
respectively. These files are located in the $OMROOT\Share\Properties directory and provide a
way to tune project properties on an individual or site-wide basis without recompiling Rational
Rhapsody.

Do not change the factory.prp file to make individual site requirements. Instead, change the
site.prp file for an individual site. Settings in the site.prp file will override the settings in the
factory.prp file. In this way, you can always return to factory default settings in case of mistakes.

Customizing existing properties
You can customize the existing Rational Rhapsody subjects, metaclasses, and/or properties or
create new ones. There are many reasons for creating or modifying subjects, metaclasses and/or
properties. For example, you might be using an unsupported OS, compiler (configuration), and/or
configuration management tool.

When creating a new subject, you can keep existing metaclasses and properties intact. For
example, the subjects OMUContainers, OMContainers, and STLContainers are all different
subjects which contain the same metaclasses and properties.

Likewise, when creating a new metaclass, you can keep existing subjects and properties intact.
You can also create new properties under existing subjects and metaclasses. For example, if you
were using a testing tool that Rational Rhapsody did not support, you might create new properties
under an existing metaclass.

You can create new metaclasses and properties using existing Rational Rhapsody properties. For
example, to add a new configuration management tool to Rational Rhapsody:

1. In the factory.prp file, locate the CM tool property.

2. To the comma-separated enum values string, add the name of the new CM tool.

3. If you want this tool to be the default CM tool, change the second quoted string from None
to the name of the new tool.

When you restart Rational Rhapsody, you will see the name of the new CM tool listed in
the drop-down list of the Modify window for the CM tool property.

4. Block and copy the section of code for an existing metaclass. Be sure to include the
closing “end” for the metaclass block.

5. Rename the new metaclass to the name you specified in Step 2.
Rational Rhapsody 187

Properties
6. Edit the value of every property in the new metaclass, depending on the requirements for
CM commands within the individual CM tool.

To do the final step, see the documentation for the CM tool to determine the syntax for
commands in that tool. Once you know what information the CM tool requires and the
syntax of commands in that tool, you can use regular expression syntax and Rational
Rhapsody-internal variables to create the appropriate command strings for the tool.

Note
Do not change the original settings in the factory.prp file because you would not be able
to roll back to the default settings.
188 User Guide

Rational Rhapsody properties
Adding customized properties
You can add your own properties to existing metaclasses. You can add properties for special
annotations, specification numbers, part numbers, traceability information, and any kind of
comment. For example, you might require that each class be assigned a safety property and a serial
number.

To add a custom property:

1. Open the site.prp file in the Properties directory.

2. Under the appropriate subject and metaclass, add the new property. Make sure to put in the
correct number of end statements.

Adding comments to the properties files
Although Rational Rhapsody does not have a formal way to add comments to the property files,
you can add comments by creating your own properties.

To add comments to a properties file:

1. Create new subjects, for example:

2. Create a new metaclass named Comments under each subject.

3. To each metaclass, add a new property of type String or MultiLine that contains the
comment text.

If you place this information on top of your site<Lang>.prp, you benefit in the following ways:

� You can add comments in the file header to document why you made changes.
� Access from inside Rational Rhapsody via the Property tab to get an overview of the

version and changes inside your site properties files. However, you must keep the
comments and content in sync manually.

� Gain the ability to bring site settings into the Reporter documentation.

Note

Do not use the String comment ("") inside the assigned strings of the comment properties.

Subject .PRP File

Subject SiteComment site.prp

Subject SiteCPPComment siteC++.prp

Subject SiteCComment siteC.prp
Rational Rhapsody 189

Properties
Example

The following example shows a portion of the SiteC++.prp file with comment properties.

Subject SiteCPPComment

Metaclass Comments

Property RhpVersion String "v7.5 SiteC++ for Rhapsody
Build 1368921"

Property ChangeAuthor String "John Smith, Acme Co."

Property LastChange String "01.30.2009"

Property ChangeHistory MultiLine "Version 1.0
02.08.2009"

Property ChangeList MultiLine "
List of Changed Properties
Optimization Properties:
* CPP_CG->Attribute->AccessorGenerate to False
* CPP_CG->Attribute->MutatorGenerate to False
* CPP_CG->Relation->RemoveKeyGenerate to False
* CPP_CG->Relation->RemoveKeyHelpersGenerate to
False
Other properties:
* None

"

Property GeneralComment MultiLine "
Purpose of the changes in siteC++.prp:
I like challenges!
Any questions?

"
end

end
end
190 User Guide

Rational Rhapsody properties
Including PRP files
To include one .prp file in another, use the Include directive. Rational Rhapsody will replace the
directive with the contents of the specified file.

The syntax of the directive is as follows:

Include "path"

The specified path can be relative to the file that does the include, and should include the .prp
extension. In addition, the path can include an environment variable. For example:

Include "$MY_PATH\some_dir\my_file.prp"

To include more than one .prp file, simply use multiple directives. For example:

Include "$MY_DIR\my_file1.prp"

Include "$MY_DIR\my_file2.prp"

Note the following information:

� Include statements must be outside of a Subject block, either before or after. Therefore,
Rational Rhapsody expects every included .prp file starts with a Subject line. If not,
Rational Rhapsody generates an error.

� Rational Rhapsody does not check for loops. Therefore, a loop in the include files might
cause an infinite loop when the .prp file is read.

� You can nest include statements. For example:
Include "C:\Rhapsody\Share\Properties\IndividualSite.prp"

Subject General
Metaclass Model

Property BackUps Enum "None,One,Two" "Two"
end

end

Include "..\Properties\IndividualSite.prp"

Subject General
Metaclass Model

Property AutoSaveInterval Int "11"
end

end

Include "IndividualSite.prp"
Rational Rhapsody 191

Properties
Property inheritance
The level at which you set a property can affect other elements. For example, if you set a property
for a dependency at the class level, and not on an individual dependency, it applies to all the
dependencies in that class.

The following illustration shows how property values are inherited.

Note
Note that if a stereotype is applied to an element, a property assigned to that stereotype takes
precedence over the element's inherited property values (locally overridden properties take
precedence over both inherited properties and those applied via a stereotype).

Site.prp

Site<lang>.prp

projectComponent

Factory<lang>.prpFactory.prp

configuration package

class

attribute

operation

relation

profile
192 User Guide

Concepts used in properties
Concepts used in properties
The following sections provide a brief overview of the concepts used in the Rational Rhapsody
properties.

Static architectures

Several properties in Rational Rhapsody provide support for static architectures, found in hard
real-time and safety-critical systems that do not use dynamic memory management during
runtime. When these properties are used, all events (including timeouts and triggered events) are
dynamically allocated during the initialization phase. Once allocated, the memory pool (or event
queue) remains static in size during the life of the application. It is important to note that dynamic
memory management capabilities are still required in order to initialize these systems. In its
current implementation, Rational Rhapsody does not generate applications that can be run in
environments that are completely without dynamic memory management capabilities.

Properties that provide support for static architectures include the following properties:

� BaseNumberOfInstances
� AdditionalNumberOfInstances
� ProtectStaticMemoryPool
� EmptyMemoryPoolCallback
� EmptyMemoryPoolMessage
� TimerMaxTimeouts

IncludeFiles

The IncludeFiles property (under the <ContainerTypes> metaclasses) enables the selective
framework includes of templates based on a particular relation implementation.

If this property is defined, includes of the files listed in the property are added to the specification
files for classes participating in a relation.

Include files can also be added to class implementation files if the container is added by reference.
If the Containment property is set to Reference, a forward declaration of the container is added to
the class specification file, and the #include is added to the class implementation file. A new set
of properties that describe the forward declaration of the container is added to each container
implementation metaclass, and the necessary modifications are made to the code generation.
Rational Rhapsody 193

Properties
Selective framework includes

Some compilers (for example, VxWorks) tend to instantiate redundant copies of templates that are
defined in the C++ framework. These redundant instantiations cause the resulting code
(executable) to be much larger.

To enable the use of relations without templates, a set of typeless (void*) containers is supplied as
an alternative implementation. The generated code for relations that use the typeless containers is
responsible for supplying a type-safe interface.

However, supplying typeless containers does not entirely solve the problem because templates are
still included via the framework .h files. To resolve this issue, selective includes of framework
objects must be used to avoid getting the template definitions “in the back door.”

To support selective framework includes, the oxf.h file has been minimized to include only the
most basic files. The following properties have also been added:

� IncludeFiles
� ActiveIncludeFiles
� ReactiveIncludeFiles
� ProtectedIncludeFiles
� StaticMemoryIncludeFiles

Reactive classes

A class is considered reactive if it:

� Has a statechart
� Consumes events
� Is a composite

Units of collaboration

In the property descriptions, the term “unit” refers to a unit of collaboration, which can be one of
the following types:

� Object type or class
� Package (*.sbs file)
� Configuration (*.cfg file)
� Object model diagram (*.omd file)
� Sequence diagram (*.msc file)
194 User Guide

Concepts used in properties
� Use case diagram (*.ucd file)
Instances (objects), statecharts, and events are not exchanged in isolation, but together with
packages. Therefore, they are not considered units of collaboration.

The Executer

Several Rational Rhapsody properties include calls to the Executer to execute batch files. The
location of both the Executer and the target-specific batch makefile ($makefile) are given relative
to the $OMROOT environment variable.

The commands that reference the Executer do so for two reasons:

� To allow definition of a single property to represent a series of commands. The Executer
executes each one by calling system().

� To permit execution of commands by means closely resembling those of the shell’s
command-line (important for wildcards and escape characters).

The Executer accepts two string arguments:

� An executable command, or list of commands separated by semicolons.
� The directory from which to run the commands. If not specified, the commands are run

from the current directory. (For CM tools, the “current directory” is the _rpy directory).
Rational Rhapsody 195

Properties
Rational Rhapsody environment variables
In addition to the properties, numerous environment variables help define the Rational Rhapsody
environment. These environment variables are stored in the rhapsody.ini file, normally located
under C:\Winnt on Windows systems.

The following table lists the environment variables used by Rational Rhapsody. For ease of use,
the environment variables are listed by section in the order in which they occur in the file.

Environment Variable Description

General section
OMROOT = path Specifies the location of the Share subdirectory of the Rational

Rhapsody installation.
For example, if during the installation you specify D:\Rhapsody
for the destination folder, the value of OMROOT is as follows:
 $OMROOT = D:\Rhapsody\Share

OMDOCROOT = path Specifies the root directory for some Rational Rhapsody
documentation as PDF files.

OMHELPROOT = path Specifies the root directory for the Rational Rhapsody online help.

RY_LICENSE_FILE Specifies licensing information needed by FLEXlm. This variable is
set to one of the following values:

• The path to the license.dat file
• 1717@hostname, where 1717 is the port number (any number

between 1024 and 65534) and hostname is the name of the
Rational Rhapsody license server machine

AnimationPortNumber=6423 Specifies the port number used for communicating with the
animation server.

UseVBA = Boolean Specifies whether VBA macros can be used.
For example:
 UseVBA = CHECKED

EnableWebDownload = Boolean Enables or disables the Download from Web feature.
For example:
 EnableWebDownload=CHECKED

DefaultEdition = edition Specifies the default edition of Rational Rhapsody to use.
For example:
 DefaultEdition = Developer

DefaultLanguage = language Specifies the default programming language for Rational
Rhapsody.
For example:
 DefaultLanguage = C++
196 User Guide

Rational Rhapsody environment variables
ImplementBaseClasses=CHECKED Controls whether the Implement Base Classes window is displayed
in implicit requests. By default, this window is displayed only when
you explicitly open it.
If you select the Automatically show this window check box on the
window, Rational Rhapsody writes this line to the rhapsody.ini
file. If wanted, you can add this line directly to the rhapsody.ini
file to automatically display the window.

RHAPSODY_AFFINITY = number Sets the affinity of the Rational Rhapsody process. This variable is
designed to address cases where Rational Rhapsody has
problems with more than one processor.
For example, to run Rational Rhapsody on a single processor, add
the following line to the rhapsody.ini file:
 RHAPSODY_AFFINITY=1

A zero value or lack of this variable disables the mechanism.

NO_OUTPUT_WINDOW=CHECKED Disables the output window for reverse engineering (RE)
messages to increase performance. RE messages are logged in the
file ReverseEngineering.log.

Helpers section
name<#>= string Specifies the name of the helper.

For example:
name1=Reverse Engineer Ada Source Files

command<#> = path to .exe Specifies the invocation command for the helper.
For example:
command1=J:\Rhapsody5\
AdaRevEng\bin\AdaRevEng.exe

initialDir<#> = path Specifies the initial directory for the helper.
For example:
initialDir1=J:\Rhapsody5\
AdaRevEng

isVisible<#> = 0 or 1 Specifies whether the helper is visible in the Tools menu.
For example:
 isVisible1=1

isMacro<#> = 0 or 1 Specifies whether the helper is a VBA macro.
For example:
 isMacro1=0

arguments<#> = string Specifies the command-line arguments for the helper.
For example:
 arguments1=

numberOfElements = number Specifies the number of helpers.
For example:
 numberOfElements=1

Environment Variable Description
Rational Rhapsody 197

Properties
CodeGen section
ExternalGenerator = path Specifies the path to the external generator (if used).

For example:
 ExternalGenerator=
 J:\Rhapsody5\Sodius\
 Launch_Sodius.bat
Note that this variable applies only to Rational Rhapsody in Ada.

ModelCodeAssociativityMode =
enum

Specifies the dynamic model-code associativity (DMCA) status. A
value of Dynamic means that changes to the model are
dynamically updated in the code, and vice versa.
For example:
ModelCodeAssociativityMode=
Dynamic

Tip section
TimeStamp = Specifies the date and time you ran the Rational Rhapsody

installation.
For example:
 TimeStamp=Mon Apr 21
 09:34:31 2003

FilePos = position Specifies the default position at which to display the Tip of the Day.
For example:
 FilePos=3200

StartUp = Boolean Specifies whether to display the Tip of the Day when you start
Rational Rhapsody.
For example:
 StartUp = 1

Animation section
ViewCallStack = 0 or 1 Specifies whether the call stack should be visible in the next

animation session.
For example:
 ViewCallStack=0

ViewEventQueue = 0 or 1 Specifies whether the event queue should be visible in the next
animation session.
For example:
 ViewEventQueue=0

Settings section
WindowPos = position Specifies the position of the Rational Rhapsody window on your

screen.
For example:
WindowPos=0,2,-32000,-32000,
-1,-1,25,38,926,669

Environment Variable Description
198 User Guide

Rational Rhapsody environment variables
BarsLayout section
BrowserVisible = Boolean Specifies whether the browser should be visible, according to the

settings from the last session.
For example:
 BrowserVisible=TRUE

FeaturesVisible = Boolean Specifies whether the Features window should be visible,
according to the settings from the last session.
For example:
 FeaturesVisible=FALSE

FeaturesFloating = Boolean Specifies whether the Features window should be floating or
docked, according to the settings from the last session.
For example:
 FeaturesFloating=TRUE

BrowserFloating = Boolean Specifies whether the browser should be floating or docked,
according to the settings from the last session.
For example:
 BrowserFloating=FALSE

Bar<#> Groups the settings corresponding to each toolbar.

For example:
 [BarsLayout-Bar29]

BarsLayout-Summary section
Bars = number Specifies the number of toolbars.

For example:
 Bars=30

ScreenCX = resolution Specifies the user screen resolution on the X scale.

For example:
 ScreenCX=1024

ScreenCY = resolution Specifies the user screen resolution on the Y scale.

For example:
 ScreenCY=768

Plugin section
MTT<Version number> = path Specifies the path to the TestConductor DLL.

For example:
 MTT4.1=L:\Rhapsody\v41\
 TestConductor\
 TestConductor.dll

Tornado section
DefaultTargetServerName = string Specifies the default target-server name used with Tornado.

Environment Variable Description
Rational Rhapsody 199

Properties
RecentFilesList section
File<#> = path Lists the .rpy files that have been loaded recently. The maximum

number of files listed is four.

For example:
File1=J:\Rhapsody5\ProjectAda\
NewFunc\NewFunc.rpy
File2=J:\Rhapsody5\CPPProjects\
NewFunc\NewStuff\NewStuff.rpy
File3=J:\Rhapsody41MR2\AdaProject\
Dishwasher\Dishwasher\Dishwasher.rpy

Environment Variable Description
200 User Guide

Format properties
Format properties
Rational Rhapsody uses properties under the Subject Format to determine the format used for
displaying various graphical elements.

These properties do not appear on the Properties tab of the Features window, but you can control
these formatting features using the Format window that is displayed when you select Format that
displays on the context menu for graphical elements. This window lets you set formatting options
up to the project level.

In some cases, you might want to set formatting options across multiple projects. This can be done
by overriding the value of formatting properties using the site.prp file.

These are the formatting properties that can be used.

� DefaultSize - specifies the default size to use for graphical elements of this type. You can
change the default size for elements of a given type by selecting the New Element Size
check box in the Make Default window. In the value that is used for this property, the
third coordinate represents the width of the graphical element, and the fourth coordinate
represents the height of the element. For more information, see Defining default
characteristics.

� Fill.FillColor - specifies the color to use to fill the background of the graphical
element. Corresponds to the Fill Color selector on the Fill tab of the Format window. For
more information, see Defining line characteristics.

� Fill.Transparent_Fill - used to specify whether or not the fill should be transparent.
Corresponds to the Transparent Pattern check box on the Fill tab of the Format window.

� Fill.BackgroundColor - used as the color of the superimposed pattern if you have
chosen a pattern to use for the fill. Corresponds to the Pattern Color selector on the Fill
tab of the Format window.

� Fill.FillStyle and Fill.FillHatch - represent the fill pattern to use. Correspond to
the Pattern list on the Fill tab of the Format window.

� Font.Font - specifies the font to use for the text on the graphical element. Corresponds to
the font list on the Font tab of the Format window.

� Font.FontColor - specifies the color of the font to use for the text on the graphical
element. Corresponds to the Text Color selector on the Font tab of the Format window.

� Font.Size - specifies the size of the font to use for the text on the graphical element.
Corresponds to the font size list on the Font tab of the Format window.

� Font.Underline - specifies whether or not the text on the graphical element should be
underlined. Corresponds to the Underline check box on the Font tab of the Format
window.
Rational Rhapsody 201

Properties
� Font.Strikeout - specifies whether strikeout text should be used for the text on the
graphical element. Corresponds to the Strike-Out check box on the Font tab of the Format
window.

� Font.Weight - used for bolding of text on the graphical element. Corresponds to the bold/
italic control on the Font tab of the Format window.

� Font.Italic - used for italicizing text on the graphical element. Corresponds to the bold/
italic control on the Font tab of the Format window.

� Line.LineColor - specifies the color to use for the outline of the graphical element.
Corresponds to the Color selector on the Line tab of the Format window.

� Line.LineStyle - specifies the style to use for the outline of the graphical element, for
example, solid or dotted. Corresponds to the Style list on the Line tab of the Format
window.

� Line.LineWidth - specifies the width of the line to use for the outline of the graphical
element. Corresponds to the Width list on the Line tab of the Format window.

Defining default characteristics

To set default characteristics for an element type based on an existing element:

1. Right-click the element in a diagram that you want to use as the element pattern and select
Make Default.

2. In the Make Default window, select the Item characteristics to be copied from the
highlighted element to other elements of the same type:

� Display Options
� Format
� New Element Size (for graphical elements only)

3. Select the Level in your project for all of the elements of that type to have the same
characteristics:

� Diagram
� Package
� Project

4. Click OK.
202 User Guide

Format properties
Defining line characteristics

To define the graphical appearance of a line in a diagram:

1. Right-click the line and select Format.

2. In the Format window on the Line tab, select the Line color, style, and width.

3. On the Font tab, select the font name and other text characteristics.
Rational Rhapsody 203

Properties
204 User Guide

Rational Rhapsody projects
A Rational Rhapsody project includes the UML diagrams, packages, and code generation
configurations that specify the model and the code generated from it. The term project is
equivalent to model in Rational Rhapsody.

This section provides an overview of a Rational Rhapsody project, the components of a project,
and the procedures to create, edit, and store projects.

Project elements
A project consists of elements that define your model, such as packages, classes and diagrams. The
browser displays these elements in a hierarchical structure that matches the organization of your
model. Rational Rhapsody uses these elements to generate code for your final application.

A Rational Rhapsody project has the following top-level elements:

� Components contain configurations and files and also hold the variants for different
software product lines.

� Packages and profiles packages contain other packages, components, actors, use cases,
classes (C++/J), object types, events, types (C/C++), functions (C,C++), objects,
dependencies, constraints, variables, sequence diagrams, OMDs, collaboration diagrams,
UCDs, and deployment diagrams.

A profile “hosts” domain-specific tags and stereotypes.
� UML diagrams For example, use case, object model, sequence, collaboration,

component, and deployment diagrams.
For more information about project elements, see Model elements.
Rational Rhapsody 205

Rational Rhapsody projects
Creating and managing projects
When working in Rational Rhapsody, you need to know the basic procedures for using a project.
You can create a new project, or work with an existing project. You can edit your project and save
the changes. You can create an archive of your project to easily exchange files with another
engineer or with customer support. You can have Rational Rhapsody create autosave files to
periodically store your unsaved changes, and automatically create backup projects of previously
saved versions. This section contains instructions for these and other procedures necessary for
using Rational Rhapsody.

Creating a project

When you create a new project, Rational Rhapsody creates a folder containing the project files in
the location you specify. The name you choose for your new project is used to name project files
and folders, and displays at the top level of the project hierarchy in the browser. Rational
Rhapsody provides several default elements in the new project to get you started, such as a default
component and configuration. Before you begin, create a project folder in your file system to hold
all of your Rational Rhapsody projects.

1. With Rational Rhapsody running, create the new project by either selecting File > New, or
clicking the New project button on the main toolbar.

2. Replace the default project name (Project) with <your project name> in the Project
name field. Enter a new directory name in the In folder field or Browse to find an
existing directory.

3. The Default Project Type provides all of the basic UML structures for most Rational
Rhapsody projects. However, you can select one of the specialized Profiles, that provide a
predefined, coherent set of tags, stereotypes, and constraints for specific project types.

4. You might want to select one of the Project Settings. For example, you might want to
work in a code centric setting instead of the default model centered setting.

5. Click OK. If the directory does not exist, Rational Rhapsody asks if you want to create it.
Click Yes to create the new project directory.

Rational Rhapsody creates a new project in the <your project name> subdirectory and opens the
new project. The project name in that directory is <your project name>.rpy.
206 User Guide

Creating and managing projects
Profiles

A predefined Rational Rhapsody profile becomes part of your project in one of these ways:

� You select an available profile from the Type pull-down menu, as described in the
Creating a project section.

� You manually add a specialized profile to your project from the Share\Profiles directory,
as described in the Adding a Rational Rhapsody profile manually section.

� Rational Rhapsody assigns a starting-point profile based on your project settings and
development environment.

The predefined profiles available to you depend on the system language and add-on products
licensed for Rational Rhapsody.

� AdaCodeGeneration is the default Ada code generation profile.
� AutomotiveC includes the capabilities provided in the following automotive industry

environments:
– FixedPoint arithmetic
– MainLoop (no-OS)
– OSEK21 and Basic/Extended OSEK task stereotypes
– MicroC

The AutomotiveC profile also loads the StatemateBlock and SimulinkInC profiles.
For more information, see The Rational Rhapsody automotive industry tools.

� AUTOSAR_21 and AUTOSAR_31 create automotive components in accordance with
the AUTOSAR development process using the ECU, Internal Behavior, SW Component,
System, and Topology diagrams. For more information, see AUTOSAR modeling. The
separate AUTOSAR profiles support the related AUTOSAR versions (2.1 and 3.1).

Note: AUTOSAR can only be used in C language projects.

� CodeCentricCpp provides software developers an environment to work on C++
application code rather than development using models.

� Default provides all of the basic UML structures for most Rational Rhapsody projects.
� DoDAF is the Rational Rhapsody profile for DoDAF v1.0. For more information, see

Rational Rhapsody for DoDAF Add On and profile.
� FixedPoint profile contains predefined types representing 8, 16, and 32-bit fixed-point

variables: FXP_8Bit_T, FXP_16Bit_T, FXP_32Bit_T. For more information, see Defining
fixed-point variables.

� FunctionalC profile tailors Rhapsody in C for the C coder, allowing the user to
functionally model an application using familiar constructs such as files, functions, call
graphs and flow charts.
Rational Rhapsody 207

Rational Rhapsody projects
� Harmony creates a project based on the Harmony (SE) Systems Engineering Process. For
more information, see Harmony process and toolkit.

� IDFProfile uses the code generation settings for the Rational Rhapsody Developer for C
IDF. For more information, see Using IDF for a Rational Rhapsody in C project.

� MARTE supports Model and Analysis for Real-Time Embedded systems that are not
covered by UML and annotates application models to support analysis by tools.

� MODAF is the Rational Rhapsody profile for MODAF v1.1. For more information, see
IBM Rational Rhapsody MODAF Add On.

� MicroC provides the facilities to run automotive C applications on systems with very
limited resources or with no operating system. For more information, see The MicroC
profile.

� MISRA98 controls the code generation settings to comply with the MISRA-C 1998
standard.

� NetCentric imports Web-services Definition Language (WSDL) files to design and
generate a services model. For more information, see Domain-specific projects and the
NetCentric profile. (This profile requires a separate license.)

� RespectProfile can be used for C and C++ project to preserve the structure of the code
and preserves this structure when code is regenerated from the Rational Rhapsody model.
Meaning that code generated in Rational Rhapsody resembles the original. For more
information about handling regenerated code, see Code respect and reverse engineering
for Rational Rhapsody Developer for C and C++.

� RoseSkin is used by Rational Rose Import to set format and other settings to resemble
Rational Rose look-and-feel.

� SDL facilitates importing SDL Suite models into Rational Rhapsody SDL Blocks.
� Simulink and SimulinkInC allow integration of MATLAB Simulink models into

Rational Rhapsody as Simulink Blocks (Simulink profile is for C++).
� SPARK is the Rational Rhapsody Ada SPARK profile.
� SPT (Scheduling, Performance, and Time) is an implementation of the SPT standard

(OMG standard) that specifies the method to add timing analysis data to model elements.
For more information, see Schedulability, Performance, and Time (SPT) profile.

� StatemateBlock creates a new block/class allowing a Statemate model to become part of
a Rational Rhapsody architecture. This profile is only available for Rational Rhapsody in
C and requires a licensed version of Statemate 4.2 MR2 or greater with a license for the
Statemate MicroC code generator. For more information, see StatemateBlock in Rational
Rhapsody.

� SysML supports both UML and SysML model diagrams for systems engineering. This
profile is the Rational Rhapsody implementation of the OMG SysML profile. For more
information, see Systems engineering with Rational Rhapsody.
208 User Guide

Creating and managing projects
� TestingProfile is an implementation of the OMG Testing Profile. The TestingProfile is for
use with Rational Rhapsody TestConductor. For more information about this profile, see
the third-party documentation provided for Rational Rhapsody TestConductor.

� UPDM_L0 and UPDM_L1 are the Rational Rhapsody implementation of the OMG
UPDM L0 and L1 profiles that combine the MODAF and DoDAF profiles.

Opening an existing Rational Rhapsody project

To open an existing Rational Rhapsody project with all units loaded:

1. Choose File > Open. The Open window displays.

Note: To open one of the last-opened projects, select it from the list of projects that
appear on the File menu just above the Exit command.

2. In the Look in field, browse to the location of the project.

3. Select the .rpy file, or type the name of the project file in the File name field.

4. Select the With All Subunits check box. This causes Rational Rhapsody to load all units
in the project, ignoring workspace information. For information on workspaces, see Using
workspaces.

5. Click Open. The entire Rational Rhapsody project opens.

Search and replace facility

Engineers and developers can use the Rational Rhapsody Search and Replace facility for simple
search operations and to manage large projects and expedite collaboration work. The search results
display in the Output window with the other tabbed information.

This facility provides the following capabilities:

� Perform quick searches
� Locate unresolved elements in a model
� Locate unloaded elements in a model
� Identify only the units in the model
� Search for both unresolved elements and unresolved units
� Perform simple operations on the search results
� Create a new tab in the Output window to display another set of search results
� For more detailed instructions for the Search and Replace facility, see Searching in the

model.
Rational Rhapsody 209

Rational Rhapsody projects
Searching models
To search models:

1. With the model displayed in Rational Rhapsody, there are three methods to launch the
Search facility: select Edit > Search, click the binoculars button , or press Ctrl+F.

2. The Search window and perform a quick search. Type the search criteria into the Find
what field and click Find. The results display in the Output window. The search criteria
displays on the Search tab of the Output window.

3. To display the more detailed search window, select Edit > Advanced Search Replace or
click the Advanced button in the Search window (above). Both methods display this
window. The advanced search window provides the Unresolved and Units only search
features.

4. Select the Search elements tab to narrow the scope of the search to specific project
element types such as requirements, classes, packages, components, and diagram types.

5. Select the Search in tab to identify parts of the project for the search. Of course, you can
use combinations of selections on different tabs and the Find window to narrow your
search.
210 User Guide

Creating and managing projects
6. The advanced search also includes these capabilities:

� Exact string permits a non-regular expression search. When selected the search
looks for the string entered into the search field (such as char*)

� Wildcard permits wildcard characters in the search field such as “*” produces
results during the search operation that include additional characters. For
example, the search *dishwasher matches class dishwasher and attribute
itsdishwasher.

� Regular Expression allows the use of Unix style regular expressions. For
example, itsdishwasher can be located using the search term *dishwasher.

7. If after performing one search you want another Search tab with additional search results
displayed in the Output window, check the New Tab box in the Results in Output
Window area. Perform the next search.

Search results
After locating elements using the Search facility, you can perform these operations in the Search
window or in the Output window:

� Sort items
� Check the references for each item
� Delete
� Load

To sort items in the list, click the heading above the column to sort according to display that
feature of each item in the list.

Examining references in search results
To examine the references for an item in the search results:

1. Right-click an item in the search results list to display the menu.

2. Select References and examine the information displayed in the window, as shown in this
example:
Rational Rhapsody 211

Rational Rhapsody projects
Deleting located items
To delete an item located in search process:

1. Right-click an item in the search results list to display and then select Delete from Model.
The system displays a message for you to confirm the deletion.

2. Click Yes to complete the deletion process.

If you have located an unloaded item in the search results and want to load it into the model, right-
click the item. Load the item in the same manner as it is loaded from within the browser.

Replacing
If you want to replace item names or other terminology throughout the model:

1. Display the Advanced Search.

2. Enter the current terminology in the Find what field.

3. Enter the new terminology into the Replace with field.

4. Make any additional selections to limit the search and replace process.

5. Click Find and approve or skip the possible replacements.
212 User Guide

Creating and managing projects
Locating and listing specific items in a model

During development you might need to examine a specific feature or create a list of items in the
model. This is one of the situations when the Rational Rhapsody Application accelerators keys are
useful.

In this example, the developer wants a list of the ports that are used by a specific interface.

To display a list of specific items in a Rational Rhapsody model:

1. Display the model in Rational Rhapsody.

2. If you need to locate the section you want to examine, you can use Search and replace
facility to find it. Then in the browser, select the item for which you need more
information.

3. In this example, press the Ctrl-R (for relationships) accelerator keys to list the relations
with the IDoorListener interface.

4. You can sort the displayed list by the Name or Type by clicking the heading of the
column. In this example, the items are sorted by Type to show the ports grouped together.

Note
You can also use ReporterPLUS to generate a report for a selected section of your model.
Rational Rhapsody 213

Rational Rhapsody projects
File menu commands

The File menu provides file management capabilities for the entire project. You can use the File
menu to create a New project, Open an existing Rational Rhapsody project, Save, Close files,
Print, and Exit the project as these features are typically used in Windows applications. The
Rational Rhapsody File menu also contains special project management features to insert other
files and projects and check files in and out of your configuration management (CM) system.
These features are also accessible from the Standard tools icons.

File > New
This menu command creates a new Rational Rhapsody project. See Creating a project.

File > Add to Model
Use this File menu command to insert an element into the active project.

File > Add Java API Library
Use this File menu command to import a Java API as a library that you want to use within the
project.

File > Configuration Items
Use this File menu command to launch Rational Rhapsody access to your configuration
management (CM) system to check files in and out and perform other CM operations.

File > Compare
If you have launched the Rational Rhapsody DiffMerge tool, the Compare menu command is
available from the DiffMerge File menu. This menu command allows you to browse and select
files to compare. You can compare files, list all of the differences, and merge the files if wanted.
214 User Guide

Creating and managing projects
Editing and changing a project

You build projects in Rational Rhapsody by creating and defining elements using either the
browser or the graphic editors. Elements include components, packages, classes, operations,
events, diagrams, and so on.

Adding elements
To add elements from the browser:

1. Right-click an element, then select Add New. A submenu that lists all the elements that
can be added at the current location in the project hierarchy is displayed.

2. Select the element you want to add.

For detailed information about adding elements from the browser, see Model elements. To add
elements from a graphic editor, use the drawing tools to draw the element in the diagram. For
information on using the graphic editors, see Graphic editors.

Adding a Rational Rhapsody profile manually
To add another predefined Rational Rhapsody profile manually to your project:

1. Open the existing project.

2. Choose File > Add Profile to Model.

3. The Add to Profile to Model window lists all of your available profiles, either as separate
.sbs files or in folders.

4. Select a .sbs file for the profile and click Open. The system checks to be certain that the
selected profile is compatible with the language being used in the existing project.

Rational Rhapsody lists the newly added profile in the Profiles section of the browser. If you are
not familiar with the profile, open the profile in the browser to examine its characteristics.
Rational Rhapsody 215

Rational Rhapsody projects
Editing in the Features window
Each element in the project has features that can be edited using the Features window. The features
for an element include things like its name, description, type, and implementation code.

� Double-click the element.
� Right-click the element and then select Features.
� Select an element in the browser, then type Alt + Enter.

For more information on using the Features window, see The Features window.

Undo and redo
Rational Rhapsody allows you to undo the last 20 operations, and to redo the operation that was
most recently undone.

To undo the last operation, do one of the following actions:

� Choose Edit > Undo.
� Click the Undo tool.

To redo an operation, do one of the following actions:

� Choose Edit > Redo.
� Click the Redo tool.

The Undo menu command does not become active until you perform at least one operation that
can be undone. Similarly, the Redo menu command is not active until you have used the Undo
command at least once.

By default, Rational Rhapsody allows you to undo the last 20 operations, but you can set this value
in the General::Model::UndoBufferSize property. Setting this property to a value of zero
disables the Undo/Redo feature.

You cannot use the Undo command after large operations that affect the file system. The undo
operation buffer is cleared and the Undo and Redo tools are deactivated. The following operations
cannot be undone:

� Saving, opening, or closing a project
� Automatic diagram layout
� Roundtripping code with the “generated code in browser” option
� Loading a unit into a workspace
� Configuration management operations
� Importing Rational Rose models
� Reverse engineering
216 User Guide

Creating and managing projects
� Adding a file unit to the model (via the File > Add to Model command)
� Code generation with the “generated code in browser” option

Using IDF for a Rational Rhapsody in C project

For some systems developed using Rational Rhapsody in C, the OXF provided with Rational
Rhapsody is not appropriate because the systems require a solution with a smaller footprint. To
provide a solution for these environments, a limited framework called IDF (Interrupt-Driven
Framework) is also provided with Rational Rhapsody.

Rational Rhapsody provides a base IDF model that can be adapted for different target systems.
Also included is a sample adaptation for Microsoft NT illustrating the use of the IDF.

To use this sample model to learn about the IDF:

1. Start the development version of Rational Rhapsody in C and choose File > Open and
browse to locate the IDF model Share\LangC\idf\model\idf.rpy.

2. With that project open, click the GMR button to generate and make the generic
configuration automatically displayed above the window, as shown here.

This generates all core files and idfFiles.list with dependencies and rules in the
Share\LangC\idf directory.

3. Using the same method, open another IDF model,
Share\LangC\idf\Adapters\Microsoft\MicrosoftNT.

4. Generate and make this model with the GMR button. This builds the library msidf.lib in
the directory Share\LangC\lib.

Saving a project

You can save a project in its current location using File > Save or click the Save button in the
toolbar. The Save command saves all modified files in the project repository.

Saving a project in a new location
To save the project to a new location with Save As:

1. Select File > Save As. The Save As window opens.

2. Use the Save In field to locate the folder where you would like to save the project.
Rational Rhapsody 217

Rational Rhapsody projects
3. Type a name for the project file in the window. The file extension .rpy (for repository)
denotes that the file is a Rational Rhapsody model.

4. Click Save. All project files are saved in the project repository.

Incremental save
If you want to save only the modified project units and not the entire project:

1. Select File > Project Properties and select the Properties tab.

2. Navigate to the General::Model::UseIncrementalSave property. This property should
be checked to use the incremental save feature.

Autosave
By default, Rational Rhapsody performs an incremental autosave every 10 minutes to back up
changes made between saves. Modified units are saved in the autosave folder, along with any units
that have an older time stamp than the project file. Modifications to the project file are saved in the
<Project>_auto.rpy file. When you save the project, the autosave files are cleared.

The autosave feature saves files in flat format. All unit files reside in the <Project>_auto_rpy
folder, regardless of the directory structure of the original model.

To change the autosave interval, use the General::Model::AutoSaveInterval property. The
interval is measured in minutes. To disable the autosave feature, set the AutoSaveInterval
property to 0.
218 User Guide

Creating and managing projects
Renaming a project

To change the name or location of the project, use the Save As command. Do not attempt to edit
the project file directly. When you save the project under a different name, the name of the project
folder is updated in the browser.

Refactoring or renaming in the user code

To rename an element that is in the user code:

1. In the browser, right-click the element to be renamed and select Refactor > Rename.

2. Enter the New Name and click Continue.

3. Use the Find window to the element name.

Previewing the rename changes
Before the name changes are applied, the Rename Preview lists all of the references in the user
code that will be renamed.

1. Select entries in the lower section of the preview window to see the related code displayed
above.

2. To remove a reference from the list of changes, click the check box before the reference to
remove the green check.

3. To accept the checked changes, click OK.

Examining the renamed elements
After accepting the previewed changes, the rename text displays in the selected browser element.
To check the accuracy of the change:

1. Expand the browser tree to see the change to the related elements.

2. Display the Features window for the element and check the information to be certain it has
been changed as you expected.
Rational Rhapsody 219

Rational Rhapsody projects
Closing all diagrams

To close all the diagrams opened for a project, choose Window > Close All.

Closing a project

1. Select File > Close.

2. If you have unsaved changes, Rational Rhapsody asks if you would like to save your
changes before closing the project. Select one of the following options:

� Yes saves the changes.
� No discards the changes.
� Cancel cancels the operation and return to Rational Rhapsody.

Closing Rational Rhapsody

To exit from Rational Rhapsody, select File > Exit.

Creating and loading backup projects

Rational Rhapsody can create backups of your model every time you save your project, allowing
you to revert to a previously saved version if you encounter a problem. To use the automatic
backup feature, set the General::Model::BackUps property to the number of backup projects you
want Rational Rhapsody to create. The options are None (default), One, and Two. Leave the
default value of None if you do not want Rational Rhapsody to create backups.

To set up automatic backups for your project:

1. In the browser, right-click the <project name> at the top of the browser list and select
Features.

2. On the Properties tab, click the All radio button to display all of the properties for this
project.

3. Expand the General and Model property lists and locate the BackUps property.

4. Select One or Two from the pull-down menu. With this setting, Rational Rhapsody creates
up to one or two backups of every project in the project directory.

5. Click OK.
220 User Guide

Creating and managing projects
After this change, saving a project more than once creates <projectname>_bak2.rpy contains the
most recent backup and the previous version in <projectname>_bak1.rpy. To restore an earlier
version of a project, you can open either of these backup files.

1. Open the <Project>_bak2.rpy (or the <Project>_bak1.rpy file) in Rational
Rhapsody. Do not try to rename the backup file directly.

2. Save the project as <Project>.rpy using the File > Save As command.

Archiving a project

At times, you might need to archive a project to send it to another developer or to Customer
Support. To create a complete archive, include the following files and directories:

� <Project>.rpy file
� <Project>_rpy directory with all subdirectories
� <Component> directories
� Any external source files (.h and .cpp) needed to compile the project
Rational Rhapsody 221

Rational Rhapsody projects
Table and matrix views of data
Rational Rhapsody provides these additional methods to view model data:

� Table view performs a query on a selected element type and displays a detailed list of its
various attributes and relations.

� Matrix view displays queries showing the relations among selected model elements.
These views provide the following development capabilities:

� Define and run dynamic queries of model content
� Provide easy requirements display and analysis
� Produce exportable and printable tables and data lists

Basic method to create views from layouts

To create either the table or matrix view, follow these general steps:

1. Select any area of the model in the Rational Rhapsody browser where you want to store a
table or matrix layout (query design).

2. Define a layout for the table or matrix (as described in the following sections) and save it
in the selected browser location.

3. Define a view of the model data using the previously defined layout. This view also gives
you the opportunity to define the scope of the query for the view.

4. In the browser, double-click the defined view to display the results of the query in the
drawing area.

5. To edit the data displayed in a view, use the Features window for the view and click the

Refresh button to update the view.

Note: Data displayed in views cannot be edited directly in a view. You must use the
Features window for a view to make your edits.

6. To export the data, right-click the data in the drawing area and select Copy.
222 User Guide

Table and matrix views of data
Creating a table layout

To design the structure for your model elements query as a table layout:

1. Right-click the package in the Rational Rhapsody browser where you want to create and
store your table layout and select Add New > Table\Matrix > Table Layout.

Note: Add New > Table\Matrix is the default menu command structure in Rational
Rhapsody. It can be changed by users. This topic assumes that all defaults are
in place.

2. In the browser, enter a name for this table design. You might want to include the word
“layout” in the name to help identify your defined layouts from their generated views.

3. Double-click the new layout in the browser to open its Features window.

4. On the Element Types tab, select the element types you want to be displayed in the table:

5. Click Apply to save your selections without closing the Features window.
Rational Rhapsody 223

Rational Rhapsody projects
Adding a new row to the table layout
After Creating a table layout, you can begin to create the table design.

1. On the Columns tab, click the New button to create a new row in the table layout.

2. For the row, select a Type and Property from the corresponding menus for your query
purpose:

� The General Attribute type might use one of the following properties (also
shown in the following figure) to define it:

– Name displays the name of an element.
– Description displays the description for an element (if there is one).
– Element type displays the element type of an element.
– From displays where an element is from.
– To displays where an element goes to.
– Via Port (From) displays the port from which a relation is connected.

Typically used along with Via Port (To). For more information, see Including
ports and multiple relations.

– Via Port (To) displays the port to which a relation is connected. Typically
used along with Via Port (From). For more information, see Including ports
and multiple relations.

� The Requirement Attribute type might have either an ID or Specification
property.

� The Flow Attribute type might have only Flow items as its property.
224 User Guide

Table and matrix views of data
� The Tag type has the <<Select>> property. Click it to open the Select Tag
window in which you can identify the information for the tag. Click OK.

3. Click the New button to add each row for your table. Use the Move Item Up and

Move Item Down buttons to arrange the order of the rows in your table layout.

4. Optionally, to remove a row from the layout, select it on the Columns tab and click the

Delete button .

5. When you have completed your design layout, click OK.
Rational Rhapsody 225

Rational Rhapsody projects
Creating a table view

After you have created one or more table layouts, to generate a table view of the model element
data based on your layout design:

1. Right-click a package on the Rational Rhapsody browser to which you want to add a table
view and select Add New > Table\Matrix > Table View.

Note: Add New > Table\Matrix is the default menu command structure in Rational
Rhapsody. It can be changed by users. This topic assumes that all defaults are
in place.

2. In the browser, right-click the new table view and select Features to open its Features
window.

3. Enter a Name for the view.

4. Select the name of a previously created table layout from the Layout drop-down list.

5. Select the scope for this view by selecting a package from the Scope drop-down list.

6. Clear or select the Include Descendants check box if you want to exclude or include the
descendants for the selected scope. For more information, see Including and excluding
descendants.

7. Click OK to save your table view.

8. To make changes to the displayed data, double-click a row in the table view and make the
changes in the Features window for that element.

9. If you have finished making changes, you can use either of the following actions:

� Click Apply to save your changes in the Features window and then click the

Refresh button to display the new data in the view.
� If you are done making changes, click OK.

Changing the layout for a generated table
You can also return to the table layout and make design changes. To redisplay the data in the
changed table view, click Refresh.

Including and excluding descendants
By default, table and matrix views include descendants in their scope because the Include
Descendants check box on the General tab of the table or matrix view’s Features window is
selected by default. For example, when you produce the table view whose scope is the main
package and both packages have objects, the default the view shows all descendants.
226 User Guide

Table and matrix views of data
To exclude descendants from appearing in your table or matrix view, you need to clear the Include
Descendants check box on the General tab of the Features window for the particular view, as
shown in the following figure for a table view. Then (refresh the view if necessary), the view
shows without descendants.

Analyzing data in the table
In the browser, double-click the table view name to generate the results of the data query. The
query analyzes data for the selected package and all of its nested packages.

Adding elements to a table
After creating a table from the table layout, you might want to add new element type to the table.

1. On the left of the table display, click the Add model element icon.

2. In the Add new element window, select the Element type from the pull-down menu.

3. Select the Location from the pull-down menu.

4. Select the number of elements.

5. Click OK.

The revised table displays the new element automatically.
Rational Rhapsody 227

Rational Rhapsody projects
Creating a matrix layout

To create a matrix layout to analyze the relationships among model elements:

1. Right-click a package on the Rational Rhapsody browser where you want to add a matrix
layout and select Add New > Table\Matrix > Matrix Layout.

Note: Add New > Table\Matrix is the default menu command structure in Rational
Rhapsody. It can be changed by users. This topic assumes that all defaults are
in place.

2. In the browser, enter a name for this new matrix design.
You might want to include the word “layout” in the name to help identify your defined
layouts from their generated views.

3. Double-click the new matrix layout to open its Features window.

4. On the Cell Element Types tab select only one of the possible element types. Cell element
type is the relation type between the “From” and “To” elements to be displayed in matrix
cells. In the finished matrix, the elements of that type are displayed down the left side of
the matrix view to identify a row of data.

5. Click Apply to save your selections and keep the Features window open to select the
“From” and “To” elements.
228 User Guide

Table and matrix views of data
Selecting the element types for the matrix layout
After selecting the Cell Element Types in the Features window for the matrix layout, define the
basic “from” and “to” structure for the matrix:

1. On the From Element Types tab, select the element types from which the connection
should be identified.

2. Click Apply to save your selections.

3. On the To Element Types tab, select the element types to which the connection should be
identified.

4. Click OK.

Modifying the matrix layout
You can return to the matrix layout and make changes to the design even after the data has been
generated in the matrix view. To redisplay the data in a modified view, use the Refresh icon on the
matrix view.
Rational Rhapsody 229

Rational Rhapsody projects
Creating a matrix view

To create a matrix view to analyze the attributes of the model elements you identified in the matrix
layout:

1. Right-click the package on the Rational Rhapsody browser to which you want to create
and store a matrix view and select Add New > Table\Matrix > Matrix View.

Note: Add New > Table\Matrix is the default menu command structure in Rational
Rhapsody. It can be changed by users. This topic assumes that all defaults are
in place.

2. In the browser, right-click the new matrix view and select Features to open its Features
window.

3. Enter a Name for the new matrix view.

4. Select the name of a previously created matrix layout from the Layout drop-down list.

5. Select the scope for this view by selecting a package or project in the “From” Scope and
in the “To” Scope drop-down lists, as shown in this example:

6. Clear or select the Include Descendants check box if you want to exclude or include the
descendants for the selected scope. For more information, see Including and excluding
descendants.

7. Click OK to save your matrix view.
230 User Guide

Table and matrix views of data
8. In the browser, double-click the matrix view name to generate the results of the data query.
The query analyzes data for the selected package and all of its nested packages, as shown
in this example:

9. To make changes to the displayed data, double-click a cell in the matrix view and make
the changes in the Features window for that element.

10. Depending on if you are done making changes:

� Click Apply to save your changes in the Features window and then click the

Refresh button to display the new data in the view.
� If you are done making changes, click OK.
Rational Rhapsody 231

Rational Rhapsody projects
Filtering out rows and columns without data
If you want to remove the rows in a matrix view that do not contain data:

1. Open the Features window for the view or choose File > Project Properties to display the
properties for your project. For information about using properties in your project, see
Properties.

2. On the Properties tab, locate the Model::MatrixView::HideEmptyRowsCols property
and select its check box.

3. Click OK.

4. When you display a view, click the Toggle empty rows filter button to show only the
rows containing data.

If you select the Model::MatrixView:HideCellNames property, the content of a cell is displayed
only with an icon.
232 User Guide

Table and matrix views of data
Including ports and multiple relations
By default, the table view and matrix view show relations between objects (even if ports are
involved) and display multiple relations between elements if they exist. This means that you can
easily communicate your design information in a tabular or matrix format.

The Model::TableLayout::ShowContainerElementForPorts property controls this capability.
By default, this property is set to Checked. This means that for table views, if ports are
encountered when searching for connections of relations, Rational Rhapsody displays the port’s
parent element instead of the port itself. For matrix views, Rational Rhapsody automatically looks
at child ports of elements and finds the relations to other elements.

If you do not want this property to be active, you would clear the check box for it.

To make changes to this property:

1. Open the Features window for the table view or matrix view.

2. On the Properties tab, locate the Model:TableLayout:ShowContainerElementForPorts
property.

3. Clear or select the check box next to the property name.

� Clear it to disable this property.
� Select it if you want to show relations between objects (even if ports are involved)

and display multiple relations between elements if they exist. This is the default.
4. Click OK.

Note
When there are multiple relations, options such as Features, Locate, and so on are disabled.

Adding elements to a matrix
After creating a matrix from the matrix layout, you might want to add new element type.

1. On the left of the matrix display, click the Add model element icon.

2. In the Add new element window, select whether you want the element selection to be
Based on row settings or Based on column settings.

3. Select the new Element type from the pull-down menu.

4. Select the Location from the pull-down menu.

5. Select the number of elements.

6. Click OK.
Rational Rhapsody 233

Rational Rhapsody projects
The revised matrix displays the new element type’s information automatically.

Setting up an initial layout for table and matrix views

You can bind a view and layout for a table or matrix through the use of a New Term stereotype that
has the Model::Stereotype::InitialLayoutForTables property set for this purpose for a
Rational Rhapsody profile. Once you apply the stereotype to a table or matrix layout, it allows you
to set the initial layout for a table or matrix view.

To apply a stereotype to a table or matrix layout for a profile:

1. Create a profile. For more information, see Creating a customized profile.

2. Create a table or matrix layout and design it as you want. See Creating a table layout and
Creating a matrix layout.

3. In your profile, create a stereotype and define it as a New Term and to what it is applicable
to (table view or matrix view, as shown in the following figure) and click Apply to save
but not close the window. For information on stereotypes, see Stereotypes.

4. On the Properties tab, locate the Model::Stereotype::InitialLayoutForTables
property and enter the name of the layout you created in Step 2 and click OK.

5. Create a table or matrix view through the profile, select Add New > [name of profile] >
[matrix view].

6. Open the Features window for the table or matrix view you created in the previous step
and note that the layout is already identified (because of the applicable stereotype).
234 User Guide

Table and matrix views of data
7. Complete your design of the view by filling in the Scope boxes, as shown here, and click
OK.

8. Look at the Rational Rhapsody browser and notice that the view you just created is listed
in a View category (in our example, MyMatrixViewStereotypes, as shown in the
following figure) other than the general Matrix Views category, which only lists those
views that were created without a stereotype (using Add New > Table\Matrix > Matrix
View):
Rational Rhapsody 235

Rational Rhapsody projects
9. When you double-click the table or matrix view (MyMatrixView in our example above),
it shows the query results from the layout that has the specified stereotype.

Managing table or matrix data

After creating a table or matrix, you have additional options to manage a view and its data.
Right-click the view in the drawing area to display a menu with these standard Rational Rhapsody
options:

� Features to open the Features window. For more information, see The Features window.
� Locate to find the location of the element on the Rational Rhapsody browser.
� Add to Favorites to add to your favorites list in Rational Rhapsody. For more

information, see The Favorites browser.
� Browse from Here to open a Rational Rhapsody browser that contains a more-focused

Rational Rhapsody browser from whichever point you are at. For more information, see
Opening a Browse From Here browser.

The remaining options are standard Windows options. You might find the Copy option particularly
useful to export the view’s data into Microsoft Excel and then save it as a .csv file.
236 User Guide

The Rational Rhapsody specialized editions
The Rational Rhapsody specialized editions
In addition to the Rational Rhapsody Developer edition that supports projects in C, C++, Java, and
Ada, Rational Rhapsody also provides three editions to create specialized projects:

� Rational Rhapsody Designer for Systems Engineers edition
� Rational Rhapsody Architect for Systems Engineers edition
� Rational Rhapsody Architect for Software edition

For information about installing or switching between these editions, see the Rational Rhapsody
installation instructions.

Creating projects in Rational Rhapsody Designer for Systems
Engineers

To create a project in Rational Rhapsody Designer for Systems Engineers:

1. With Rational Rhapsody Designer for Systems Engineer running, create the new project
by either selecting File > New or clicking the New project button on the main toolbar.

2. Replace the default project name (Project) with <your project name> in the Project
name field. Enter a new directory name in the In folder field or Browse to find an
existing directory.

3. The Default Project Type provides all of the basic Rational Rhapsody Designer for
Systems Engineers edition features. However, you can select one of these specialized
Profiles to supply a predefined, coherent set of tags, stereotypes, and constraints for
specific project types:

� DoDAF
� FunctionalC
� Harmony
� MODAF
� SPARK
� SysML
� TestingProfile

4. You might want to select one of the Project Settings. For example, you might want to
work in a code centric environment instead of the default model centered setting.

5. Click OK. If the directory does not exist, Rational Rhapsody asks if you want to create it.
Click Yes to create the new project directory.
Rational Rhapsody 237

Rational Rhapsody projects
The default Designer for Systems Engineers edition project contains a structure diagram as the
starting point. For more detailed instructions, see the Structure diagrams section.

Note
Remember that Designer for Systems Engineers can use any of the supported languages:
Ada, C, C++, or Java.

You can add the following profiles to a Designer for Systems Engineers project using the Adding a
Rational Rhapsody profile manually procedure:

� AdaCodeGeneration
� Backward compatibility profiles

� JavaDoc
� NetCentric

� SDL
� Simulink
� SPT

For ideas for your project, examine the sample projects in following <Rational Rhapsody
installation path>\Samples:

� Ada, C, C++, or Java Samples
� Extensibility Samples
� JavaAPI Samples
� System Samples
238 User Guide

The Rational Rhapsody specialized editions
Creating projects in Rational Rhapsody Architect for Systems
Engineers

Rational Rhapsody Architect for Systems Engineers does not include code generation or reverse
engineering. You use the same method to create projects as you do for Developer projects, but a
specialized project structure is created for systems engineers.

To create an Rational Rhapsody Architect for Systems Engineers project:

1. With Rational Rhapsody Architect for Systems Engineers edition running, create the new
project by either selecting File > New or clicking the New project button on the main
toolbar.

2. Replace the default project name (Project) with <your project name> in the Project
name field. Enter a new directory name in the In folder field or Browse to find an
existing directory.

3. The Default Project Type provides all of the basic Rational Rhapsody Architect for
Systems Engineers edition features. However, you can select one of this limited set of
specialized Profiles:

� DoDAF
� FunctionalC
� Harmony
� MODAF
� NetCentric
� SysML

4. You might want to select one of the Project Settings. For example, you might want to
work in a code centric environment instead of the default model centered setting.

5. Click OK. If the directory does not exist, Rational Rhapsody asks if you want to create it.
Click Yes to create the new project directory.

The basic default Architect for Systems Engineers edition project contains a structure diagram as
the starting point. For detailed instructions, see the Structure diagrams section.

Note
Remember that Rational Rhapsody Architect for Systems Engineers edition does not use
any of the four development languages available in other Rational Rhapsody editions.
Rational Rhapsody 239

Rational Rhapsody projects
Creating projects in Rational Rhapsody Architect for Software

Rational Rhapsody Architect for Software edition allows you to create a C, C++, or Java project
and also allows you to generate code frames for the project from a code generation menu.
However, the Architect edition does not support animation or code generation for ports and
statecharts. Many architects create a Rational Rhapsody Architect project and reverse engineer
code to use as a starting point. If a build environment is wanted for the project, the architect can
use Eclipse or another IDE.

To create a Rational Rhapsody Architect for Software project:

1. With Rational Rhapsody Architect for Software edition running, create the new project by
either selecting File > New or clicking the New project button on the main toolbar.

2. Select the primary implementation language as C, C++, or Java and click Next.

3. In the New Project window, replace the default project name (Project) with <your
project name> in the Project name field. Enter a new directory name in the In folder
field or Browse to find an existing directory.

4. The Default Project Type provides all of the basic Rational Rhapsody Architect for
Software edition features. However, you can select one of the specialized Profiles, that
provide a predefined, coherent set of tags, stereotypes, and constraints for specific project
types. The following profiles available for a new Architect project from the Type
selection:

� CodeCentricCpp
� FunctionalC
� Harmony
� NetCentric
� SysML

You can also add the available profiles to Rational Rhapsody Architect for Software
project using the Adding a Rational Rhapsody profile manually procedure.

5. You might want to select one of the Project Settings. For example, you might want to
work in a code centric environment instead of the default model centered setting.

6. Click OK. If the directory does not exist, Rational Rhapsody asks if you want to create it.
Click Yes to create the new project directory.

For ideas for your project, you can examine the sample projects in these <Rational Rhapsody
installation path>\Samples directories.
240 User Guide

Components with variants for software product lines
Components with variants for software product lines
If your company uses variations of the software to create a software product line,
component variants can manage the reuse of common components and generate code for
the product line.

Creating variation points

To create a software product line, identify the Rational Rhapsody components that are the
variation points for the system.

1. In a high-level object model diagram, create a class or object for the variable component.

2. In the Features window for each variable component, select VariationPoint as the
Stereotype. In this example, the jet and heater are the variation points for the dishwasher.
Rational Rhapsody 241

Rational Rhapsody projects
Defining variants

To define one variant for each variation point:

1. For each variation point, draw its dependencies to the variant class or object.

2. For each variant class or object, display the Features window, and select Variant as the
Stereotype.

3. Complete the definition of the variant classes and objects to meet the requirements.

In this example, each variation point has two variants. Note that each of the classes and objects
contains a statechart to define the operation states.

.

The <<Static>> stereotype (on inheritance) duplicates all features of the static base class into the
static derive class including types, operations, attributes, associations, inheritances, ports,
dependencies, behavior and links.
242 User Guide

Components with variants for software product lines
Selecting a variant

To select a variant:

1. Highlight the component.

2. Display the Features window and click the Variation Points tab.

3. Select the variant from the list.

Generating code for software variations

When code is generated, each component generates the specific mapping from the variation points
to their selected variants.
Rational Rhapsody 243

Rational Rhapsody projects
Multiple projects
Rational Rhapsody allows you to have more than one project open at a time. When you have more
than one project open, you can use the Rational Rhapsody browser to copy and move elements
from one project to another.

The following terms are used in Rational Rhapsody in the context of working with multiple
projects:

� Projects is the top-level container (or folder) for all open projects in a Rational Rhapsody
session (saved as an .rpl file). The Projects folder contains the list of projects, which can
be saved and reopened.

� Active Project is the project that you can currently be modify. This is also the project to
which Rational Rhapsody commands, such as for code generation, are applied (unless the
command opens a window that allows you to specify which project to use).

Inserting an existing project

To insert an existing project into an open project:

1. Open the existing Rational Rhapsody project into which you want to add another Rational
Rhapsody project.

2. Choose File > Insert Project.

3. Select Existing to insert a previously created Rational Rhapsody project for a directory.

Note: Rational Rhapsody does not permit two projects with the same name to be
incorporated.

The Rational Rhapsody browser displays a project list node called Projects that is one level above
the open projects. The currently active project name is in bold print, as shown in the following
example.
244 User Guide

Multiple projects
Inserting a new project

To insert a new project into an open project:

1. Open the existing Rational Rhapsody project into which you want to add another Rational
Rhapsody project.

2. Choose File > Insert Project > New to open the window for Creating a project

Note: Rational Rhapsody does not permit two projects with the same name to be
incorporated.

Setting the active project

When you select File > Insert Project, the project you select automatically becomes the active
project.

Once you have more than one project open, you can make any project the active project as follows:

1. Right-click the project name in the Rational Rhapsody browser.

2. Select Set as Active Project.

Similar to the display of the active component and active configuration, the name of the active
project displays in bold in the browser.

You can modify an active project’s model elements only. (Rational Rhapsody displays RO, for read-
only, next to all project names in the browser that are in non-active projects.)

If you make a project active without first saving changes made to the previously active project, the
system asks you if want to save those changes. If you click the No button, your changes to the
previously active project are not yet lost. This is because when you close all the projects, the
system asks if you want to save the project list and all its projects. If you click the Yes button, all
changes made to all projects that have not been saved are saved at this time.

In general, Rational Rhapsody commands are applied only to the active project. However, the
commands Search and Locate in Browser can be applied across all open projects.
Rational Rhapsody 245

Rational Rhapsody projects
Copy and reference elements among projects

When you have more than one project open, you can use the Rational Rhapsody browser to copy
elements from one project to another using either of these methods:

� Referencing an element in another project only “links” that element to the original
element in the original project

� Copying creates a element in another project that is the same as the original

Note
Copying and referencing can only be done within the browser. You cannot drag an element
from one project to a diagram in another project.

You can use either the standard Windows copying techniques, as described in Copying elements to
other projects or the Shift key method, as described in Using the Shift key to copy, reference, or
move elements.

Creating references
Only elements that have been saved as units can be referenced in other projects.

To create a saved unit from an element:

1. In the active project, right-click the element in the browser and select Create Unit.

2. Type the Unit Filename if you want to use a different name from the displayed name.

3. Click OK to create the unit and the icon of the new unit is marked with a red box. In this
example, the homeowner and intruder elements are units.

4. In the project that is going to receive the reference, right-click the project name and select
Set as Active Project.

5. In the browser of the now active project, right-click the element that needs to reference the
new unit and then select Create Unit to change the receiving element into a unit.
246 User Guide

Multiple projects
6. In the original project, select the unit that is being referenced. Click and drag that unit to
the active project’s new unit. When the reference is established, the (REF) symbol
displays next to the referenced element, as shown in this example:

Copying elements to other projects

To copy an element to another project:

1. In the browser, right-click the project name in the Rational Rhapsody browser from which
you are copying an element and select Set as Active Project.

2. Select the element you want to copy into the other project and select Edit > Copy or right-
click and select Copy.

3. Right-click the project name to which you are copying the element and select Set as
Active Project.

4. Select the folder where you want to store the copied element and select Edit >Paste. If the
copied element has the same name as an existing element in the new project, the name is
appended with “_copy.”

Copied elements with the same name as existing elements should be renamed to avoid confusion.

Using the Shift key to copy, reference, or move elements
To use the pop-up menu to copy, reference, or move a unit:

1. Be certain that the element has been saved as a unit, as described in Creating references.

2. In the non-active project, press and hold the Shift key, and click-and-drag the unit you
want to copy, reference, or move to the target project.

3. On the pop-up menu that displays, select the applicable command:

� Copy here
� Reference here, or
� Move here - leave a reference
Rational Rhapsody 247

Rational Rhapsody projects
Moving elements among projects

To move an element from one project to another:

1. If the element to be moved is not a saved unit, save it as a unit.

2. Press and hold the Alt key, then click-and-drag the element to the other project.

3. Rational Rhapsody checks if there will be unresolved elements in the target project as a
result of the move. If there are unresolved elements, a message box displays along with
the Output window.

4. If you click Yes on the message box, the unit moves to the target project.

Note
The original unit, that was moved, now has a (REF) tag in the source project because the
unit has been moved and the moved unit is now the unit of record in the active project.

Closing all open projects

To close all of the projects that are currently open, select File > Close.

Managing project lists

When a number of projects are open at the same time, you can save the list of projects as a
Rational Rhapsody project list (.rpl) file.

Saving projects in a project list file
To save the project list, select File > Save All.

A new .rpl file is created in the current active project folder. The name of the project list file will
be Projects.rpl. (If a file with this name already exists in the folder, a number will be added to
the end of the file name, for example Project1.rpl.)

The current active project is saved as an attribute of the project list, so when you reopen a project
list, the active project will be the project that was active when the project list was last saved.
248 User Guide

Multiple projects
Opening a project file list
After a project file list has been saved, you can re-open all the projects in a project list as follows:

1. Open the Open window, choose File > Open.

2. If necessary, look in the path for your project, then select the relevant project list file.
Typically, the Open window displays all .rpy and .rpl files.

3. Click Open.

Adding a project to a project list file
If you open a project list file, its contents are updated each time you select Save All. Therefore, to
add another project to a project list:

1. Select File > Insert Project and choose the project to add.

2. Decide if the just added project or another one should be the current active project.

3. Select File > Save All.

Removing a project from a project list file
To remove a project from a list of files:

1. In the Rational Rhapsody browser, select the project to remove.
Note that you cannot remove the current active project.

2. Press the Delete key on your keyboard.

3. Click Yes to confirm your action.

4. Select File > Save All.

Project limitations

The following items identify multiple project work and display limitations.

New project
You cannot add a new project to a list of open projects. When you select File > New, if there are
changes to be saved, you will be asked if you want to save before closing, then all open projects
will be closed, and the project list will be saved before the New Project window displays.
Rational Rhapsody 249

Rational Rhapsody projects
Placement of GUI elements
Information regarding the placement of elements such as toolbars and the browser window are
stored in the rhapsody.ini file, and are, therefore, uniform for all projects and project lists.
Information regarding the placement of elements such as windows are stored in a project’s
workspace file (.rpw). Therefore, these elements will change, depending on which project in the
list is currently the active project.

References window
The References window includes the references for all of the projects in the project list, and not
just those for the active project.

DiffMerge
DiffMerge does not support the comparison of project lists (that is, groups of projects).

Configuration management
Rational Rhapsody does not support the configuration management of project lists but you can use
your configuration management tool directly for a project file list.

Properties
When viewing properties, Rational Rhapsody always displays the property values of the selected
project. However, for all properties that affect more than one project, Rational Rhapsody uses the
settings of the active project. For information about using properties in your project, see
Properties.

Components and configurations
When you select a different project to be the active project, the Code toolbar displays the active
component and configuration for that project. The list of components/configurations available is
also updated accordingly.

VBA editor and the active project
When you open the Rational Rhapsody VBA Interface editor, you see only the items belonging to
the active project.
250 User Guide

Naming conventions and guidelines
Naming conventions and guidelines
To assist all members of your team in understanding the purpose of individual items in the model,
it is a good idea to define naming conventions. These conventions help team members to read the
diagram quickly and remember the model element names easily.

Note: Remember that usually the names used in the Rational Rhapsody models are
going to be automatically written into the generated code. Therefore, the names
should be simple and clearly label all of the elements, and they should not use
any special characters.

Guidelines for naming model elements

The names of the model elements should follow these guidelines:

� Class names begin with an upper case letter, such as System.
� Operations and attributes begin with lower case letters, such as restartSystem.
� Upper case letters separate concatenated words, such as checkStatus.
� The same name should not be used for different elements in the model because it will

cause code generation problems. For example, you should not have a class, an interface,
and a package with the same name of Dishwasher.

� Note the following about special characters:
– Do not include special characters in an element’s name if the element is used

for code generation.
– You can use special characters in the labels for model elements. See

Descriptive labels for elements.
– The following elements are the only ones for which you can include special

characters: Dependencies, Stereotypes, Flows, Links, Configurations, Table
layouts, Table views, Matrix layouts, Matrix views, Requirements, Actors,
Use Cases, and all diagrams.

– You can use the General::Model::NamesRegExp property to control what
special characters are allowed. For detailed information on a property, see
the definition displayed in the Properties tab of the Features window. For
information about using properties in your project, see Properties.

– While you can use spaces (but not special characters) in the names for actors,
it is not typical because the spaces might cause problems during code
generation.
Rational Rhapsody 251

Rational Rhapsody projects
Standard prefixes

Lower and upper case prefixes are useful for model elements. The following list shows common
prefixes with examples of each:

� Event names = “ev” (evStart)
� Trigger operations = “op” (opPress)
� Condition operations = “is” (isPressed)
� Interface classes = “I” (IHardware)
252 User Guide

Using project units
Using project units
In Rational Rhapsody, a unit is any element of a project that is saved in a separate file. You can
partition your model into units down to the class level. Creating units simplifies collaboration in
team environments. With this feature, you have explicit control over file names and modification
rights, and you can check unit files in and out of a configuration management system.

Note
Association ends and ports cannot be saved as units.

The project and all packages are always units. The following table lists other project elements that
can be units.

Element File Extension Unit by Default?

Actors .cls No

Components .cmp Yes

Packages .sbs Yes

Classes .cls No

Implicit objects (parts) .cls No

Files .cls No

Diagrams (except statecharts
and activity diagrams)

Block definition diagrams
(*.omd)

No

Component diagrams (*.ctd) No

Collaboration diagrams (*.clb) No

Deployment diagrams (*.dpd) No

Internal block diagrams No

Object model diagrams (*.omd) No

Sequence diagrams (*.msc) No

Structure diagrams (*.std) No

Use case diagrams (*.ucd) No
Rational Rhapsody 253

Rational Rhapsody projects
Unit characteristics and guidelines

The following unit characteristics and guidelines might help you use units effectively in your
projects:

� A unit can be part of only one Rational Rhapsody model. Therefore, a unit can be
modified in only one Rational Rhapsody model.

� A unit can be referenced as often as necessary.
� A unit can contain many subunits.
� Each model element is identified by a Global Unique Identifier (GUID), so each unit is

unique in its model.
� Only model elements that must be shared should be changed into units.
� A unit’s name should be the same as its model element name. This simplifies the

association between a unit and its model element.
� Changing many model elements to units might slow Rational Rhapsody processes.
� To create diagrams automatically as units, change the

General::Model::DiagramIsSavedUnit property to be Checked. The default is
Unchecked.
254 User Guide

Using project units
Separating a project into units

If you need to share units in one project with another or you need to control some model elements
in a configuration management system, you might need to divide the project into units. Keep in
mind the Unit characteristics and guidelines.

To change elements to units:

1. Right-click the element and then select Create Unit. The Unit Information window for the
element opens with fields filled in, as shown in the following figure:

2. By default, the Store in separate file check box is selected.

3. Edit the default Unit Filename, if wanted. Rational Rhapsody assigns the appropriate file
extension for you in the next field. The Rational Rhapsody File Extension is displayed
and cannot be changed if the unit must have a specific extension for Rational Rhapsody.

4. You change the Directory for the new unit.

5. In the access privileges radio button area, you might want to change the default Read/
Write selection for the new unit to Read Only or External Reference.

6. The Include in next load selection is automatically checked since you are adding a unit.

7. Click OK.

The unit in the browser is now marked with a small red icon. Save the unit and the icon turns
black.
Rational Rhapsody 255

Rational Rhapsody projects
Modifying units

To modify a unit:

1. In the browser, right-click the unit to modify, then select Unit > Edit Unit. The Unit
Information for Package window opens.

2. Change the settings as wanted.

3. Click OK.

To reduce the amount of time required to save a project, Rational Rhapsody marks all modified
units and enables you to save those units without saving the entire project. To indicate that a unit
has changed, the unit icon in the browser changes from black to red.

Saving individual units

To save a selected unit:

1. Select the unit in the browser.

2. Right-click the unit and select Unit > Save Unit.

Loading and unloading units

When you open a Rational Rhapsody project, the Open window allows you to specify whether or
not Rational Rhapsody should load the subunits contained in the project. If you need to locate the
unloaded units in a project, you can use either of these tools:

� Rational Rhapsody browser menu options for the Unloaded Units
� Search and replace facility

If you elected to load the project without its subunits, you can later load individual subunits:
Right-click the subunit in the browser to display the menu and select Load [unit name], or select
Load [unit name] with Subunits to load the unit together with all its subunits.

To unload a unit, right-click the subunit in the browser and select Unit > Unload [unit name].

Units that are not currently loaded are indicated by (U) before the unit name in the browser.

If you do want to unload a unit, but you want to prevent it from being loaded the next time you
open the project:

1. In the browser, right-click the unit and select Unit > Edit Unit.

2. On the Unit Information, clear the Include in next load check box.
256 User Guide

Using project units
Loading units from last session
If you would like to load only those units that were open during your last Rational Rhapsody
session, select the Restore Last Session radio button when you open the project with the Open
window.

If you open the project by selecting its name from the MRU list (under File), Rational Rhapsody
will also only load those units that were open when you completed your last session.

Note
This applies also to the Include in next load check box. If you cleared this check box,
Rational Rhapsody will refrain from loading the unit only if you select the Restore Last
Session radio button when you open the project, or open the project from the MRU list.
Rational Rhapsody 257

Rational Rhapsody projects
Saving packages in separate directories

To assist with configuration management and improve project organization, you might want to
store packages in separate subdirectories within a parent folder. Rational Rhapsody has two
directory schemes:

� In flat mode, all package files are stored in the project directory, regardless of their
location in the project hierarchy.

� In hierarchical mode, a package is stored in a subdirectory one level below its parent. It is
possible to have a hybrid project, where some packages are stored in flat mode, and others
are organized in a hierarchy of folders.

To set the default so that new packages are stored in separate directories:

1. Select the <ProjectName> at the top of the browser hierarchy.

2. Right-click and select Features.

3. Locate the General::Model properties and select the DefaultDirectoryScheme property.

4. Change the value from flat to PackageAsDirectory.

Flat mode
In flat mode, Rational Rhapsody stores all package files in one directory. This is usually the project
directory.

If you are changing modes from hierarchical to flat, Rational Rhapsody maintains the existing
directory structure, but does not add any new subdirectories. New packages are stored within the
existing structure beneath the directory of their closest parent.

To create a new model that will be in one file, after you create the project, set the following
properties’ check boxes to be Cleared at the project level:

� General::Model::BlockIsSavedUnit

� General::Model::ClassIsSavedUnit

� General::Model::ComponentIsSavedUnit

� General::Model::DiagramIsSavedUnit

� General::Model::FileIsSavedUnit

� General::Model::ObjectIsSavedUnit

� General::Model::PackageIsSavedUnit
258 User Guide

Using project units
Hierarchical mode
In hierarchical mode, you can save a package in a unique subdirectory one level below the
directory of its parent. All units contained in the package are saved in its subdirectory, along with
the package (.sbs) file. Nested packages are further divided into subdirectories.

Consider the example of a project Home that contains the package Family, which contains the
package Pets. With each package in its own directory, the path of the Pets.sbs file would be:

../Home/Family/Pets/Pets.sbs

Note
When changing from flat mode to hierarchical mode, Rational Rhapsody does not
automatically create folders for existing packages. Instead, it creates a folder for each new
package within the existing directory structure.

1. Right-click the package and select Unit > Edit Unit. The Unit Information for Package
window opens.

2. Select the Store in separate Directory check box (available only for packages). The name
of the separate directory has the same name as the unit.

3. Click OK.

Rational Rhapsody creates the new directory and moves the package, along with all of its subunits,
into the new folder.

Changing a hierarchical model to a flat model
To change an existing model from hierarchical mode to flat mode, write a VBA script that iterates
over the entire model and, for each IRPUnit, calls the setSeparateSaveUnit(true) method.
The only unit that should not activate this method is the project.
Rational Rhapsody 259

Rational Rhapsody projects
Using environment variables with reference units

If you have a reference unit in your model (added using Add to Model As Reference), you can
edit its location using the Directory field of the Unit Information window, and use an environment
variable as part of that location.

Note
When you add a reference to your model, Rational Rhapsody adds the packages as top-level
packages by default. However, you can move the reference packages so they become nested
packages.

For example, you can use a relative path (..\) or the environment variable $ENV_VAR. If you set
the General::Model::EnvironmentVariables property to include the path of this environment
variable, Rational Rhapsody parses and executes that environment variable when it opens the
project, and then searches for the reference unit in the specified location.

Note
If you use relative paths, note that the path is relative to the _rpy folder, not where the .rpy
file is located.
260 User Guide

Using project units
Preventing unresolved references

When you delete an element that has references in read-only files, those references cannot be
updated accordingly on the disk because the files are read-only files. These references become
unresolved when the model is reloaded. In order to resolve this situation, read-only files that
contain references to elements that you are deleting should be made writable before you perform
the delete operation.

Rational Rhapsody automatically opens the References in Read-Only Files Encountered window
when it detects that an attempt to delete an element might cause unresolved references. When you
delete an element (for example, through the Rational Rhapsody browser or a graphic editor) that
has references in read-only files, the References in Read-Only Files Encountered window opens
with a list of read-only files that contains references to the deleted element.

The following options are available to you on this window:

� Check out the selected and continue - Use only if you have a configuration management
tool set.

Note: This option might fail if the unit you are trying to check out is not already
checked in.

Note: This option is unavailable in the Rational Rhapsody Platform Integration.

� Make the selected files read/write and continue
� Ignore the references in read-only files and continue. Using this option means that

unresolved references might be created when the model is reloaded.
Rational Rhapsody 261

Rational Rhapsody projects
Using workspaces
Workspaces enable you to work with selected units of a project without having to open the entire
model. This feature supports component-based development and collaboration among teams. It
also reduces the time required for routine operations, such as saving and code generation, by
enabling you to load only the units currently under development.

In addition, workspaces save viewing preferences, including window size, position, status of
feature windows, and the scaling or zoom factor of open diagrams.

Rational Rhapsody automatically saves workspace information in a separate file named
<Project>.rpw. Rational Rhapsody saves the .rpw file whenever a project is closed, regardless of
whether you save the project itself.

Creating a custom Rational Rhapsody workspace

1. Choose File > Open. The Open window displays.

2. In the Look in field, browse to the location of the project, then select the .rpy file.

Alternatively, type the name of the project file in the File name field.

3. Select the Without Subunits check box. This prevents Rational Rhapsody from loading
any project units. All project units will be loaded as stubs.

4. Click Open. The project file opens with no units loaded. This empty project acts as a
starting point for you to create your workspace.

5. Add units to your workspace to customize it for your needs.

Adding units to a workspace

1. Select the unit in the browser.

2. Right-click the unit, then select Load Unit.

3. Select the unit in the browser.

4. Right-click the unit, then select Load Unit with Subunits.

Unloaded units

Units of your project that have not been loaded into your workspace are marked with the letter
“U.” This designation means that the unit is a stub unit, and was either excluded from the project
intentionally, or was not found when Rational Rhapsody attempted to load the unit.
262 User Guide

Using workspaces
In diagrams, a “U” located at the destination end of a relation, dependency, or generalization
means that the target is an unresolved element. In this case, the originator of the relation,
dependency, or generalization is loaded, but the unresolved element has been either intentionally
or accidentally excluded from the project.

You can use the Advanced search and replace features to locate any unloaded units and load them.

Opening a project with workspace information

To open a workspace:

1. Select File > Open. The Open window displays.

2. In the Look in field, browse to the location of the project, then select the .rpy file.
Alternatively, type the name of the project file in the File name field.

3. Select the Restore Last Session check box. The project opens with the workspace
information that was saved during your last Rational Rhapsody session.

To open a project without loading workspace information, see Opening an existing Rational
Rhapsody project.

Controlling workspace window preferences

Workspaces save information about your window preferences. These preferences include window
size, position, status of feature windows, and the scaling or zoom factor of open diagrams.

To prevent Rational Rhapsody from saving graphic editor settings, set the
OpenDiagramWithLastPlacement property under General::Workspace BlockIsSavedUnit
check box to Cleared. With this setting, Rational Rhapsody does not save the position of graphic
editor windows. Instead, it uses the default window settings the next time you open a graphic
editor.

You can prevent Rational Rhapsody from saving any window preferences by setting the
OpenWindowsWhenLoadingProject property under General::Workspace check box to Cleared.
Rational Rhapsody 263

Rational Rhapsody projects
Project files and directories
The project directory is the top-level directory for a project. It is the folder entered in the New
Project window when you create a new project. Rational Rhapsody creates a number of project
files with matching directories. Each project file/directory pair shares the same name.

The following table lists project files created by Rational Rhapsody.

File Name Description

<Project>.rpy The project file or model repository. Requires the repository
files in the <Project>_rpy directory to be a complete
model.

<Project>_rpy Directory containing unit files for the project, including:
• Components (*.cmp)
• Packages (*.sbs)
• Classes (*.cls)
• Use case diagrams (*.ucd)
• Sequence diagrams (*.msc)
• Object model diagrams (*.omd)
• Component diagrams (*.ctd)
• Collaboration diagrams (*.clb)
• Deployment diagrams (*.dpd)
• Structure diagrams (*.std)
• Table of files contained in the project (filesTable.dat)

<Project>_auto.rpy A backup file of the model, created during autosave. This file
is written only if the <Project>.rpy has been modified
since it was last saved.

<Project>_auto_rpy Directory containing a backup of project files modified since
the last save. All autosave files are stored in flat mode. For
more information, see Saving packages in separate
directories.

<Project>_bak1.rpy A backup of the model, created when the project is first
saved. Requires the repository files in the
<Project>_bak1_rpy directory to be a complete model.

<Project>_bak1_rpy Directory containing a backup of the project files for the
<Project>_bak1.rpy repository. This folder can contain
the same types of files as the <Project>_rpy folder.

<Project>_bak2.rpy A backup of the model, created when the project is saved a
second time. Contains the most recent backup of the project.
Requires the repository files in the <Project>_bak2_rpy
directory to be a complete model.

<Project>_bak2_rpy Directory containing a backup of the project files for the
<Project>_bak2.rpy repository. This folder can contain
the same types of files as the <Project>_rpy folder.
264 User Guide

Project files and directories
<Project>.rpw Workspace settings file. Preserves the workspace settings for
the project. For more information, see Using workspaces.

<Project>.ehl Events history list. Stores events and breakpoints during
animation.

<Project>.vba VBA project file. Contains VBA macros, modules, user forms,
and so on.

ReverseEngineering.log A log of reverse engineering activity containing messages
reported in the output window during reverse engineering.

<Project>_ATG Directory that holds any tests created using the Rational
Rhapsody Automatic Test Generation add-on (if you added
the product).

<Project>_RTC Directory that holds any tests created using the Rational
Rhapsody TestConductor™ add-on (if you added the
product).

load.log A log of when various repository files were loaded into
Rational Rhapsody, including any errors that might have
occurred during the loading and resolution phases.

store.log A log recording when the project was saved.

<Component> Directory for each component in the project. Organizes files
generated for each configuration in the component. Each
configuration is placed in a subdirectory that contains the
source and binary files for a build.

File Name Description
Rational Rhapsody 265

Rational Rhapsody projects
Parallel project development
Many companies use Rational Rhapsody to create large models developed by multiple users, who
are often working in parallel in distributed teams. These teams might use a source control tool or
configuration management (CM) software, such as Rational ClearCase, to archive project units,
but not all files might be loaded into CM during development.

Engineers in the team need to see the differences between an archived version of a unit and another
version of the same unit or a similar unit that might need to be merged. To accomplish these tasks,
they need to see the graphical differences between the two versions, as well as the differences in
the code. However, source control software does not support graphical comparisons.

The Rational Rhapsody DiffMerge tool supports team collaboration by showing how a design has
changed between unit revisions and then merging units as needed. It performs a full comparison
including graphical elements, text, and code differences.

Unit types

A Rational Rhapsody unit is any project or portion of a project that can be saved as a separate file.
These are some examples of Rational Rhapsody units with the file extensions for the unit types:

� Class (.cls)
� Package (.sbs)
� Component (.cmp)
� Project (.rpy)
� Any Rational Rhapsody diagram
266 User Guide

Parallel project development
DiffMerge tool functions

The DiffMerge tool can be operated inside and/or outside your CM software to access the units in
an archive. It can be launched from inside or outside Rational Rhapsody. It can compare two units
or two units with a base (original) unit.

The units being compared only need to be stored as separate files in directories and accessible
from the PC running the DiffMerge tool. In addition to the comparison and merge functions, this
tool provides these capabilities:

� Graphical comparison of any type of Rational Rhapsody diagram
� Consecutive walk-through of all of the differences in the units
� Generate a Difference Report for a selected element including graphical elements
� Print diagrams, a Difference Report, Merge Activity Log, and a Merge Report

Note
Many of the DiffMerge tool’s operations can be run from a command-line interface to
automate some of the tasks associated with software development (for example, to schedule
nightly builds).
Rational Rhapsody 267

Rational Rhapsody projects
Project migration and multi-language projects
When you run Rational Rhapsody, you select a specific language version of Rational Rhapsody.
This determines the language that is associated with your Rational Rhapsody projects.

You can, however, open Rational Rhapsody projects that were created with other language
versions of Rational Rhapsody.

In addition, Rational Rhapsody allows a single model to contain units that are associated with
different languages. A model can include units associated with C, C++, or Java. Code can then be
generated in the appropriate language for each unit.

Note
While project migration is a built-in feature of Rational Rhapsody, you can only have multi-
language projects if you possess the special license required for this feature.

Opening models from a different language version

Rational Rhapsody allows you to open models created in a different language version of Rational
Rhapsody. This is also referred to as migration of projects.

When you try to open a project that was created in a different language version of Rational
Rhapsody, you are notified that the project will be converted to the language of the current version,
and you are asked whether you would like to continue with the conversion of the project.

Note
When you migrate a project, you do not lose any language-specific features of model
elements that are not supported in the language version of Rational Rhapsody that you are
running. These language-specific characteristics will not be displayed, for example, in the
Features window, and any code generation will be in the language of the current version not
the version with which the model was originally created. However, Rational Rhapsody
maintains this information. If, at a later stage, you reopen the model in the original
language, you will once again see these language-specific characteristics.

When a project is migrated, bodies of operations and any other code entered manually in Rational
Rhapsody are not converted to the target language. If you already have such code in your model
before the migration, make sure to convert the code in order to avoid compilation errors.

If you use Add by reference to add a unit whose language differs from that of the version of
Rational Rhapsody you are running, a non-persistent conversion is performed (since these
elements are read-only). This non-persistent conversion will be performed each time you open the
model.
268 User Guide

Project migration and multi-language projects
Note
If you have a license for multi-language projects, no conversion is performed when you
open a model from another language version of Rational Rhapsody. If you would like to
convert an entire project, just change the unit language at the project level. For details, see
Determining language of a unit in multi-language projects.

Multi-language projects

Rational Rhapsody uses units to permits projects to contain components from different
development languages. Each unit is associated with a specific language.

Determining language of a unit in multi-language projects
When you create a new unit, the Unit Information window provides a list that allows you to select
a specific language for the unit. The default language for a new unit is the language of its owner
unit.

To change the language of an existing unit:

1. Right-click the unit in the browser, and then select Unit > Edit Unit.

2. When the Unit Information window is displayed, select the language from the list.

3. Click OK.

4. When you are asked to confirm the change, click Yes.

If you are changing the language of a unit that contains subunits, Rational Rhapsody will ask you
if you also would like to change the language of all of the contained subunits.

Note
As is the case for project migration, if you change the language of a unit, you do not
permanently lose any language-specific features of the unit. These language-specific
characteristics will not be displayed, and any code generation will be in the new language.
However, Rational Rhapsody maintains this information. If, at a later stage, you switch the
unit back to the original language, you will once again see these language-specific
characteristics.

When you move units of one language to a package of another language, Rational Rhapsody will
inform you that they are different languages and will ask you to confirm the move.

If you try to add a unit that is associated with another language, Rational Rhapsody will ask you to
confirm the addition of the unit. You will also be prompted for confirmation if you add “by
reference” a unit that is associated with another language.
Rational Rhapsody 269

Rational Rhapsody projects
Code generation
In each of the language versions of Rational Rhapsody, you can generate code for units in each of
the three languages - C, C++, Java.

For code generation to work properly, you have to adhere to the following rules:

� To generate code for units in a certain language, the appropriate language must be
specified at the component level.

� Elements included in the scope of a component must be of the same language as the
component. (If other language elements are included in the scope, a warning will be
issued during code generation.)

Note
If you select All Elements as the scope, Rational Rhapsody will automatically include only
those units whose language matches that of the component. If you choose Selected
Elements, Rational Rhapsody will only display those units whose language matches that of
the component. However, if you selected specific elements, and then changed the language
of the component, Rational Rhapsody will not deselect these non-matching units. When you
attempt to generate code with such a component, you will receive error messages.
The same principle applies to the Initial Instances specified for the configuration.

Language-specific differences in Rational Rhapsody
The Features window differs from language to language. For each unit in your model, the
appropriate Features window is displayed.

Similarly, the properties displayed reflect the language of the selected unit.

Non-unit elements
If you try moving an element not saved as a unit to a package with a different language, the
language of the element will be changed to that of the receiving package after you confirm that you
want to move the element.

Reverse engineering
The reverse engineering mechanism always uses the language of the active component. When you
use the Reverse Engineering window to add files to reverse engineer, the default file filter used
will reflect the language of the active component, for example, *.java if the active component is
associated with Java.
270 User Guide

Project migration and multi-language projects
Miscellaneous issues
� Rational Rhapsody API: The interface IRPUnit allows recursive changing of unit

language.
� ReporterPLUS can query the language of an element.
� The Rational Rhapsody internal reporter shows the language of each saved unit.
� XMI: Language of each unit is exported and imported.
� Graphic Editor: Changes to language of a unit do not affect the depiction of the unit in the

graphic editor. For example, if you change the language of a template class to C, it will
still look like a template class in the graphic editor.

� DiffMerge checks for language differences.
� PredefinedTypes package: These packages are language-dependent. When you create a

unit whose language differs from that of the Rational Rhapsody version being used, the
relevant package of predefined types for that language will be loaded.
Rational Rhapsody 271

Rational Rhapsody projects
Domain-specific projects and the NetCentric profile
The Rational Rhapsody NetCentric Profile builds domain-specific projects for a Service Oriented
Architecture (SOA) or to support Network Centric Warfare (DoDAF) Applications. In SOA
projects, developers begin by writing the interface specifications using Web Service Description
Language (WSDL), a complex XML schema.

Unfortunately, WSDL requires that the data types be fully defined and contain legal XML types.
WSDL also requires the developers to define the interface calls in terms of where the services are
to be deployed (bindings and namespaces). These details are not always known during the initial
design phase. The Rational Rhapsody NetCentric profile helps the engineer bridge this gap from
the design concepts to the WSDL file production.

SOA or NetCentric application model roles
SOA and NetCentric application models have two roles:

� Service provider or the service itself
� Service consumer is the user of the service

Service consumers
A service consumer can be any actor, application, or any other receiver of the deployed service.
For example, a weather station might receive the weather information provided by a SOA
application.

Using the platform independent WSDL files for application output, service users gain access to the
output more easily than from output in a proprietary format.

Service provider
The service provider is the code that implements the service. The service provider includes the
interface specification (also called the service contract) and the related WSDL file. The service
provider also includes everything necessary to produce the WSDL file:

� Service contract (interface class)
� Realization of this contract (classes that implement the service)
� Data types
� WSDL file.
272 User Guide

Domain-specific projects and the NetCentric profile
Rational Rhapsody uses the stereotype <<servicePackage>> to indicate a UML/SysML package
that contains the model elements necessary for creating the WSDL file that includes the package
with the service provider and the service contract. The stereotypes <<serviceProvider>> and
<<serviceContract>>, respectively, indicate these classes. To define the data types, the
WSDL files also include XML schemas and XSDs.

This Block Definition diagram example shows a typical collaboration in which the stereotypes
indicate the service contract, service consumer, and service provider.

Collaborations in a top level or System of Systems model allow the systems engineers to confirm
the data types, interfaces, and basic block behavior before generating the WSDL file. Executing
the model ensures that both sides of the interface interpret messages the same way. This avoids
consistency errors that, otherwise, might not be discovered until late in the integration phase.
Rational Rhapsody 273

Rational Rhapsody projects
The systems engineers and designers might model data types using the SysML units and value
types, as shown the Block Definition diagram example (from Rational Rhapsody System samples
“NetCentricWeatherService” project):

The Generate WSDL Specification tool uses these data types to create the schema information
within the WSDL file.
274 User Guide

Domain-specific projects and the NetCentric profile
Creating a NetCentric project

The NetCentric profile is available as a standard profile selection in the following Rational
Rhapsody editions:

� Developer edition for C, C++, Java, and Ada projects
� Architect for Systems Engineers edition
� Architect for Software edition

To create a NetCentric project from one of these editions:

1. With your Rational Rhapsody edition running, create the new project by either selecting
File > New, or clicking the New project button on the main toolbar.

2. Replace the default project name (Project) with <your project name> in the Project
name field. Enter a new directory name in the In folder field or Browse to find an
existing directory.

3. Select the NetCentric Project Type.

4. You might want to select a different option for the Project Settings.

5. Click OK. If the directory does not exist, Rational Rhapsody asks if you want to create it.
Click Yes to create the new project directory.

To add the NetCentric profile manually to an existing project:

1. With the Rational Rhapsody project open, choose File > Add Profile to Model.

2. In the Add to Profile Model window, select the Package (*.sbs) file for the NetCentric
profile. (If the NetCentric.sbs file is not displayed in the Profiles directory, the project
you have created is not compatible with the NetCentric profile. The SysML project profile
is often used with the NetCentric profile.)

3. Click Open to add the profile to your project.

Creating a service contract to export as WSDL

In order to create a service contract to export as a WSDL file, you must assign the set of
NetCentric stereotypes to the service package in your Rational Rhapsody project.

To create a service contract to export as WSDL:

1. In a Rational Rhapsody NetCentric project, define an interface block or class. This
interface contains the methods that define the service that is called by the service
consumer.

2. In the browser, right-click the interface block or class and select Features.
Rational Rhapsody 275

Rational Rhapsody projects
3. In the Stereotype field, select <<New>> and enter serviceContract. Click OK.

4. Create the block or class that realizes the serviceContract. Apply the stereotype
<<serviceProvider>> to it.

5. Add a standard port to the <<serviceProvider>>. Set the port to provide the service
contract interface. Stereotype this port <<servicePort>>.

6. Define all of the data types needed by the interface.

7. Set the stereotype on the package to <<servicePackage>>.

Exporting a WSDL specification file

To export a WSDL specification file from your Rational Rhapsody project:

1. Open the NetCentric project containing the WSDL specification. It is stored as a
<<wsdlDefinitionDocument>> stereotyped package.

2. Select that package in the project browser.

3. Select Tools > Generate WSDL Specification.

4. Enter the name and location for the output of WSDL specification file. Specify the target
output file with the .wsdl extension.

5. Click OK.

When the export is complete, you can open the WSDL file in any editor.

Importing a WSDL specification

To import a WSDL specification file into a Rational Rhapsody project:

1. With the Rational Rhapsody project open, choose Tools > Import WSDL Specification.

2. Select the previously generated WSDL file and click Open.
276 User Guide

Schedulability, Performance, and Time (SPT) profile
Schedulability, Performance, and Time (SPT) profile
The SPT profile (also known as the UML Real-Time profile) is a standard UML profile adopted by
the OMG. The profile has the following uses:

� Enable the construction of models that could be used to make quantitative predictions
regarding these characteristics.

� Facilitate communication of design intent between developers in a standard way.
� Enable interoperability between various analysis and design tools.

The SPT.rpy model provided in <Rational Rhapsody installation
path>\Share\Profiles\SPT is the Rational Rhapsody implementation of the standard profile that
you can use in any Rational Rhapsody model.

Note
This functionality can only be used with Rational Rhapsody in C++.

Manually adding the SPT profile to your model

If you have not created your project using the SPT profile as the Type, you can add the SPT profile
to your model:

1. Open your Rational Rhapsody model.

2. Choose File > Add Profile to Model.

3. On the Add Profile to Model window, select the SPT.sbs unit.

4. Click Open.

5. On the Add To Model From Another Report window, select the As reference radio button.

6. Click OK.

Rational Rhapsody adds the SPT profile as a reference profile to your model. As a result, the
stereotypes and tagged values of the profile become available.
Rational Rhapsody 277

Rational Rhapsody projects
Using the stereotypes and tagged values

1. Select the model element (for example, a class named MyClock).

2. Assign the stereotype you want to the model element (for example, RTclock).

3. Set tag values through the Tags tab of the Features window for the element.

Changing the profile

To change the profile, edit the SPT model.

Note
Deleting a stereotype or changing its metaclass might result in unresolved references in the
models using it (that is, the models that are referencing the SPT model and have elements
with this stereotype).
278 User Guide

Rational Rhapsody with IDEs
Rational Rhapsody with IDEs
You can connect Rational Rhapsody to another development tool or IDE (integrated development
environments) to use features of both. You can use Rational Rhapsody with these IDEs:

� Eclipse
� Visual Studio
� Tornado

Rational Rhapsody provides some standard menu commands to setup and work within both
environments.

IDE options

Use the Code > IDE Options on the Rational Rhapsody menu to set the ports to receive and send
messages for the IDE and Rational Rhapsody and synchronize the IDE with Rational Rhapsody.

Locating Rational Rhapsody elements in an IDE

If you want to locate an element from a Rational Rhapsody project in another development tool
(IDE), select the element in Rational Rhapsody and select Edit > Locate in IDE or press
Ctrl+Alt+K. The program, such as Eclipse or Visual Studio, opens and displays the element in its
project environment.

Opening the IDE

To work in the IDE, open Rational Rhapsody and choose Code > Open IDE. Your configured
IDE, such as Eclipse or Visual Studio, launches.

Creating an IDE project

After you have created a configuration for the IDE in your Rational Rhapsody project, you can
create a project in the IDE. Right-click the IDE configuration and select Create IDE Project.
Your configured IDE launches.
Rational Rhapsody 279

Rational Rhapsody projects
Using the Rational Rhapsody Workflow Integration
with Eclipse

The Rational Rhapsody plug-in for Eclipse has two implementations:

� Rational Rhapsody Workflow Integration allows the software developer to work in
Rational Rhapsody and use some Eclipse features through Rational Rhapsody menu
commands. This integration can be used for C and C++ development in either Windows
or Linux environments. Both Eclipse and Rational Rhapsody must be open when the
developer is using this integration.

� Rational Rhapsody Platform Integration permits developers to work on a Rational
Rhapsody project completely within Eclipse. Rational Rhapsody does not need to be open
for this implementation. This integration can be used for C, C++, or Java development in
a Windows environment only.

The Rational Rhapsody Workflow integration with Eclipse allows software developers to work on
Rational Rhapsody C or C++ projects in Eclipse version 3.3 or WindRiver’s Eclipse Workbench
2.6 to perform these tasks:

� Create a new IDE (integrated development environment) configuration in Rational
Rhapsody in order to perform the following tasks:

– work in Eclipse on a new Rational Rhapsody project
– attach an existing Rational Rhapsody project to an existing Eclipse project

� Import legacy Eclipse models into Rational Rhapsody UML models
� Make changes in Eclipse and rebuild the project automatically in both Rational Rhapsody

and Eclipse
� Use the debugging facilities in Rational Rhapsody and Eclipse in a synchronized manner
� Use Rational Rhapsody reverse engineering with an active Eclipse configuration
� Disconnect an Eclipse project from the associated Rational Rhapsody configuration
280 User Guide

Using the Rational Rhapsody Workflow Integration with Eclipse
Converting a Rational Rhapsody configuration to Eclipse

If you created a configuration in Rational Rhapsody, but now you want to convert it into an Eclipse
configuration:

1. Open Rational Rhapsody and in the Rational Rhapsody browser, right-click the
configuration that you want to convert to be an Eclipse configuration and then select the
Change to > Eclipse Configuration.

2. From this point, the process is the same as creating a new Eclipse configuration.

� Outline
� Navigator

Importing Eclipse projects into Rational Rhapsody

Rational Rhapsody makes it easy for you to import your Eclipse projects quickly. When you
import an Eclipse project, all elements contained in the project are reverse engineered and added
as elements of a Rational Rhapsody model. The imported elements are added in a new package
which uses the name of the original Eclipse project. To import an Eclipse project:

1. Create a new Rational Rhapsody project, or open an existing Rational Rhapsody project.

2. Select Tools > Import from Eclipse.

3. If Eclipse is not currently open, Rational Rhapsody will launch it (after first asking you to
confirm that you want Eclipse opened), and the Export Rhapsody Model window will be
displayed in Eclipse. (If the window does not appear, check the port settings used; select
Code > IDE Options from the main Rational Rhapsody menu.)

4. Select the projects that you would like to export to Rational Rhapsody. (If an Eclipse
project has already been imported into Rational Rhapsody, it will not appear in the list of
available Eclipse projects.)

5. If you want the elements in the project to be added to the Rational Rhapsody model as
external elements, select Export as External.

6. If you want to fine-tune the reverse engineering options that will be used for importing
your Eclipse project, select Open Reverse Engineering options dialog in Rhapsody
before export.

7. Click Finish. All of the elements in the Eclipse project will be imported into the open
Rational Rhapsody project.

8. When the import process has been completed, look in the Rational Rhapsody browser for
a package that has the same name as the Eclipse project you imported. You will also
Rational Rhapsody 281

Rational Rhapsody projects
notice that a new component has been added to your Rational Rhapsody model,
containing an Eclipse configuration named after your Eclipse project.

Creating a new Eclipse configuration

If the developer or designer prefers to use the Eclipse IDE (integrated development environment)
to work on a project previously created in Rational Rhapsody:

1. Display the existing Rational Rhapsody C or C++ project in Rational Rhapsody.

2. In the Rational Rhapsody browser, right-click the Component in the Rational Rhapsody
project for which you want to create an Eclipse configuration and then select Add New >
Eclipse Configuration. The system displays a window, asking whether or not the user
wants to launch the IDE if it is not running.

Note: If IDE is already running, be certain that the ports for Eclipse and Rational
Rhapsody match by selecting the Code > IDE options from the Rational
Rhapsody menu and making any changes required. If the ports do not match, a
new IDE might open even if the user meant to switch to the running IDE!

3. For the WindRiver version of Eclipse, the Workspace Launcher displays so that you can
select a directory for your Eclipse project workspace. Click OK to save the selected
directory.

4. Then the Rhapsody Project Wizard displays. It lists the name of the Rational Rhapsody
project and the component you selected for the new Eclipse configuration. Select whether
you want to create a New Project or an Existing Project. Click Finish.

5. The New Project window displays Wizard types. However, currently only the vXWorks
Downloadable Kernel Module Project is supported. Select it and click Next.

6. Type a Project name and select a workspace in this window. Complete setting up the
Workbench project, as described in the Workbench documentation.

7. The Application Development interface displays the Eclipse configuration of the selected
Rational Rhapsody component.

8. Back in Rational Rhapsody, the browser now contains the new Eclipse configuration.
282 User Guide

Using the Rational Rhapsody Workflow Integration with Eclipse
Troubleshooting your Eclipse installation with Rational Rhapsody

If after installing Eclipse, working to set up a project as described previously, and you have not
been successful, do the following troubleshooting to check your installation:

1. Check the path to Eclipse in the rhapsody.ini file to be certain that it is the actual path on
your system. The following example shows a typical path:

[IDE]
EclipsePath=C:\eclipse\eclipse.exe

Note: If it does not match your path to Eclipse, make the necessary changes.

2. Check to be certain that the c:\cygwin\bin is in your environment PATH variable.

3. Start Rational Rhapsody and create or open a project.

4. Right-click the component and choose Add New > Eclipse Configuration.

5. You are prompted for a workspace. Then the Rhapsody Project Wizard asks you to either
specify a project or create a new one. Click Next.

6. Specify the new project name and click Next.

7. Click Finish.

8. If the program asks if you want to associate with a C++ Perspective, click Yes. Now the
Eclipse CDT IDE is open and linked to your Rational Rhapsody project.

9. Switch to Rational Rhapsody and make sure your Eclipse configuration is active. Generate
code.

10. Right-click a model element in the Eclipse version of the code and select Locate in
Rhapsody. This change should trigger a roundtrip in the Rational Rhapsody version of
the code if the change is not one of the Workflow integration with Eclipse limitations.
Rational Rhapsody 283

Rational Rhapsody projects
Switching between Eclipse and Wind River Workbench

When Rational Rhapsody launches an Eclipse-based IDE, whether the generic Eclipse or Wind
River Workbench, it checks the rhapsody.ini file to determine the path of the IDE.

Then entry that stores this information is called EclipsePath and it is located in the section [IDE].
During installation, you will be asked to provide the path for Eclipse, and this information is
copied to the rhapsody.ini file, for example:

EclipsePath=l:\windriver\workbench-2.4\wrwb\2.4\x86-win32\bin\wrwb.exe

If you want to switch between the generic Eclipse and Wind River Workbench, change the value of
this entry in the rhapsody.ini file.

Rational Rhapsody tags for the Eclipse configuration

After creating an Eclipse configuration, the Rational Rhapsody model elements are coupled with
an Eclipse-based project. The definition of the Eclipse project is stored in Rational Rhapsody in
these Tags (displayed in the Rational Rhapsody browser):

� IDEName is the name of the type of integrated development environment (for example,
Eclipse, Workbench).

� IDEProject is the project name entered while creating the Eclipse configuration.
� IDEWorkspace is the workspace directory for the Eclipse-based project.

The values of the tags are set automatically after the IDE project is created or mapped to the
configuration. You do not need to modify the values of these tags, unless you change the IDE
workspace location in the file system. If you make that change, then you must update the
IDEWorkspace tag manually. For instructions to make this change if necessary, see Configuring
Rational Rhapsody for Eclipse.

Configuring Rational Rhapsody for Eclipse

To examine the features of an Eclipse configuration in Rational Rhapsody:

1. Right-click the Eclipse configuration in the Rational Rhapsody browser.

2. Select Features from the menu to display this window. This version of the Features
window contains the IDE, Tags, Properties, and Settings tabs for use with Workbench
projects.

3. The IDE tab provides two important features:

� Open in IDE launches Eclipse with the corresponding project or simply bring the
IDE forward.
284 User Guide

Using the Rational Rhapsody Workflow Integration with Eclipse
� Build configuration in IDE sets the build to be performed via the IDE (by
sending a request to the IDE)

4. However, if you want to perform the build in Rational Rhapsody, use the Settings tab to
make the build selections.

5. Generally, you do not need to change the values for the Tags, unless you change the
IDEWorkspace directory location. In that case, you must make the change to the path in
the window and click OK.

Eclipse workbench properties

To define the configuration and environment for the IDE project, the following Rational Rhapsody
properties are available in the Configuring Rational Rhapsody for Eclipse:

Subject Metaclass Property Name Default Value Description

Eclipse Configuration InvokeExecutable $executable Points to the executable.
Keywords:$executable - the
IDE executable as read from
Rhapsody.ini

Eclipse Configuration InvokeParameters -data $workspace
-vmargs -
DRhpClientPort=$
RhpClientPort -
DRhpServerPort=$
RhpServerPort

Parameters for the command-
line.
Keywords:
$workspace as specified in
the Rational Rhapsody tags
for the Eclipse
configuration.
$RhpClientPort: the port
number that Rational
Rhapsody uses to be a
client to Eclipse, as
specified using Rational
Rhapsody menu Code >
IDE options.
$RhpServerPort: the port
number that Rational
Rhapsody uses to be a server
to Eclipse

Eclipse DefaultEnvironments Eclipse Cygwin The default environment in the
settings tab for generic Eclipse
(CDT) projects

Eclipse DefaultEnvironments Workbench WorkbenchManaged The default environment in the
settings tab for generic Eclipse
(CDT) projects
Rational Rhapsody 285

Rational Rhapsody projects
Editing Rational Rhapsody code using Eclipse

To edit code from Rational Rhapsody using Eclipse:

1. Open the Rational Rhapsody project that contains the Eclipse configuration and make it
the active configuration.

2. Launch Workbench.

3. In Rational Rhapsody, right-click a class and select Edit code in Eclipse from the menu.

4. The implementation of that class is then displayed in Eclipse, and Eclipse automatically
generates a file in DMCA mode in Rational Rhapsody.

5. Edit the code as needed. The updates are recorded in the implementation of the class.

Locating implementation code in Eclipse

If you want to examine the implementation code for model elements or errors using Eclipse:

1. Open the Rational Rhapsody project that contains the Eclipse configuration and make it
the active configuration.

2. Launch Workbench.

3. In Rational Rhapsody, right-click a model element, such as an attribute for a class in the
browser, and select Locate in Eclipse from the menu.

4. The implementation code displays in Eclipse.

Opening an existing Eclipse configuration

After creating Eclipse configurations for the Rational Rhapsody components that you want to
work on in Eclipse, to open Eclipse:

1. Start Rational Rhapsody.

2. Choose Code > IDE Open.

3. Eclipse launches. If the active configuration in the Rational Rhapsody browser is an
Eclipse configuration, that configuration is automatically displayed in Eclipse. If the
active configuration is not an Eclipse configuration, the system displays a window asking
the Eclipse workspace directory. Then it displays the Eclipse configuration in the
workbench interface.

Note: Only those elements that can be edited in Rational Rhapsody can be opened for
editing in Eclipse.
286 User Guide

Using the Rational Rhapsody Workflow Integration with Eclipse
Disassociating an Eclipse project from Rational Rhapsody

To disassociate an Eclipse project from Rational Rhapsody:

1. In the list of C/C++ or Java projects in Eclipse, right-click the project and then select
Rhapsody > Disconnect from Rhapsody.

2. Click OK.

This removes the Rational Rhapsody characteristics from the project.

When you return to Rational Rhapsody, you are asked whether you want to delete the
corresponding Eclipse configuration from your model.

Note
In Rational Rhapsody, if you delete the Eclipse configuration from the model, the Eclipse
project will automatically be disconnected from the model.

Workflow integration with Eclipse limitations

When using the Rational Rhapsody workflow integration with eclipse, operations originating in
Rational Rhapsody and continuing into Eclipse cannot be undone. In addition, the $executable is
mapped to a single IDE. To work with several IDEs, the user must set the properties.
Rational Rhapsody 287

Rational Rhapsody projects
Visual Studio IDE with Rational Rhapsody
You can use Microsoft Visual Studio 2008 (standard or professional edition) with Rational
Rhapsody for C and C++ projects.

Changing an existing Rational Rhapsody configuration to Visual
Studio

To convert your Rational Rhapsody configuration into a Visual Studio configuration:

1. Open a Rational Rhapsody project.

2. Select the active Rational Rhapsody configuration in the browser.

3. Select Change to > Visual Studio Configuration.

Adding a new Visual Studio configuration

To add a Visual Studio configuration to your Rational Rhapsody project:

1. Open a Rational Rhapsody project.

2. Select the Rational Rhapsody configurations in the browser.

3. Select Add New > Visual Studio Configuration.

Creating a new Visual Studio project

After creating a Visual Studio configuration in Rational Rhapsody, you can perform the following
tasks:

� work in Visual Studio on a new Rational Rhapsody project
� attach an existing Rational Rhapsody project to an existing Visual Studio project

To create a new Visual Studio project, right-click the Visual Studio configuration and select
Create IDE Project.
288 User Guide

Co-debugging with Tornado
Co-debugging with Tornado
Rational Rhapsody enables you to connect to the Tornado IDE, download an executable
component to the target, and perform source-code level debugging on the target while
simultaneously performing design-level debugging on the Rational Rhapsody host.

Integration of the Tornado IDE provides a seamless development workflow between Rational
Rhapsody and Tornado through the following functions:

� Downloading and reloading an image directly to the target from Rational Rhapsody.
� Synchronizing Rational Rhapsody breakpoints and Tornado breakpoints:

– Tornado (gdb) is aware of Rational Rhapsody-based breakpoints (break on
state).

– Rational Rhapsody is alerted for source-level breakpoints from Tornado.
This appendix provides information on the following topics:

� Preparing the Tornado IDE

� IDE operation in Rational Rhapsody

� Co-debugging with the Tornado debugger

� IDE properties

Preparing the Tornado IDE

To prepare the Tornado IDE for integration with Rational Rhapsody:

1. Open Tornado, then select Tools > TargetServer > (server name).

2. In Rational Rhapsody, make sure the active configuration is set to VxWorks.
Rational Rhapsody 289

Rational Rhapsody projects
IDE operation in Rational Rhapsody

Rational Rhapsody directly supports the following operations from the IDE submenu of the
Code > Target menu.

� Code > Target > Connect opens a connection to the IDE server. In the case of Tornado,
this is the Tornado target server. This should be applied once during a session. The
connection is disconnected either explicitly or when the project is closed. To connect, you
must specify a target server name, typically <targetName>@<hostName>. Once specified,
the name is stored for future sessions.

� Code > Target > Download downloads an image to the targets through the IDE.
Download is available only if an image exists.

� Code > Target > Run. Runs the executable on the target starting from a designated entry
point (VxMain in Tornado), as specified by the
<lang>_CG::<Environment>::EntryPoint property. You can also run the executable
from the Code menu or toolbar.

� Code > Target > Unload clears the target from all tasks and data allocated by the
application. This is an important feature because RTOSes generally do not have a process
concept that cleans up after termination of the application. Unload is always available and
causes execution to stop if the application is running.

� Code > Target > Disconnect disconnects from the IDE server.

Co-debugging with the Tornado debugger

Before using the Tornado debugger, make sure to compile the generated file using debug flags
(normally -g).

To use the Tornado debugger:

1. In Rational Rhapsody, connect the application by selecting Code > IDE > Connect.

2. Download the application by selecting Code > IDE > Download.

3. Select Code > IDE > Run, or click Run.

4. In the Animation toolbar, select Go Idle (or Go Step several times) so the tRhp task is
created.

Note: You must run the application before attaching a debugger; otherwise, there will
be no tasks to which to attach the debugger.

5. In Tornado, start the debugger by selecting Tools > Debugger.

6. Attach the debugger to the main thread (tRhp) by selecting Debug > attach.
290 User Guide

Co-debugging with Tornado
7. From the debugger, change directory to the generated code directory (using the cd
command in the gdb prompt).

8. From the debugger, load the symbols of the executable (using the add-symbol-file
command at the gdb prompt).

Now you can use gdb to debug the application, set breakpoints, and so on.

Before quitting animation on Rational Rhapsody, you must detach the debugger using Debug >
Detach. Failing to detach the debugger might block the session once Rational Rhapsody attempts
to unload the image.

Note
Do not download the executable to the target using the debugger. Rational Rhapsody will
not function properly if you use this method.

IDE properties

The following Rational Rhapsody properties (under <lang>_CG::<Environment>) determine IDE
settings:

� HasIDEInterface

If this property is set to Cleared, no IDE services are attempted and IDE support is
disabled. If the property is Checked, it is expected that the IDEInterfaceDLL property
points to an IDE adapter that provides connection to the IDE. This property can be used to
disable the IDE connection. By default, it is set to Checked only for the VxWorks
environment.

� IDEConnectParameters

This property specifies the IDE connection parameters. If this property is defined,
Rational Rhapsody will use the connection parameters from this property instead of the
.ini file.

� IDEInterfaceDLL

This property points to the IDE adapter DLL. Currently, there is no reason to modify the
value of this property.
Rational Rhapsody 291

Rational Rhapsody projects
Creating Rational Rhapsody SDL blocks
Systems engineers often use the System Design Language (SDL) to model discrete (event driven)
algorithms. The SDL Suite also generates C code for its models. Rational Rhapsody in C++ is
integrated with the SDL Suite (version 5.0 or greater) to enable system simulation based on
Rational Rhapsody and the SDL Suite’s discrete behavior. Engineers can import an SDL model
into Rational Rhapsody. Rational Rhapsody manages the imported model as a class, stereotyped
with the SDLBlock.

Note
The naming convention for an SDL signal adds the “_” prefix to the signal’s original name.
This prefix can be modified by changing the SDLSignalPrefix property in the
Model::Profile group.

By default the SDLBlock uses behavioral ports. This configuration can be changed to use a rapid
port instead by selecting the UseRapidPorts property for the package. This property is also stored
in the Model::Profile group that you access from the Properties tab of the Features window.

Note
The SDL models you import into Rational Rhapsody cannot contain more than a single
instance of any given process.

To import an SDL model into Rational Rhapsody:

1. In the SDL Suite, open the SDL model. Mark the System level rectangle.

2. From the main menu select Generate > Make.

3. Select the CAdvanced Code Generator configuration.

4. Select the Generate environment header file check box.

5. Activate the “Make” to generate the model C file (modelname.c) and environment header
file (modelname.ifc).

6. Select SDLAccess Code Generator configuration and activate the Full Make to generate
the model SDL_Access file (modelname.sac).

7. Open Rational Rhapsody and choose File > New.

8. Select the SDL_Suite for the project Type.

9. Create a new block/class and select the SDLBlock class stereotype.

10. Right-click this block and select Import/Sync SDL Model.
292 User Guide

Creating Rational Rhapsody SDL blocks
11. Enter the locations of the SDL model files you created previously, as shown in the
following example:

12. Click Import/Sync.

13. To connect the Rational Rhapsody block to an SDLBlock, create a user class with
behavior ports and a statechart. The statechart controls the user class’ sending and
receiving of events to and from the SDLBlock.

14. Create objects from the SDLBlock and the Rational Rhapsody block and connect their
ports via links using the interfaces that where created by the import.

15. To create an executable, perform a code generation and build on the entire Rational
Rhapsody model. Code generation scope should contain only one SDLBlock.

Note
Since the SDLBlock is imported as a “black box,” no animation is provided with this block.
There is an option to view the behavior of the SDLBlock as a wrapper via a sequence
diagram. This can be done by checking the AnimateSDLBlockBehavior property, located in
the Model::Profile property group.
Rational Rhapsody 293

Rational Rhapsody projects
294 User Guide

Model elements
The Rational Rhapsody browser lists all the design elements in your model in a hierarchical,
expandable tree structure, enabling you to easily navigate to any object in the model and edit its
features and properties. The Rational Rhapsody browser also takes part in animation by displaying
the values of instances as they change in response to messages and events.

To help you manage large and complex Rational Rhapsody projects, and to be able to focus on and
easily access model elements of particular interest to you, you can filter the Rational Rhapsody
browser or create other browser views.

Browser techniques for project management
The Rational Rhapsody browser displays a list of project elements organized into folders. You can
choose to have all elements displayed in a single folder, regardless of their position in the model,
or have them displayed in subfolders based on the model hierarchy. The browser provides several
views so you can filter the display of elements by different design categories. The project is the
top-most folder in the Rational Rhapsody browser. It contains the following top-level folders:

� Components, which contains one or more configurations and files
� Packages, which contains actors, classes, events, globals, diagrams, types, use cases, and

other packages
� Diagrams, which contains any of the UML diagrams that Rational Rhapsody supports

You can organize large projects into package hierarchies that can be viewed easily by nesting
packages, components, and diagrams inside other packages, and nesting classes and types inside
other classes.

Because a Rational Rhapsody project can get quite large and complex, you might want to filter
what you see on the Rational Rhapsody browser or otherwise create other browser views.
Rational Rhapsody 295

Model elements
Opening the Rational Rhapsody browser

By default, the Rational Rhapsody browser is displayed the first time you open a project. In
subsequent work sessions, Rational Rhapsody consults your workspace file (<project
name>.rpw) to determine whether to open the browser when it opens a project. For more
information on workspaces, see Controlling workspace window preferences.

To open the Rational Rhapsody browser manually, use any of the following methods”

� Click the Show/Hide Browser button on the Rational Rhapsody Windows toolbar.
� Select View > Browser.
� Press Alt+0 (zero).

Browser display options

The browser has two display modes: Flat and Categories. In Flat mode, only the components,
packages, and diagrams within each package have separate categories. In Categories mode, all
elements are organized into categories based on their position in the project hierarchy. The default
display mode is Categories mode.

The display mode for the project is stored in the Browser::Settings::DisplayMode property.Set
the property to Meta-class for Categories mode or Flat for Flat mode.

Setting the Organize Tree mode to flat
To hide the categories in the browser:

1. Position the cursor in the Rational Rhapsody browser.

2. Choose View > Browser Display Options > Organize Tree > Flat.

Expanding a category while in Flat mode reveals a flat list of elements of all types included under
that category. For example, expanding a package category reveals a simple list of the elements
contained in the package, such as actors, classes, and events, arranged alphabetically by name.

Setting the Categories mode
In Categories mode, each metatype displays in its own category. Individual items, such as
components, diagrams, packages, classes, and actors, are displayed under the appropriate category.

1. Position the cursor in the Rational Rhapsody browser.

2. Choose View > Browser Display Options > Organize Tree > Categories.
296 User Guide

Browser techniques for project management
Displaying model element labels
To display the labels defined for model elements (instead of their names), choose View > Browser
Display Options > Show Labels.

Showing the implementation arguments
To display the implementation arguments in the browser, choose View > Browser Display
Options > Show Implementation Argument.

Setting the project scope
You might want to divide the system into multiple components, so that each component represents
a physical subsystem. To select the model elements for each component:

1. In the Components project folder, right-click the component.

2. Select Features and the Scope tab

3. To select all of the elements in the component, click the All Elements radio button.

4. To select individual elements to be included in the component, click the Selected
Elements radio button and click the check boxes of the elements, as shown below.

If you select a check box for an element, all of the elements that it contains are included in the
component scope (for example, all of the classes in a package). If you want to be able to select sub-
elements individually, right-click the check box of the parent element.
Rational Rhapsody 297

Model elements
Showing the active component elements within the project scope
To show the active component elements in bold type in the browser:

1. Open the Features window. Choose File > Project Properties.

2. Navigate to the General::Model::HighlightElementsInActiveComponentScope
property and select the check box.

3. Click OK. The elements of the active component within the scope are shown in bold type,
as shown in the following figure:
298 User Guide

Browser techniques for project management
Basic browser icons

The icons before elements listed in the Rational Rhapsody browser provide additional information
about the elements so that you can quickly identify items you want to access. The following table
summarizes the standard icons for the Rational Rhapsody browser, but not the icons exclusive to
the speciality profiles, such as DoDAF. See the sections describing special features for the browser
icons that are available.

Icons Name (if
available) Description

Folder Used to group and organize project elements.

Folder that is a
unit

The square in the lower left corner indicates that this folder is a unit. For information,
see Using project units.

Folder of
hyperlinks

For more information, see Hyperlinks.

Component A physical subsystem in the form of a library or executable program or other
software components such as scripts, command files, documents, or databases.

Component that
is a unit

The square in the lower left corner indicates that this component is a unit.

Active
component

Component that is a unit and is set as the active component with a red check. To
be the active component, a component must be either an Executable or a Library
build type. For more information, see Active component.

Executable application or a library

Actor Represents an end user of the system, or an external component that sends
information to or receives information from the system. For more information, see
Actors.

Class Defines the attributes and behavior of objects. For more information, see Classes.

Class with a statechart

Class attributes

Class operations

File Indicates an imported file.

Part A component or artifact of a system.
Rational Rhapsody 299

Model elements
Event An asynchronous, one-way communication between two objects (such as two
classes). For more information, see Events and operations.

Use case Captures scenarios describing how the system could be used. For more information,
see Use cases.

SuperClass Marks a class that inherits from another class. For more information, see
Inheritance.

Dependency Notes the relationship of a dependent class to a model element or external system
that must provide something required by the dependent class. For more information,
see Dependencies.

Constraint Supplies information about model elements concerning requirements, invariants in a
text format.

Stereotype A type of modeling element that extends the semantics of the metamodel.
Stereotypes must be based on certain existing types or classes in the metamodel.
For more information, see Stereotypes.

Type A stereotype of class used to specify a domain of instances (objects) together with
the operations applicable to the objects. A type cannot contain any methods. For
more information, see Types.

State An abstraction of the mode in which the object finds itself. It is a condition or situation
during the life of an object during which it satisfies some condition, performs some
activity, or waits for some event. For more information, see States.

Initial
Connector

Marks the default state of an object. For more information, see Transitions.

Controlled file Files produced in other programs, such as Word or Excel, that are added to a project
for reference purposes and then controlled through Rational Rhapsody. For more
information, see Controlled files.

Association Defines a semantic relationship between two or more classifiers that specify
connections among their instances. It represents a set of connections between the
objects (or users). For more information, see Creating associations.

Flow port Represents the flow of data between blocks in an object model diagram (OMD)
without defining events and operations. Flowports can be added to blocks and
classes in object model diagrams.

Profile Applies domain-specific tags and stereotypes to all packages available in the
workspace. For more information, see Profiles.

Requirement Is a wanted feature, property, or behavior of a system. Requirements can be
imported or created in Rational Rhapsody.

Requirement verification

Tags Adds information to certain kinds of elements to reflect characteristics of the specific
domain or platform for the modeled system. For more information, see Use tags to
add element information.

Icons Name (if
available) Description
300 User Guide

Browser techniques for project management
Flow item

Comments Marks text added to a model element.

Table layout Shows the design for a table view of project data.
For more information, see Table and matrix views of data.

Table view Displays project data in the predefined table layout.

Matrix layout Shows the design for a matrix view of project data.

Matrix view Displays project data in the predefined matrix layout.

Activity diagram Shows the lifetime behavior of an object, or the procedure that is executed by an
operation in terms of a process flow, rather than as a set of reactions to incoming
events. For more information, see Activity diagrams.

Collaboration
diagram

Displays objects, their messages, and their relationships in a particular scenario or
use case. This diagram is also a unit. For more information, see Collaboration
diagrams.

Component
diagram

Specifies the files and folders that components contain and defines the relations
between these elements. For more information, see Component diagrams.

Deployment
diagram

Shows the configuration of run-time processing elements and the software
component instances that reside on them. For more information, see Deployment
diagrams.

Object model
diagram

Shows the static structure of a system: the objects in the system and their
associations and operations, and the relationships between classes and any
constraints on those relationships. For more information, see Object model
diagrams.

Requirements
diagram

Shows requirements imported from other software products or created in Rational
Rhapsody and illustrate the relationships between requirements and system
artifacts. For more information, see Creating Rational Rhapsody requirements
diagrams.

Sequence
diagram

Describes message exchanges within your project. For more information, see
Sequence diagrams.

Statechart Defines the behavior of objects by specifying how they react to events or operations.
For more information, see Statecharts.

Structure
diagram

Models the structure of a composite class; any class or object that has an object
model diagram can have a structure diagram. For more information, see Structure
diagrams.

Use case
diagram

Illustrates scenarios (use cases) and the actors that interact with them. The icon in
this example indicates that this use case diagram is also a unit. For more
information, see Use case diagrams.

Icons Name (if
available) Description
Rational Rhapsody 301

Model elements
Rational Rhapsody browser menu options

The large size and nested hierarchy of a Rational Rhapsody project might complicate the process
of locating and working with model elements. To help you navigate the Rational Rhapsody
browser more easily, the browser has a filtering mechanism that you can use to display only the
elements relevant to your current task.

To display the filter menu, click the down arrow button at the top of the browser. Whatever view
you have selected is reflected in the label to the left of the arrow button.

Select one of these views:

Note
If the browser is filtered, you can add only elements that appear in the current view.

� Entire Model View is the default view and it does not use a filter. It displays all model
elements in the browser.

� Use Case View displays use cases, actors, sequence diagrams, use case diagrams, and
relations among use cases and actors.

� Component View displays components, nodes, packages that contain components or
nodes, files, folders, configurations, component diagrams, and deployment diagrams.
This view helps you manage different components within your project and assists with
deploying them.

� Diagram View filters out all elements except diagrams. It displays all the diagrams,
including statecharts and activity diagrams.

� Unit View displays all the elements that are also units. This view assists with
configuration management. For information on creating and working with units, see
Using project units.

� Loaded Units View displays only the units that have not been loaded into your
workspace. For more information, see Loading and unloading units and Unloaded units.

� Requirement View displays only those elements with requirements.
� Overridden Properties View displays only those elements with overridden properties.

To learn about other browser views, see The Browse From Here browser and The Favorites browser.
302 User Guide

Browser techniques for project management
Deleting items from the Rational Rhapsody browser

You can delete items from your project through the main Rational Rhapsody browser and the
Browse From Here browser (see The Browse From Here browser).

To delete an item from your project:

1. Select the items in the main Rational Rhapsody browser or the Browse From Here
browser.

2. Right-click and select Delete from Model or choose Edit > Delete from the main menu.

The system asks for confirmation of the deletion operation.

3. Click OK.

Note
Delete from Model is not available for the Favorites browser (see The Favorites browser).
You can select one or more items and choose Edit > Delete from the main menu to delete
items from the Favorites browser (which is the same if you right-click and select Remove
from Favorites from the pop-up menu). However, this only means that you are removing
items from the Favorites browser. You cannot delete any model elements through the use of
the Favorites browser.
Rational Rhapsody 303

Model elements
The Browse From Here browser
Rational Rhapsody projects can become very large and complex, making it difficult to find
commonly used model elements in the Rational Rhapsody browser. To help limit the scope of the
current view of the browser, you can open a Browse From Here browser that contains the view of
the browser that you want. The Browse From Here browser is similar to the main Rational
Rhapsody browser except that it typically shows a more focused area of the main Rational
Rhapsody browser.

The Browse From Here browser operate in the same manner as the main Rational Rhapsody
browser, and it has the same look-and-feel. You can drag-and-drop between the main Rational
Rhapsody browser and one or more Browse From Here browsers.

The one feature that a Browse From Here browser has that the main Rational Rhapsody browser

does not is the Up One Level button .

For another method to help you view and access only those model elements you are most
interested in, see Rational Rhapsody browser menu options and The Favorites browser. Note that
you can have the main Rational Rhapsody browser, the Favorites browser, and one or more
Browse From Here browser open at any time.

Opening a Browse From Here browser

Note that you can open multiple Browse From Here browsers.

To open a Browse From Here browser, right-click a model element in the main Rational Rhapsody
browser, the Favorites browser, on a diagram, or another Browse From Here browser and select
Browse from here.

Note
Browse From Here is not available for elements inside sequence diagrams and
collaboration diagrams that are view-only elements.

Closing a Browse From Here browser

To close a Browse From Here browser, click the Close button for that browser.

Note that View > Browser is only for the main Rational Rhapsody browser.
304 User Guide

The Browse From Here browser
Navigating a Browse From Here browser

You navigate a Browse From Here Browser as you would the main Rational Rhapsody browser.

To set the root to the parent of the current root, click the Up One Level button . Note that, if
you want, you can click this button as many times as needed to go to the project root folder (so that
your Browse From Here Browser ends up looking exactly like your main Rational Rhapsody
browser).

Deleting items from the Browse From Here browser

Just like the main Rational Rhapsody browser, you can delete items from your project through the
Browse From Here browser. See Deleting items from the Rational Rhapsody browser.

Browse From Here browser limitations

Browse From Here browsers are not saved when you close your project. Meaning that they will
not be opened or available when you open your project the next time.
Rational Rhapsody 305

Model elements
The Favorites browser
You can use the Favorites browser to create a favorites list, which is a list of items (model
elements) that you are most interested in for the opened Rational Rhapsody model. This is
analogous to the favorites functionality for a Web browser. You might find the Favorites browser
most useful with Rational Rhapsody models that are very large, which can make it difficult to find
commonly used model elements in the Rational Rhapsody browser. The Favorites browser should
help you manage large and complex projects by making it easier to focus on and easily access
model elements of particular interest to you.

The following figure shows a sample Favorites browser:

Note
The Favorites browser is available only for the stand-alone version of Rational Rhapsody

While the Favorites browser resembles the Rational Rhapsody browser and has some of its
functionality (for example, double-clicking an item on the Favorites browser opens the applicable
Features window, the view is refreshed when an item is renamed, it can be docked and undocked,
and so on), the Favorites browser has limited functionality (for example, there is no filtering
mechanism, certain commands, such as Cut, Copy, Paste, Add New, and Unit are not available,
and while you can remove items from the Favorites browser, you cannot use it to delete a model
element from your model).

Note
You cannot use the Favorites browser as a replacement for the Rational Rhapsody browser.
306 User Guide

The Favorites browser
Your favorites list is saved in the <projectname>.rpw file, while the visibility and position of the
Favorites browser are saved in the Rhapsody.ini file, so that when you open the project the next
time, your settings will automatically be in place. When multiple projects are loaded, the Favorites
browser shows the favorites list for the active project.

Favorites toolbar

The Favorites toolbar provides tools for the Favorites browser. To display or hide this toolbar,
choose View > Toolbars > Favorites.

The Favorites toolbar includes the following tools:

Showing and hiding the Favorites browser

To show the Favorites browser, use any of the following methods:

� Click the Show/Hide Favorites button on the Favorites toolbar. The button acts as an
on/off toggle.

� Select View > Favorites. This menu command acts as an on/off toggle.
� Add an item to your favorites list. This automatically opens the Favorites browser. See

Creating your Favorites list.
To hide the Favorites browser, use any of the following methods:

� Click the Close button for the browser.

� Click the Show/Hide Favorites button on the Favorites toolbar.
� Select View > Favorites.

Tool
Button Name Description

Show/Hide
Favorites

Toggles between showing and hiding the Favorites browser.

Add to
Favorites

Select a model element and then click this button to add what you selected to your
Favorites browser.
Rational Rhapsody 307

Model elements
Creating your Favorites list

The Favorites browser automatically opens when you add an item to it.

To create your favorites list, use any of the following methods:

� Select a model element in the Rational Rhapsody browser, the Browse From Here

browser, or on a diagram and click the Add to Favorites button on the Favorites
toolbar. (This toolbar should display by default. If it does not, choose View > Toolbars >
Favorites).

� Right-click a model element in the Rational Rhapsody browser or on a diagram and select
Navigate > Add to Favorites.

� Select a model element in the Rational Rhapsody browser, the Browse From Here
browser, or on a diagram and press Ctrl+d.

� With the Favorites browser open, click the Add to Favorites button and then select
one or more items to add from the Select Items to Add to Favorites window. Note that
with this method, if you have a folder structure for your favorites list, you can specify
where to put a new favorite by selecting that folder (or the root node, Favorites) first in
the Favorites browser. Otherwise, your favorite is added to below the non-folder item you
have highlighted on the Favorites browser. See Creating a folder structure for your
Favorites.
308 User Guide

The Favorites browser
� With the Favorites browser open, right-click the root node (Favorites) or a folder and
choose Select Item to Add. See Creating a folder structure for your Favorites.

� Click a model element on the Rational Rhapsody browser, the Browse From Here browser,
or on a diagram and drag it onto the Favorites browser. You can drop the dragged item
anywhere on the Favorites browser. See Re-ordering the items on your Favorites list.

Note
You cannot put a model element on your favorites list more than once. For example, if you
have ElementA in FolderA and you add ElementA to FolderB, the element is removed from
FolderA so that it can reside in FolderB. See Creating a folder structure for your Favorites.

In addition, Add to Favorites is not available for elements inside sequence diagrams and
collaboration diagrams that are view-only elements.

Creating a folder structure for your Favorites

You can have a flat file structure for your favorites or you can have a hierarchical folder structure.

To create a folder structure for your favorites list:

1. Open the Favorites browser (see Showing and hiding the Favorites browser).

2. Wherever you want to add a folder, click the New Folder button or right-click an item
on the Favorites browser and select Add New Folder. At this time, you can name your
folder.

3. Once you have added an item (at any level), you can add a subfolder for that item if you
want.
Rational Rhapsody 309

Model elements
Re-ordering the items on your Favorites list

To re-order the items on your favorites list, use any of the following methods:

� Select an item on your favorites list and click the Move Up or Move Down buttons
on the Favorites browser.

Note: This method is not available for folders.

� Right-click an item on your favorites list and select Move Up In Favorites or Move
Down in Favorites.

Note: This method is not available for folders.

� Select one or more items on your favorites list and drag it to where you want to drop it. An
insertion line displays to indicate where you can drop it.

� To drop an item into an empty folder or the root node (Favorites), move your pointer over
the folder so that it becomes highlighted and then drop your item.
310 User Guide

The Favorites browser
Removing items from your Favorites list

When you remove items from your favorites list, you are only removing them from the Favorites
browser. You are not deleting them from your model.

Note
The item is removed once you execute the action. If you change your mind, you can add the
item to your favorites list again (see Creating your Favorites list).

To remove items from your favorites list, select one or more items on the Favorites browser and
then use any of the following methods:

� Click the Delete Favorites button on the Favorites browser.
� Press the Delete key.
� Right-click and select Remove from Favorites.
� Choose Edit > Delete.

If there are items in a folder to be removed, the system informs you of this and ask if you want to
remove the folder (and its items).
Rational Rhapsody 311

Model elements
Favorites browser limitations

Note the following limitations for the Favorites browser:

� You cannot give a name that is different from the referenced element to a favorite (like you
can for a hyperlink or a favorite in a regular Web browser).

� Since you can put different model elements with the same name on your favorites list,
there is a chance for confusion. To try to avoid this, notice the icon to the left of the model
element name. The icons provide you with a clue as to what type of model item you have
on your favorites list.
312 User Guide

Elements
Elements
Primary model elements within the browser are packages, classes, OMDs, associations,
dependencies, operations, variables, events, event receptions, triggered operations, constructors,
destructors, and types. Primary model elements in OMDs are packages, classes, associations
(links), dependencies, and actors.

Rational Rhapsody in C and C++ classes and their instances are replaced by C equivalent object
types and objects, respectively. Similarly, class constructors and destructors are replaced by
initializers and cleanup operations.

Adding elements

In the browser, you can add new elements to the model either from the Edit menu or from the
pop-up menu. The location you select in the browser hierarchy determines which model elements
you can add. The new element is added in the scope of the current selection.

� Select the project folder or a package, then select Edit > Add New > Component.
� Right-click the project folder or a package and then select Add New > Component.

Note
If the browser is filtered, you can add only elements that appear in the current view.

When you add a new association end, a window opens so you can select the related model element.

1. Right-click the actor and then select Add New > Association End. The Add Association/
Aggregation window opens.

2. From the list, select the actor (or class) with which the current actor needs to
communicate.

3. Click OK.

When you create a new element, Rational Rhapsody gives it a default name. You can edit the name
of your new element by typing a new name directly in name field in the browser, or by opening the
Features window and entering a new name in the Name field.
Rational Rhapsody 313

Model elements
Naming new elements in the browser

To change the automatically generated name of a new element:

1. Click the new element in the browser to open the name for editing.

2. Type the element name that you want to use.

You can also select one of these options for the menu that is available when you are renaming an
element:

� Right to left Reading order
� Show Unicode control characters
� Insert Unicode control character (for example, LRM - Left-to-right mark or RLM - Right-

to-left mark are available in a selection list)

Browser settings

When you open an existing project in a newer version of Rational Rhapsody, the system adds a
compatibility profile in the Settings folder, as shown in this example.

For more information about the Settings folder and profiles, see Profiles.
314 User Guide

Components
Components
A component is a physical subsystem in the form of a library or executable program. It plays an
important role in the modeling of large systems that contain several libraries and executables. For
example, the Rational Rhapsody application has several dozen components including the graphic
editors, browser, code generator, and animator, all provided in the form of a library.

A component contains configurations and files. In the Rational Rhapsody hierarchy, a component
can be saved at the project level, or grouped within a package.

For instructions on editing components, see Component diagrams.

Configurations

A configuration specifies how the component is to be produced. For example, the configuration
determines whether to compile a debug or non-debug version of the subsystem, whether it should
be in the environment of the host or the target (for example, Windows versus VxWorks), and so on.
For more information, see Component diagrams.

Configuration files

Configurations manifest themselves as files. The ability to map logical elements to files enables
you to better specify implementations for code generation, and to capture existing
implementations during reverse engineering. Just as it might be desirable to map several classes
into a single package, so might it be desirable to map one or more packages into a single
subsystem. You control where to generate the source files for the classes (or packages) in a given
subsystem, either into a single directory or separate directories.

� Which logical elements, or classes, to map into which files
� The order of the classes in the file
� Verbatim code chunks, such as macros and #define statements, that should be included

in generated source files
� Whether to map each class to its own specification and implementation files, or to map

multiple classes to the same files
� Whether specification and implementation files generated for a class, or set of classes,

have the same name or different names
� Dependencies between classes
� File scope definitions for user-defined code

For more information on files, see Component diagrams.
Rational Rhapsody 315

Model elements
Packages
A Rational Rhapsody project contains at least one package. Packages divide the system into
functional domains, or subsystems, which can consist of objects, object types, functions, variables,
and other logical artifacts. Packages do not have direct responsibilities or behavior; they are
simply containers for other objects. They can be organized into hierarchies, providing the system
under development with a high level of partitioning. When you create a new model, it will always
include a default package, called “Default,” where model elements are saved unless you specify a
different package.

These elements are described in detail in subsequent sections.

Package design guidelines

Packages provide a way to group large systems into smaller, more manageable subsystems.
Packages are primarily a means to group classes together into high-level units, but they can also
contain diagrams and other packages.

When creating packages, follow these basic guidelines:

� Do not allow packages to become unmanageably large. Break them into subpackages.
� Limit dependencies across packages. One way to do this is to use interfaces in their own

packages.

Classes (C++/J) Collaboration diagrams

Comments Sequence diagrams

Constraints Structure diagrams

Dependencies Object model diagrams

Flow charts Statecharts

FlowItems Tags

Flows Stereotypes

Functions (C/C++) Events

Hyperlinks Component diagrams

Object _types (C) Activity diagrams

Objects Actors

Packages Deployment diagrams

Receptions Files

Requirements Use case diagrams

Types (C/C++) Nodes

Variables Use cases
316 User Guide

Packages
Creating a package

To create a package:

1. Right-click the project or the package category, then select Add New > Package.

2. Edit the name of the package using the package label in the browser.

3. Double-click the new package to open the Features window.

4. Select a stereotype for the package (if necessary) from the Stereotype list.

5. Select an object model or use case diagram as the main diagram for a package from the
Main Diagram list.

6. Enter a description for the package in the Description box.

In the generated code, this text becomes a comment located after the #define statements
and before the #include statements at the top of the .h file for the package.
Rational Rhapsody 317

Model elements
Using functions

The Functions category lists global functions, which are visible to all classes in the same package.

Creating a global function
1. Right-click the name of a package or the Functions category in the browser.

2. Select Add New > Function. A new function displays under the Functions category of the
selected package.

3. Edit the name of the new function in the browser.

Changing what a function returns
When a function returns an «existing type», it is returned by type pointer. You can set if the
function returns by "value"(), by "pointer"(*) or by "reference"(&).

To change what a function returns:

1. Right-click the function/operation and choose Features to open the Features window.

2. On the Properties tab, find the CPP_CG::Type::ReturnType property.

3. Change the value to any of the following choices:

– $Type* to return by "pointer"(*)
– $Type to return by "value"()
– $Type& to return by "reference"(&)

4. Click OK.

Using objects

Objects are instances of classes in the model and can be used by any class. They are typically
created in OMDs, but can be added from the browser. For instructions on creating an object in an
OMD, see Object model diagrams.

To create an object

1. Right-click the name of a package or the Objects category in the browser.

2. Select Add New > Object. The new object is displayed in the browser with the default
name object_n.

3. Optionally, rename the new object.
318 User Guide

Packages
Using variables

Global variables are visible to all classes in the same package.

Note
Exercise caution when using global variables. If a global variable is used for a counter in a
shared library and multiple threads or processes can access the counter, inaccurate results
might occur if the global counter is not protected by a mutex or semaphore.

Creating a variable
1. Right-click the name of a package or the Variables category in the browser.

2. Select Add New > Variable.

The new global variable is displayed in the Variables category.

Variable ordering in C++
Consider the case where your model has variables defined directly in a package. These variables
define various constants (such as PI and DEGREES_PER_RADIAN). Some of these variables are
defined in terms of others, such that the dependent variable must be declared before the others for
the application to compile. However, Rational Rhapsody will not allow you to override the default
alphabetical order of the variable declarations.

There are at least two ways to solve this problem:

� Define your constants using types. For example, assume a type named PI with the
following declaration:

const double %s = 3.14

In this syntax, the %s is replaced with the name PI.
A DEGREES_PER_RADIAN type would have the following declaration:

const double %s = 180.0 / PI

In this syntax, the %s is replaced with the name DEGREES_PER_RADIAN.

Because Rational Rhapsody allows you to change the order of the type declarations
such that PI is generated first, the compilation is successful.

� Create a variable called PI of type const double with an initial value of 3.14. Create a
second variable called DEGREES_PER_RADIAN of type const double with an initial value
of 180.0 / PI. This will not compile because Rational Rhapsody generates the
DEGREES_PER_RADIAN variable before the PI variable.

On the DEGREES_PER_RADIAN variable, set the
CPP_CG::Attribute::VariableInitializationFile property to Implementation to
Rational Rhapsody 319

Model elements
initialize the variable in the implementation file. The default setting (Default) causes the
initialization to be put in the specification file if the type declaration begins with const;
otherwise, it is placed in the implementation file.

Now, your application will compile correctly.

Dependencies

Dependencies are relations in which one class (the dependent) requires something provided by
another (the provider). Rational Rhapsody supports the full dependency concept as defined in the
UML. Dependencies can exist between any two elements that can be displayed in the browser.
Dependencies can be created in diagrams or in the browser.

Constraints

UML constraints provide information about model elements concerning requirements, invariants,
and so on. Rational Rhapsody captures them in text format. For more information, see Annotations
for diagrams.

Classes

Classes define the attributes and behavior of objects. Classes can also be created in the object
model or collaboration diagram editors. For more information, see Creating classes.

Types

The Types category displays user-defined, rather than predefined, data types. Rational Rhapsody
enables you to create types that are modeled using structural features instead of verbatim,
language-specific text.

Receptions

A reception specifies the ability of a given class to react to a certain event (called a signal in the
UML). Receptions are inherited. If you give a trigger to a transition with a reception name that
does not exist in the class but that exists in the base class, a new reception is not created.

Events

An event is an asynchronous, one-way communication between two objects (such as two classes).
Events inherit from the OMEvent abstract class, which is defined in the Rational Rhapsody
framework. Events can be created in sequence diagrams, collaboration diagrams, statecharts, or
the browser.
320 User Guide

Packages
Actors

An actor represents an end user of the system, or an external component that sends information to
or receives information from the system. Actors can be created in UCDs, OMDs, collaboration
diagrams, and the browser.

Use cases

A use case captures scenarios describing how the system could be used. It usually represents this
scenario at a high conceptual level. Use cases can also be created in the use case diagram editor.

Nodes

A node represents a computer or other computational resource used in the deployment of your
application. For example, a node can represent a type of CPU. Nodes store and execute the run-
time components of your application. In the model, a node can belong only to a package, not to
another node (that is, nodes cannot be nested inside other nodes).

Files

A file is a graphical representation of a specification (.h) or implementation (.c) source file. This
new model element enables you to use functional modeling and take advantage of the capabilities
of Rational Rhapsody (modeling, execution, code generation, and reverse engineering), without
radically changing the existing files. For more information, see Configuration files.
Rational Rhapsody 321

Model elements
Diagrams
A project has separate categories in the browser for object model, sequence, use case, component,
deployment, structure, and collaboration diagrams. Additionally, all of these diagrams (except
collaboration diagrams) can be grouped under a package.

Note: Statecharts and activity diagrams are displayed within the class they describe.
To add new statecharts and activity diagrams, select the class name in the
browser instead of the package.

Adding diagrams

To add a new diagram to an existing package:

1. Right-click the package in the browser.

2. Select Add New > Package.

3. Type the name of the new package in the highlighted area in the browser.

4. Right-click the new package and select the Add New > Diagrams submenu.

5. Select the type of diagram you would like to add. The New Diagram window opens.

6. Type a name for the new diagram in the Name field.

7. If you want to populate the new diagram automatically with existing model elements.
Click the Populate Diagram check box.

8. Click OK. If you selected Populate Diagram, another window displays to allowing you
to select which model elements to add to the diagram. Rational Rhapsody automatically
lays out the elements in an orderly and easily comprehensible manner.

9. The new diagram displays in the drawing area of the Rational Rhapsody window.
322 User Guide

Diagrams
Locating an element on a diagrams

You can use the Rational Rhapsody browser and any code view window to quickly locate an
element on a diagram by using Locate On Diagram from the pop-up menu.

To use the Rational Rhapsody browser to locate an element on a diagram:

Note: These steps are the same from any code view window, except that you would
select the element from the code. For an example, see Example of Locate On
Diagram from code view.

1. Right-click an element in the Rational Rhapsody browser and select Locate On Diagram.

2. Notice that Rational Rhapsody opens a diagram in which the element (Elevator) is
displayed.

Note: If no diagram exists, a No Diagram Found message displays instead.
Rational Rhapsody 323

Model elements
Example of Locate On Diagram from code view
The following figure shows an example of selecting Locate On Diagram from a code view (as
shown in the lower half of the figure) and the diagram it found (as shown in the upper half of the
figure).

Note: The theBuilding element in the code view half of the following figure is
selected for illustrative purposes. You can place your cursor within the letters
of the element name or that particular line of code and right-click to select
Locate On Diagram.
324 User Guide

Diagrams
Locate On Diagram rules
Locate On Diagram uses the following rules to determine what to open, in order of priority:

1. Open the main diagram of the element if the main diagram is set and does show the
element (as illustrated in the previous figure).

2. For an object, show the main diagram of its class if the main diagram is set and does show
the object.

3. Show a randomly chosen diagram that shows the element.

4. Look for its container only if it does not find the element on the diagram. For example, if
you try to locate an operation, Rational Rhapsody looks for a diagram that shows the class
for the operation.

Locate On Diagram limitations
The ability to use Locate On Diagram from the code view is based on the annotations in the code.
If the code is not annotated, Locate On Diagram will not be able to find the diagram. Note also in
this case that it will not display a No Diagram Found message.
Rational Rhapsody 325

Model elements
Element identification and paths
Packages and classes serve as containers for primary element definitions, in other words, recursive
composites or namespaces. Each primary model element is uniquely identified by a path in the
following format:

<ns1>::<ns2>::...::<nsn>::<name>

In this format, <ns> can be either a package or a class. Primary model elements are packages,
classes, types, and diagrams. Names of nested elements are displayed in combo boxes in the
following format:

<name> in <ns1>::<ns2>::...<nsn>

You can enter names of nested elements in combo boxes in the following format:

<ns1>::<ns2::<name>
326 User Guide

Descriptive labels for elements
Descriptive labels for elements
Element naming conventions often result in complicated and difficult-to-use names for elements,
especially in large projects developed by many different individuals. For that reason, Rational
Rhapsody enables you to assign a descriptive label to an element. A label that does not have any
meaning in terms of generated code, but enables you to easily reference and locate elements in
diagrams and windows. A label can have any value and does not need to be unique, making it
possible for you to use non-English labels, reuse labels, and use labels that include spaces on
Solaris systems.

Once you have assigned a label, Rational Rhapsody uses it in place of the element name in
diagrams and dialogs by default. Reports display both the element name and the element label.

Note
The General::Graphics::ShowLabels property controls whether labels are displayed in
diagrams and dialogs.

Setting properties for Asian languages

The element labels support Asian language text in Chinese, Korean, Taiwanese, and Japanese. The
text input can be through the Features window, browser, or graphic editor, and all non-ASCII
characters are stored as RTF instead of plain text.

To set the project properties to use an Asian language font for text input:

1. Right-click on the project name in the browser and select Features.

2. Select the Properties tab.

3. From the View menu, select Filter and search property names for “font.”

4. Right-click on the font name and description that needs to be changed and click the
browse button to display the Font window.

5. Check to be certain that the font supports the Asian language you want to display. If the
font does not support the required character set, select a new font from the Font list, such
as MS Gothic that supports Kanji characters required for Japanese.
Rational Rhapsody 327

Model elements
6. Also in the Font window, check the Script selection and use the pull-down menu to select
the correct language, as shown in this example.

7. Click OK save the change. Make this same change to any other font properties that are
required.
328 User Guide

Descriptive labels for elements
Adding a label to an element

This chart lists all of the element types that can be labeled.

To add a label to an element:

1. Right-click the selected element in the browser. (You can double-click to display the
Features window immediately.)

2. Select Features from the menu to display the Features window for the selected element.
In this example, the developer is labeling an event.

3. Click the L button next to the Name field. The Name and Label window displays.

4. Type the text in the Label field. The read-only Name field displays the name of the
element for reference.

5. Click OK twice.

Packages Association/Aggregation role names

Use cases Events

Objects Types

Operations Activity Flows

Attributes Constraints

States Comments

Classes Requirements

Actors Files
Rational Rhapsody 329

Model elements
Note
Remember that these labels do not have any meaning in the generated code and are used
only as references to locate elements in diagrams and windows.

Removing a label from an element

To remove a label from an element:

1. Right-click the selected element in the browser. (You can double-click to display the
Features window immediately.)

2. Select Features from the menu.

3. Click the L button next to the Name field to open the Name and Label window.

4. Clear the Label field.

5. Click OK twice.

Alternatively, you can set the label to have the same value as the Name. In this case, the label
becomes tied to the name. In this way, any changes made to the element name also affect the label.

Label mode

Rational Rhapsody differentiates between element names, which are used in the generated code,
and element labels, which are just used to represent elements in a user-friendly way within the
Rational Rhapsody interface.

Ordinarily, you must provide an element name, even if you are providing a label, and the name
must satisfy certain criteria, such as not containing spaces or special characters.

If you would like to deal exclusively with labels, you can select View > Label Mode. In this work
mode, you only have to provide a label for elements. Rational Rhapsody automatically converts
the label to a legal element name, replacing any characters that cannot be used in element names.
The text that you entered as the label will be shown in the browser, graphic editor, and the Features
window.

Note
When Label Mode is selected, Rational Rhapsody ignores the radio button selected under
Display Name in the Display Options window. Label Mode is a per-user setting. If the
project is opened on a different user's computer, it is displayed in normal mode unless that
user has selected Label Mode.
330 User Guide

Modify elements
Modify elements
You can move, copy, rename, delete, and re-order elements. In addition, you can display
stereotypes of model elements, create graphical elements, and associate an image file with a model
element.

Moving elements

To move elements, use any of the following methods:

� You can move all elements within the browser by dragging-and-dropping them from one
location to another, even across packages.

� You can move a group of highlighted items to a new location in the project by dragging
and dropping them into that location in the browser.

� In addition, you can drag-and-drop packages, classes, actors, and use cases from the
browser into diagrams.

� If code has already been generated for a class or package, you can open the code by
dragging and dropping the class or package from the browser into an open editor, such as
Microsoft Word™, Visual C++, Borland C++, or Notepad. If the code exists, the standard
“+” icon displays as you drag the element into the editor. If the “+” icon does not appear,
most likely code has not yet been generated for the element. If the element has both a
specification and an implementation file, both files are opened.

See Smart drag-and-drop.

Note
Do not try to open the code for a class or package by dragging it from an object model
diagram because this removes the element from the view.
Rational Rhapsody 331

Model elements
Copying elements

To copy elements, use any of the following methods:

� You can copy all elements within the browser by dragging-and-dropping.
� To copy an element, press the Ctrl key while dragging the element onto the new owner.

See Smart drag-and-drop.

Copying an element into the same namespace, such as within its own package, creates a copy with
the suffix _copy appended to its name. For example, copying a class Sensor into the same package
as the original creates a class named Sensor_copy. Subsequent copies have a suffix of _copy_<n>,
where <n> is an incremental integer starting with 0.

Copying an element into a different namespace creates a copy with exactly the same name.

Renaming elements

Renaming requires a valid name that does not already exist. An appropriate message is displayed if
either condition is not met, and the name reverts to its previous value.

There are two methods for renaming elements. You can edit the Name box of the Features window
or you can edit the name directly in the browser.

1. Click once on the element name to select it.

2. Click once again to open the name field for editing. An edit box opens with the name
selected, as shown in the following example.

3. Edit the name and press Enter, or click once outside the edit field to complete the change.

The other method you might use is the Features window.

1. Open the Features window for the element.

2. Type the new name in the Name box.

3. Click Apply, or anywhere outside of the Features window, to apply the new name.

4. Click OK.

Note
Do not use this method to rename the project.
332 User Guide

Modify elements
Deleting elements

The Edit menu on the diagram editors contains the Remove and Delete menu commands.
Edit > Remove removes an object from a particular view but not from the model, whereas Delete
deletes the item from the entire model. In the browser, Delete always deletes an object from the
entire model, including all diagrams.

To delete an object from the entire model while in the browser, use any of the following methods:

� Select the item and then choose Edit > Delete.
� Right-click the item, then select Delete from Model.
� Select the item and press the Delete key.

If you delete the only item in a category, the entire category displays with it. For example, if you
delete the only object model diagram, the entire Object Model Diagrams category displays along
with the specific diagram you deleted. The category does not return to the browser until you create
at least one object model diagram.

Editing multiple elements

To edit multiple elements of the same metatype at the same time:

1. In the browser, highlight the elements that are all members of the Attributes, Types,
Dependencies, Packages, Operations, or Classes metatype.

2. Right-click and select Features. The Features window displays as Multiple Selection
with only the General tab accessible. (The Name and Label fields are disabled.)
Rational Rhapsody 333

Model elements
3. Type the change to common element items such as the stereotype, description, or type
definitions.

Note: If all of the selected elements have the same values, the new values are applied
to all. However, if the selected elements have different values, the Multiple
Selection window uses the Keep Original Values option to pinpoint those
areas containing varying values. Select this option to keep the different values
in the selected elements when the change is applied.

4. Click OK.

Re-ordering elements in the browser

By default, model elements are ordered alphabetically within each category. However, Rational
Rhapsody also allows you to manually reorder elements within each category.

You might want to reorder elements in the browser in order to:

� move important items higher in the list
� control the order of model elements in the generated code. The order of elements in the

generated code is determined by the order of display in the browser. To control the order
of elements in the generated code, reorder the relevant elements in the browser before
generating the code.

Note
Currently, Rational Rhapsody allows you to rearrange all model elements except for
statechart-related elements and activity diagram-related elements.

By default, the ability to reorder elements in the browser is disabled. To enable element reordering,
select View > Browser Display Options > Enable Order from the menu.

When the re-ordering option is available, you can reorder elements:

1. Select the element you would like to move.

2. Click the Up or Down arrow in the browser toolbar to move the element.

Note
The Up and Down arrows are only displayed after you have selected a movable model
element. If the element is at the top of a category, only the Down arrow is accessible when
you are selecting the element. If the element is at the bottom of the category, only the Up
arrow is available upon selection.
334 User Guide

Modify elements
Displaying stereotypes of model elements

Rational Rhapsody provides the option of displaying the stereotypes applied to a model element,
alongside the name of the element in the browser.

To display elements’ stereotypes in the browser, use one of these methods:

� From the menu, select View > Browser Display Options > Show Stereotype > All
� At the project level, modify the property Browser::Settings::ShowStereotypes. The

possible values for this property are No, Prefix, Suffix.

Note
When All is selected, the property is assigned the value Prefix. When None is selected,
the property is assigned the value No. If you want the stereotype name displayed after the
element name, this can only be done by changing the property directly to Suffix.

If you select the option First, then for elements with more than one stereotype, only the first
stereotype is displayed in the browser.

The default setting for the property Browser::Settings::ShowStereotypes is Prefix. For
projects created with Rational Rhapsody 6.0 or earlier, this property is overridden and set to No.

This settings does not apply to stereotypes that are defined as “new terms.” When a stereotype is
defined as a “new term,” it is given its own category in the browser, and any elements to which this
stereotype is applied are displayed under the new category.
Rational Rhapsody 335

Model elements
Creating graphical elements

You can create graphical representations for elements in a model and place them in diagrams. This
technique is often used to represent all visible behavior in a use case diagram. This feature is often
used to represent stereotypes and tags in diagrams.

To create a graphical representation for an element that is listed in the browser, but not shown in
the diagram:

1. Locate the element in the browser that is not currently graphically represented in a
diagram. Highlight and drag the element into the diagram.

2. The element displays in the diagram, where you can use the Features window to make any
changes and additions to the description for the element.

3. If they can be connected semantically, you might also link the new graphical element to
other diagram elements in the diagram. For example, a stereotype can connect to another
stereotype for inheritance.

Moving the element into the diagram functions as a move of a class or object.

Supported image formats
The following graphic formats are supported for associated image files: jpeg, tiff, bmp, ico, emf,
tga, pcx.

Associating an image file with a model element
Rational Rhapsody allows you to associate an image file with a model element. This image can
then be used to represent the element in diagrams in place of the standard graphic representation.

To associate an image file with a model element:

1. Right-click the relevant element in the browser, and then select Add Associated Image.

2. When the file browser window is displayed, select the appropriate image file.

Displaying associated images
Once an image file has been associated with a model element, it can be displayed in diagrams that
contain that element.

To display the image associated with an element in a diagram, rather than the regular graphical
representation:

1. Open the Display Options window.

2. Select Enable Image View.
336 User Guide

Modify elements
3. Choose Use Associated Image or, alternatively, choose Select an Image and click ... to
open the file browser.

To enable the display of associated images at the diagram level, set the property
General::Graphics::EnableImageView to Checked. The default value is Cleared.

When using an associated image in a diagram, there are a number of ways the image can be
displayed:

� Image Only displays the image instead of the regular graphic representation.
� Structured displays the image within the regular graphic representation.
� Compartment displays the image within a compartment together with the other items that

are displayed in compartments, for example, attributes and operations.
To select one of these layout options:

1. In the Display Options window, click Advanced.

2. When the new window opens, select one of the layouts.

3. Click OK.

To set the image view layout at the diagram level, select the appropriate value for the property
General::Graphics::ImageViewLayout. The default value is ImageOnly.

Restoring image size, proportions
When Image Only has been selected as the image layout option, the context menu displayed when
right-clicking the image contains two additional options under the menu item Image View:
Restore Initial Size and Restore Initial Proportions.

Modifying, replacing, and removing associated image files
Once an image has been associated with a model element, a menu item called Associated Image
will be available in the context menu that is displayed when the element is selected in the browser.
This item contains the following options:

� Open Image allows you to view the image in an external viewer. The application that is
opened is determined by two properties. If the property General::Model::ImageEditor
is set to the value AssociatedApplication, the default application for this type of file
will be launched. However, if this property is set to ExternalImageEditor, the
application launched will be the application specified with the property
General::Model::ExternalImageEditorCommand. The value of this property should be
the command-line for launching the relevant application.

� Replace Image displays a file browser, allowing you to select a new image file to
associate with the model element, replacing the current associated image.
Rational Rhapsody 337

Model elements
� Remove Association breaks the association between the model element and its associated
image file.

Compatibility with previous image association mechanism
While the procedure described in this section is the current way to associate an image file with a
model element, Rational Rhapsody still supports the old approach of associating a stereotype with
a bitmap file. If you have defined such stereotypes, simply select Enable Image View in the
Display Options window to display the image.

Controlled files and image association
If you add an image file as a controlled file beneath a model element, the image file is
automatically associated with the model element.
338 User Guide

Smart drag-and-drop
Smart drag-and-drop
This section describes how to operate the Rational Rhapsody smart drag-and-drop feature. It
provides step-by-step instructions for performing smart drag-and-drop operations.

To drag-and-drop a class:

1. Expand your browser view so that all classes are viewable.

2. Click a class in the browser and while holding the mouse button down, drag the class onto
another class; before releasing the mouse button press the Shift key.

Note
You must press and hold the Shift key before releasing the mouse button when dragging-
and-dropping a class.

3. A context submenu displays. Select the wanted option. In the example, the Tank class is
being dragged onto the AbstractFactory class.

4. In this example the Tank class will be added as a dependency.
Rational Rhapsody 339

Model elements
5. Once a selection is made from the submenu, the browser opens the feature added (in this
case, the dependency).
340 User Guide

Smart drag-and-drop
6. If the class selection (Tank) were being made a superclass, it would appear a
dependency added as a superclass.

.

7. If the class selection (Tank) were being copied to another class (Abstract Factory), it
would appear as shown in the following figure. Note that the class attributes for Tank
remain intact.
Rational Rhapsody 341

Model elements
Searching in the model
Engineers and developers can use the Rational Rhapsody Search and Replace facility for simple
search operations. To perform quick searches with commonly used filters such as wildcards, case,
and exact string, select Edit > Search to display this window.

To display new search results in a separate tab of the Output window, select the New Tab check
box and enter new search results and click Find.

You can also highlight an item in the browser and search only in that part of the project by
selecting Edit > Search In. If you want to perform more complex searches, click Advanced in
this window.

Finding element references

The References feature enables you to find out where the specified element is used in the model.

1. Highlight an element in the browser.

2. Select Edit >References. The Relations window opens, listing the locations of the
element in the model.
342 User Guide

Searching in the model
If the element is not used anywhere in the model other than in the browser, Rational Rhapsody
displays a message stating that the element is not referenced by any element.

References option returns only model elements that actually reference the specified element; it
does not return references to the textual name of the element. To do a text-based search for the
element name, use the search and replace functionality described in Searching in the model.

Note
You can also display the list of references by using the keyboard shortcut CTRL+R.

Advanced search and replace features

To manage large projects and expedite collaboration work, complex searches are often needed. For
those types of searches, select Edit > Advanced Search and Replace. The advanced facility
provides the following additional capabilities:

� Locate unresolved elements in a model
� Locate unloaded elements in a model
� Identify only the units in the model
� Search for both unresolved elements and unresolved units
� Perform simple operations on the search results
� Create a new tab in the Output window to display another set of search results
Rational Rhapsody 343

Model elements
All search results display in the Output Window with the other tabbed information. Search and
replace results display at the bottom of the Find window, as shown in the example. For more
information about the uses of this facility, see Advanced search and replace features.

Using the auto replace feature

To perform a search and replace operation with an automatic replace:

1. Choose Edit > Advanced Search and Replace.

2. Enter the Find what and Replace with text in those two fields.

3. Click Auto Replace. The changes display at the bottom of the window.

This automatic replacement also performs an automatic commit of the changes into the Rational
Rhapsody model so that you do not need to apply the changes manually. However, it does not
display any ripple effects of the change.

The Auto Replace feature cannot be used on the following items because they do not qualify to be
replaced automatically:

� Read-only elements.
� A description that includes hyperlinks
� Stub or unresolved element names
� The name of an event reception, constructor, destructor, generalization, or hyperlink
344 User Guide

Searching in the model
Searching for elements

To search for specific elements in the model:

1. Choose Edit > Advanced Search and Replace to display the Advanced Search and
Replace window.

2. Click the Search elements tab to display this window.

3. Select any or all of the element types listed in the scrolling area. Use the Select All, Clear
All, or Invert to select element types quickly.

4. Click Find. The results display at the bottom of the window.

5. Highlight an item in the search results and right-click to perform either of these
operations:

� References displays all of the relations to the selected element.
� Delete from model.

6. If you double-click an element in the list, the Features window opens so you can see and
change the description and other characteristics for the element.
Rational Rhapsody 345

Model elements
7. You can also highlight an item and perform an Auto Replace, as described in Using the
auto replace feature.

Searching in field types

To search in specific fields within the model:

1. Choose Edit > Advanced Search and Replace to display the Advanced Search and
Replace window.

2. On the Search in tab, select the types of fields you want to find in the model by checking
them in the list at the top of the window.

3. The Element name, User code, and Other text check boxes display the fields associated
with them. For example, if only User code is checked, only the code-related fields
(Actions, Configuration initialization, Initial value, Operation bodies, and Type
declarations) are checked. Similarly, if only Other text is checked, only the text-related
fields are checked. The possible values are as follows:

� Comment specification scans all the comment specifications for the specified
string

� Configuration initialization scans all the configuration init code segments for
the specified string

� Constraint specification scans all the constraint specifications for the specified
string (Chinese, Korean, Taiwanese, and Japanese are supported in this field and
stored as RTF.)

� Descriptions scans all the descriptions for the specified string
� Enumerationliteral value scans the literal value of the enumeration type for the

specified search string.
� Initial value scans the initial value fields for attributes and arguments for the

specified search string
� Label scans all the labels for the specified search string
� Locally overridden property scans the locally overridden properties for the

specified search string.
� Multiplicity scans the Multiplicity field of associations for the specified search

string.
� Name scans all the element names for the specified search string
� Operation bodies scans operation bodies, including operations defined under

classes, actors, use cases, and packages for the specified search string
� Requirement specifications scans all requirement specifications for the specified

search string. (Chinese, Korean, Taiwanese, and Japanese are supported in this
field and stored as RTF.)
346 User Guide

Searching in the model
� Tag Value scans the value of the tags for the specified search string.
� Activity Flow Label scans all activity flow code (action, guard, trigger) for the

specified search string.
� Type declarations scans all the user text in “on-the-fly” types for the specified

search string.
4. You can also specify that the Element name, User code, and Other text be included or

excluded from the search.

5. Click Find to list the fields that meet your search criteria at the bottom of the window.

You can highlight an item in the list and replace it.
Rational Rhapsody 347

Model elements
Previewing in the search and replace facility

After performing a search, you can highlight and item in the search results and click the Preview
tab. This displays the occurrence of the highlighted item so that you can see and perhaps change
the string.

Use the following buttons to make changes to the selected occurrence:

� Find Next highlights the next occurrence of the string in the same file.
� Replace replaces the highlighted occurrence of the original string with the replacement

string specified on the Find/Replace tab.
� Replace All replaces all occurrences of the string.
� Apply applies the changes done in the Preview tab (editing or replacing text) to the

Rational Rhapsody model.
� Cancel cancels the search and replace.
� Auto Replace automatically replaces all occurrences of the highlighted string with a

replacement string.

Note
If you make a mistake, select Edit > Undo to undo the changes.
348 User Guide

Controlled files
Controlled files
Rational Rhapsody allows you to create controlled files and then use their features.

The model in this section uses the “Cars” C++ sample (available in the <Rational Rhapsody
installation path>\Samples\CppSamples\Cars) to demonstrate how to use controlled files.

� Controlled Files, such as project specifications files (for example, Microsoft Word,
Microsoft Excel files) are typically added to a project for reference purposes and can be
controlled through Rational Rhapsody.

� A controlled file can be a file of any type (.doc, .txt, .xls, and so on).
� Controlled files are added into the project from the Rational Rhapsody browser.
� Controlled files can be added to diagrams via drag-and-drop from the browser.
� Currently, only Tag and Dependency features can be added to a controlled file.
� By default all controlled files are opened by their Windows-default programs (for

example, Microsoft Excel for .xls files).
� The programs associated with controlled files can be changed via the Properties tab in the

controlled files window.
Rational Rhapsody 349

Model elements
Creating a controlled file

Controlled files can be created using many methods. A controlled file can be created by browsing
and selecting a file from the file system or by using a command. To select a method:

1. To select the way a controlled file is created, double-click a package in the Rational
Rhapsody browser and select the Properties tab from the Features window.

2. With the All filter selected, expand the section Model and expand the ControlledFile
subsection. The property NewPolicy controls the way a controlled file is created. The
default selection is SystemDefault. The property can be set to UseOpenCommand or
UseRhapsodyCodeEditor.

� SystemDefault: This setting lets the program (as done in hyperlink, for example),
open the file according to the MIME-type mapping.

� UseOpenCommand: This setting means that double-clicking on the controlled
file runs the open command. The open command is set in the OpenCommand
property (Model/ControlledFile/OpenCommand). This is a string property that
expands the keyword $fileName to the full path of the Controlled File. In the
event of property inconsistency, where the program is set to run the
UseOpenCommand but the command contains no setting, the SystemDefault
policy will be used.

� UseRhapsodyCodeEditor: This setting allows the file to be opened within the
internal Rational Rhapsody code editor.

If you want to open the controlled file after it is created, set the value of the property
OpenFileAfterCreation to yes. The file will open the file immediately after it is created.
350 User Guide

Controlled files
Browsing to a controlled file

This section describes how to create a controlled file by browsing to it.

1. To create a controlled file, right-click a non-read-only element, such as a package, in the
browser and select Add New > Annotations > Controlled File. The Select Controlled
File open window opens.

Note: Add New > Annotations is the default menu command structure in Rational
Rhapsody. It can be changed by users. This topic assumes that all defaults are
in place.

2. Navigate to the wanted file and click the Open button. Unless the controlled file being
selected is located in the right location under the _rpy directory (cars_rpy in the example),
a message displays asking you for permission to copy the file. If you do not want the file
copied into the _rpy directory, you must place the original into the _rpy directory before
selecting it from the Rational Rhapsody browser.

3. A window displays asking you for permission to copy the file into the _rpy directory.
Click OK.

4. The controlled file now displays in the Rational Rhapsody browser.
Rational Rhapsody 351

Model elements
5. Controlled files can be added to the graphic interface (right window pane) via drag-and-
drop from the browser.

Controlled file features

Controlled files can be any standard Windows type, such as .doc, .txt, and .xls. When those
files are opened in Rational Rhapsody, they are displayed in their Windows-default programs,
such as for Microsoft Excel for .xls files. In addition, the programs associated with controlled
files can be changed via the Properties tab in the controlled files window.
352 User Guide

Controlled files
Adding dependencies to controlled files
Dependencies can be added to controlled files to display what object depends on the controlled file
or what object the controlled file is dependent upon.

To add a dependency to a controlled file (through the Rational Rhapsody browser):

1. To add a new dependency, right-click the controlled file and select
Add New > Relations > Dependency.

Note: Add New > Relations is the default menu command structure in Rational
Rhapsody. It can be changed by users. This topic assumes that all defaults are
in place.

2. Make a selection in the window that displays and click OK.

3. Type the name of the dependency, or leave the default name.

4. Double-click the dependency in the browser to modify it.

To add a dependency to a controlled file (via Graphic Pane):

1. Drag the controlled file from the browser into the graphic pane, if you have not already
done so.

2. Using the dependency icon , draw a dependency line from the controlled file to the
wanted object.
Rational Rhapsody 353

Model elements
Adding tags to controlled files
Tags can be added to controlled files for purposes such as identification. For instance, tagging all
controlled files that are related to the specification for a product helps differentiate those controlled
files from other controlled files that might be embedded in the project.

To add a tag to a controlled file (via the browser):

1. Right-click the controlled file and select Add New >Tag.

2. Type a name for the tag or leave the default name.

3. Double-click the tag in the browser to modify it.

To add a tag to a controlled file (via the Features window):

1. Right-click the controlled files in the browser and select Features.

2. The Features window displays. Click the Tags tab and enter the name of the tag in the
“Quick Add” section at the bottom of the window. Click the Add button.

3. Click OK.
354 User Guide

Controlled files
4. Expand the Controlled File by clicking on the “+” next to it in the browser.

5. The Tags listing displays. Click the “+” next to the Tags listing to see the new Tag you just
created.

Configuration management
Configuration management options are as follows:

Configuration
Management Feature Feature Description

Add to Archive This feature is used when a you want to add a new file into the
configuration management server for the first time. After that, other
users can check in/out, lock/unlock the file.

Check In This feature checks the file into the configuration
management server so that other users can modify the file. You still
have read-only access to the file, but you cannot modify it.

Check Out This feature checks the file out of the configuration management
server so that other users cannot modify the file. Other users can open
the file for read-only
purposes.

Lock This feature locks the file so that other users cannot modify it in the
future. Only you can unlock the file.

Unlock This feature unlocks the files so that other users can modify the file in
the future. Only you can unlock the file.
Rational Rhapsody 355

Model elements
Troubleshooting controlled files

Following is a list of the most commonly encountered problems with their solutions:

� Question: “I checked out a controlled file. But I am not able to change its description,
properties, and so on.”

Answer: The metadata for the controlled file is stored in it's parent element. So you must
check out the parent element in order to change any associated information, such as the
description, properties, and so on.
For instance, in the example provided in Creating a controlled file,
right-clicking on the parent element RailCarsPackage and choosing Configuration
Management Check out, allows the controlled file attributes to be modified.

� Question: “I know controlled files are copied to a directory under _rpy during the creation
of the controlled file, but where exactly is the controlled file copied?”

Answer: Controlled Files are copied to the same location where its parent is located on
the disk. For instance, suppose you have a package called “package_1” and the repository
file for it is stored like this: MyProject_rpy\package_1\package_1.sbs.
Now any controlled file you add to the package “package_1” is going to be stored in the
folder: MyProject_rpy\package_1\

� Question: “When I open a Controlled File Features window and try to rename the
Controlled File, I receive the ‘File not found’ error.”

Answer: You have the ability to select different files from an opened Features window. So
when you type a different name, the system “thinks” that you are actually trying to point
to a different file and returns an error message.

You can rename a controlled file from the browser by clicking two separate times on it
(double-clicking on the file will open it).

� Question: “Is it possible to add a Controlled File to the model without copying the file to
the _rpy folder?”

Answer: No, but you can add a hyperlink to the wanted file instead. However, this will
result in the loss of all CM (Configuration Management) capability which includes the
following operations:

– Add to archive
– Check in
– Check out
– Lock
– Unlock
356 User Guide

Controlled files
� Issue: Configuration management (CM) operations on Controlled files fail on some
occasions.

� Details: If you are using CM in command mode, make sure the file is located under the
_rpy folder. In order to perform Configuration Management operations in command mode
from Rational Rhapsody, the file (other than the project itself) has to be under the _rpy
directory. There is no current fix for this issue.

Workaround: Create a new package under the project. By default, a package is stored in
separate file: do not modify that setting. Now add the problematic controlled files to this
package. Now you will be able to perform CM operations.

� Issue: Adding an existing element with a Controlled File to the Model and choosing a
different name, instead of replacing the file.

� Details: If you perform an Add To Model of an already existing element, Rational
Rhapsody gives you the option of replacing the element or adding it using a different
name. If you choose to use a different name, Rational Rhapsody adds the element using
the new name.

If both the element that already existed in the model and the element that was just added
have controlled files by the same name, more than one controlled file of the same name
exists in the model. But there might be only one instance of the file in the directory, which
means the two controlled files in the model are actually pointing to the same file.

Controlled file limitations

General limitations
� Connecting to Archive Error:

If your configuration management tool is Rational ClearCase, this Connecting to Archive
limitation applies to you.

If you are trying to “Connect to Archive” using the Configuration Items tool (File/
Configuration Items), and your Rational Rhapsody project contains a controlled file, the
following error results:

Cannot perform Connect to Archive.

Reason: Rational Rhapsody could not add “Project_rpy” to Source Control as the project
contains at least one Controlled File. To proceed, add this directory (and its
subdirectories) to Source Control using Rational ClearCase. Note that, you do not need to
Connect to Archive again.

Use Rational ClearCase to add the directory to the appropriate source control. You now
do not have to perform a “Connect to Archive.”
Rational Rhapsody 357

Model elements
� Deleting an Element with a Controlled Files Deletes the Controlled File From the
Model Only.

If you delete a controlled file from a Rational Rhapsody Model, you are given the option
to either delete the file completely from the hard disk drive or leave the file intact and
simply delete the controlled file from the model. If you delete any other element that
includes a controlled file (as a child), the controlled file is left intact on the hard disk; the
option to delete the controlled file completely from the hard disk drive is not offered.

� Moving a Controlled File - Browser vs. Graphic Editor

If you have two packages stored in different directories (P1 and P2 for this example), and
you add a controlled file to the P1 directory, the physical controlled file on the hard disk is
stored in P1's directory (the same directory where P1.sbs file is located).

From the Rational Rhapsody browser, drag the controlled file from P1 and drop it in the
P2 package. Now examine the contents of the P1 and P2 directories on the hard disk.
Notice that the file has moved from the P1 directory to the P2 directory.

If you repeat the above exercise in the Rational Rhapsody Graphic Editor, the physical
file is copied from the old directory to the new directory, instead of being completely
moved from the old directory to the new directory.

� Configuration Management Synchronize window Does Not Show Controlled Files

Configuration Management's Synchronize window shows items that are modified by
other users but not yet loaded into your model. This window does not hold true for
controlled files. The synchronize window does not display Controlled Files when there
are newly-updated controlled files in the Configuration Management system.

� Controlled Files Version Number Not Shown In the Configuration Management
Window

The Configuration Management window shows the version number for the items in its
listing (only in command mode). But for a controlled file, it does not show the version
number.

� Foreign Language Controlled File Names are Not Supported

If your file name has non-English characters, you cannot add it to your project as a
controlled file.

� CM Archive is Not Affected When Controlled Files are Moved/Renamed/Deleted

When you move, rename or delete a Controlled File, its respective Configuration
Management item is not updated accordingly.
358 User Guide

Controlled files
DiffMerge limitations
� Diffmerge Does Not Compare the Contents of Two Controlled Files

Diffmerge does not identify/indicate any content differences between two controlled files.
Diffmerge does not examine the contents of controlled files as they exist on the hard disk
drive. However, Diffmerge can show differences between the metadata information of
two controlled files in the model.

Ex. Given two packages (Pkg1 and Pkg2) that each contain the controlled file readme.txt,
if the file contents of the Pkg1 readme.txt are different from the contents of the Pkg2
readme.txt then a Diffmerge performed between Pkg1 and Pkg2 will not identify that the
readme.txt files are different. However, if the Pkg1 readme.txt and Pkg2 readme.txt have
different metadata such as properties or description then those differences are shown in
the Diffmerge.

� 'Save merge as…' or 'merge back to rhapsody' Does Not Save Any Controlled Files

When using Diffmerge to compare two model units that contain controlled files,
performing the “Save merge as...” or “merge back to rhapsody” functions does not save
the controlled files on the hard disk drive.

Ex. Using the same example as above, if you compare Pkg1 with Pkg2 and save the
merge as “Pkg_Merged,” the physical file readme.txt for Pkg_Merged will not be saved
on the physical hard disk drive. If you were to navigate to the file under the appropriate
directory (c:\diffmerge for example), you would notice the readme.txt file does not appear
in that directory.

Search and replace limitations

Note
After performing a search using regular expressions, look inside the Preview tab in the
Search and Replace window. The Find Next, Replace, and Replace All functionalities
might not work for one or more selected search results.

This search and replace limitation is not limited to controlled files.
Rational Rhapsody 359

Model elements
Print Rational Rhapsody diagrams
The File menu includes the following print options:

� Print Diagrams displays all the diagrams used in the model so you can easily select
which ones to print (see Selecting which diagrams to print)

� Print displays the standard Print window, which enables you to print the current diagram
on the specified printer

� Print Preview displays a preview of how the diagram will look when it is printed
� Printer Setup displays the standard Print Setup window, which enables you to change the

printer settings, such as landscape instead of portrait mode
� Diagram Print Settings enables you to specify diagram-specific print options (see

Diagram print settings)

Selecting which diagrams to print

Rational Rhapsody enables you to print multiple diagrams.

1. Choose File > Print Diagrams. The Print Diagrams window opens, listing the diagrams
and statecharts in the current project. The window has the following features:

� The list box on the left shows all of the diagrams in the project.
� The list box on the right shows the names and types (for example,

ObjectModelDiagram) of the diagrams selected for printing.
� The buttons in the middle let you select and deselect diagrams for printing.
� The Up/Down arrows on the far right control the order in which the diagrams are

printed.
� The buttons along the bottom edge of the window access the Print window, or

cancel printing.
2. To expand the list of diagrams in the project, click the + sign to the left of one of the

diagram type names. The tree expands to show all the diagrams of that type. Note that
statecharts are listed first by package, then by class.

3. Do one of the following actions:

a. To add a diagram to the print list, select it in the list on the left and click Add.

b. To add all the diagrams in the project to the print list, click Add All.

c. To remove a diagram from the print list, select it in the list on the right and click
Remove. Rational Rhapsody prints the diagrams listed in the right from top to
bottom.
360 User Guide

Print Rational Rhapsody diagrams
d. To change the print order, select a diagram from the print list and use the up or down
arrows.

4. Click the appropriate button:

a. Print dismisses the Print Diagrams window and opens the standard Print window for
your operating system. In this window, you set attributes such as page size (for
example, 11” x 17”), the printer to use, whether to print to a file, whether to use
grayscale, and initiate the printing operation.

b. Cancel cancels the print operation and dismisses the window.
Rational Rhapsody 361

Model elements
Diagram print settings

File > Diagram Print Settings lets you specify diagram-specific print settings that can be retained
between Rational Rhapsody sessions. This option is particularly useful for complex and multipage
diagrams.

The window contains the following fields:

� Orientation specifies the page orientation
� Scaling specifies the scale percentage, or whether to shrink the diagram so it fits on one

page.
� Options specifies whether to:

– Print the background color.
– Include a header or footer on the printout.
– Retain your diagram settings across Rational Rhapsody sessions.

By default, the header includes the name of the diagram, and the footer
contains the page number. To specify a new header or footer, uncheck the
appropriate check box and type the new value in the text box.

For example, to include the name of your company in the diagram header:

1. Clear the Add diagram name in header check box.

2. In the text box, type the name of your company.

3. Click OK.

4. Use one of the Print options to print out the diagram.
362 User Guide

Print Rational Rhapsody diagrams
Using page breaks

Rational Rhapsody can break a large diagram across several pages or scale it down so it fits on a
single page, depending on your preference.

To scale the diagram so it fits on a single page, right-click in the diagram and select Printing > Fit
on One Page. To break the diagram across pages, simply disable this option.

To view the page breaks in a diagram, do one of the following actions:

� Click the Toggle Page Breaks tool to toggle the display of page breaks in your diagram.
� Select Layout > View Page Breaks.
� Right-click in the diagram and select Printing > View Page Breaks. The dashed lines that

represent the page boundaries are displayed.
Rational Rhapsody 363

Model elements
Exporting Rational Rhapsody diagrams
To export any Rational Rhapsody diagram:

1. Display the diagram.

2. Right-click inside the diagram, but not on a specific item in the diagram.

3. From the displayed menu, select Export Diagram Image.

4. In the Save As window, select a directory for the saved image in the Save in directory
selection field.

5. In the File name field, type the name you want to use for the exported image file.

6. In the Save as type field, select one of these image types:

7. Click Save to complete the export process.
364 User Guide

Annotations for diagrams
Annotations for diagrams
You can add different types of annotations to specify additional information about a model
element. The annotation can add semantics (like a constraint or requirement) or can simply be
informative, like a documentation note or comment.

Note
None of the annotation types generate code; they are used to improve the readability and
comprehension of your model.

� Constraint for a condition or restriction expressed in text. It is generally a Boolean
expression that must be true for an associated model element for the model to be
considered well-formed. A constraint is an assertion rather than an executable
mechanism. It indicates a restriction that must be enforced by the correct design of a
system.

Constraints are part of the model and are, therefore, displayed in the browser.
� Comment for a textual annotation that does not add semantics, but contains information

that might be useful to the reader and is displayed in the browser.
� Note for a textual annotation that does not add semantics, but contains information that

might be useful to the reader. Notes are not displayed in the browser.
� Requirement for a textual annotation that describes the intent of the element. Note that a

requirement modeled inside Rational Rhapsody does not replace the usage of a dedicated
requirement traceability tool, such as DOORS. Instead, a modeled requirement
complements the usage of such a tool because the hierarchical modeling of requirements
enables you to easily correlate each requirement to the element that addresses it.

Requirements are part of the model and are therefore displayed in the browser.
Rational Rhapsody 365

Model elements
Creating annotations

To add an annotation to a diagram:

1. Click the appropriate icon in the Diagram Tools for the type of annotation you want to
create.

2. Single-click or click-and-drag in the diagram to place the annotation at the intended
location.

3. Type the note text or expression.

4. Press Ctrl+Enter to terminate editing.

The same annotation can apply to more than one model element and multiple annotations can
apply to the same model element. You can use “ownership” instead of an anchor. For example, if a
requirement is owned by a class, it is a requirement of the class.

The new annotation is displayed in the diagram, and in the browser if it is a modeled annotation.
Note that documentation notes and text are graphical annotations and exist only in the diagram; all
the other Rational Rhapsody annotations are modeled annotations, and are part of the model itself.
Because modeled annotations are part of the model, they can be viewed in the browser. In addition,
you can move modeled annotations to new owners using the browser, and can drag-and-drop them
from the browser into diagrams. Modeled annotations are displayed under separate categories in
the browser by type.

Alternatively, you can create modeled annotations in the browser, as follows:

1. Right-click the element that needs the annotation.

2. Select Add New > Annotations > Constraint, Comment, or Controlled File. The new
annotation is added under the selected element.

An annotation created using the browser does not anchor the annotation to the specified model
element. However, you can organize annotations so that anchoring is implied.
366 User Guide

Annotations for diagrams
Creating dependencies between annotations
You can show dependencies between annotations using the Dependency icon in the Diagram
Tools.

To create dependencies between annotations:

1. Click the Dependency icon in the Diagram Tools.

2. Click the edge of the dependent annotation.

3. Click the edge of the annotation on which the first annotation depends.

Creating hierarchical requirements
You can create hierarchical requirements by having one requirement own all the subrequirements;
the owning requirement is called the “sum requirement.”

1. In the browser, right-click the component that will own the requirement and select Add
New > Requirement.

2. Name the new requirement. This is the sum requirement.

3. Right-click the sum requirement and select Add New > Requirement.

4. Name the subrequirement.

5. Continue creating subrequirements as needed.

6. Create dependencies between the requirements as needed.

The following figure shows a hierarchical requirement.
Rational Rhapsody 367

Model elements
Editing annotation text

To edit the text of an existing annotation, do one of the following actions:

� Double-click the annotation.
� Right-click the annotation and then select Features.

Defining the features of an annotation

The Features window enables you to change the features of an annotation, including its name type.
The following figure shows the Features window for an annotation (in this case, a constraint).

A constraint contains the following fields:

� Name specifies the name of the constraint. To enter a detailed description of the
constraint, click the Description tab.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the constraint, if any. They are enclosed in
guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.
368 User Guide

Annotations for diagrams
– To select from a list of current stereotypes in the project, click the folder with

binoculars button.

– To sort the order of the stereotypes, click the up and down arrows button.
Note: The COM stereotypes are constructive; that is, they affect code generation.

� Type specifies the annotation type. For example, you could use this field to easily change
a constraint to a requirement or comment.

� Defined in (read-only field) specifies the owning class of the annotation.
� Specification specifies the note text or constraint expression.
� Anchored Elements lists all the elements that are anchored to this annotation.

To view the features for an anchored element, select the element in
the list, then click the Invoke Feature Dialog button.

To anchor additional elements to this annotation, click the Select
button or the <Select> line in the list to select the elements from
the hierarchical display.
Rational Rhapsody 369

Model elements
Converting notes to comments

Documentation notes “live” only within diagrams. They are not displayed in the browser.

To convert a note to a comment (to be displayed in the browser), in the diagram, right-click the
note and the select Convert to Comment.

Anchoring annotations

You can anchor a constraint, comment, requirement, or note to one or more graphical objects that
represent modeling concepts (classes, use cases, and so on). You can also anchor annotations to
edge elements.

Although it is possible to anchor a requirement to an element, it is better to model it as a
dependency. Anchors are shown as dashed lines.

To anchor an annotation to a model element:

1. Click the Anchor icon in the Diagram Tools.

2. Click an edge of the annotation.

3. Move the cursor to the edge of the model element to which you want to anchor the
annotation, then click to confirm.

To change the line style of an anchor, right-click the anchor line and select the appropriate option
from the Line Shape menu.

Note the following information:

� There should be only one anchor between a specific annotation and a given model
element.

� An annotation can be anchored to more than one element.

Finding constraint references
To find which annotations are anchored to a particular class:

1. In the browser, select the class you want to query.

2. Select References from the menu. The References window lists all the references for the
specified class. Anchored annotations are labeled “Anchor” in the Type column.
370 User Guide

Annotations for diagrams
Deleting an anchor
To delete an anchor:

1. Select the anchor.

2. Click the Delete tool in the main toolbar.
Rational Rhapsody 371

Model elements
Changing the display options for annotations

To change the display of annotations, right-click the note in the diagram and select Display
Options.

The Display Options window for the selected annotation type opens, with only the relevant fields
displayed. All of the fields are as follows:

� Show specifies which information to display for the annotation:
– Name displays the name of the annotation
– Label displays the label for the annotation
– Specification displays the contents of the Specification field of the Features

window for the annotation
– Description displays the contents of the Description field of the Features

window for the annotation
� Form specifies the graphical form of the annotation:

– Plain shows the annotation without a border, as free-floating text
– Note Symbol shows the annotation within a frame, with a symbol in the

upper, left-hand corner to denote the annotation type
– Pushpin displays the annotation with a rectangular border and a pushpin icon
372 User Guide

Annotations for diagrams
The following figure shows some of the different display options. The annotation types and
display options are as follows:

� Comment, displayed with its specification label using the pushpin style
� Requirement, displayed using its label
� Documentation note
� Constraint
� Text note

Deleting an annotation

To delete an annotation, on the browser, right-click the annotation to be deleted and select Delete
from Model.

To delete an annotation from a diagram, right-click the note and do one of the following actions:

� Select the Delete icon from the toolbar.
� Select Delete from Model from the menu.
Rational Rhapsody 373

Model elements
Using annotations with other tools

The following table lists the effect of annotations on both Rational Rhapsody and third-party tools.

Annotation limitations

Note the following limitations for annotations:

� You cannot anchor an annotation to an element that is represented by a line (such as a
message or activity flow).

� You cannot drag-and-drop an anchor from the browser to a diagram.

Tool Description

COM API Annotations are supported by the COM API via the following interfaces:
• IRPAnnotation
• IRPComment
• IRPConstraint
• IRPRequirement

Complete Relation When you select Layout > Complete Relations, anchors are part of the information
added to the diagram.

DiffMerge Annotations are included in difference and merge operations.

Populate Diagram Annotations and anchors are not supported.

References If you use the References functionality for a modeled annotation, the tool lists the
diagrams in which the specified annotation displays. When you select a diagram from the
returned list, the annotation is highlighted in the diagram.
If you use the References functionality for an element, the tool includes any annotations
that are anchored to the specified element
For more information on this functionality, see Searching in the model.

Report on model Modeled annotations are listed by type under the owning package. Graphical annotations
are not included in the list.

Rational Rose Notes in Rational Rose (which are not displayed in the browser) are imported as notes in
Rational RhapsodyAnnotations.

Search in model When you search in a model, the search includes modeled annotations, including
the Body section. When selected, the annotation is highlighted in the browser.
For more information on this functionality, see Searching in the model.
374 User Guide

Profiles
Profiles
A profile is a special kind of package that is distinguished from other packages in the browser. You
specify a profile at the top level of the model. Therefore, a profile is owned by the project and
affects the entire model. By default, all profiles apply to all packages available in the workspace,
so their tags and stereotypes are available everywhere. A profile is very similar to any other
package; however, profiles cannot be nested.

A profile “hosts” domain-specific tags and stereotypes. Tags enable you to add information to
certain kinds of elements to reflect characteristics of the specific domain or platform for the
modeled system. Tags are easily viewable in their own category in the browser and in the Tags tab
of the Features window for an element.

You can apply tags to certain cases by associating the tag definition to stereotypes in a profile or a
package. In this case, the tags are visible only for those model elements that have the specified
stereotype. In addition, you can apply tags to individual elements.

The browser displays all of the profiles used in a project together, as shown in this example:

This example lists two profiles. MessageProfile is a user-defined (customized) profile. For more
information about these profiles, see Creating a customized profile. SPT was automatically added
to the project because the developer specifies the Scheduling, Performance, and Time method to
add timing analysis data. For more information, see Types of profiles.
Rational Rhapsody 375

Model elements
Creating a project without a profile

You are not required to use profiles in your Rational Rhapsody project. When creating a new
project, you can create a Default project, containing all of the basic UML features:

1. Create the new project by either selecting File > New, or click the New project icon in the
main toolbar.

2. Replace the default project name (Project) with <your project name> in the Project
name field. Enter a new directory name in the In folder field or Browse to find an
existing directory.

3. Select Default for the Project Type and Project Settings.

4. Click OK.

The basic structure for your new project is displayed in the browser with no Profiles folder.
376 User Guide

Profiles
If you have a project that was created in an older version of Rational Rhapsody and you begin to
work on it in a newer version, Rational Rhapsody automatically inserts the required settings to
manage any compatibility issues.

Backward compatibility profiles

You might note any of the following backward compatibility profiles automatically loaded into
your project:

� Pre60GESkin uses the colors and fonts from versions before Rational Rhapsody 6.0.
� CGCompatibilityPre61C makes the code generation backwards compatible with pre-6.1

Rational Rhapsody in C models.
� CGCompatibilityPre61Cpp makes the code generation backwards compatible with

pre-6.1 Rational Rhapsody in C++ models.
� CGCompatibilityPre61Java makes the code generation backwards compatible with

pre-6.1 Rational Rhapsody in Java models.
� CGCompatibilityPre61M1C makes the code generation backwards compatible with

pre-6.1 maintenance release 1 Rational Rhapsody in C models.
� CGCompatibilityPre61M1Cpp makes the code generation backwards compatible with

pre-6.1 maintenance release 1 Rational Rhapsody in C++ models.
� CGCompatibilityPre70C makes the code generation backwards compatible with pr-7.0

Rational Rhapsody in C models.
� CGCompatibilityPre70Cpp makes the code generation backwards compatible with

pre-7.0 Rational Rhapsody in C++ models.
� CGCompatibilityPre70Java makes the code generation backwards compatible with

pre-7.0 Rational Rhapsody in Java models.
� CGCompatibilityPre71C makes the code generation backwards compatible with pre-7.1

Rational Rhapsody in C models.
� CGCompatibilityPre71Cpp makes the code generation backwards compatible with

pre-7.1 Rational Rhapsody in C++ models.
� CGCompatibilityPre71Java makes the code generation backwards compatible with

pre-7.1 Rational Rhapsody in Java models.
� CGCompatibilityPre72C makes the code generation backwards compatible with pre-7.2

Rational Rhapsody in C models.
� CGCompatibilityPre72Cpp makes the code generation backwards compatible with

pre-7.2 Rational Rhapsody in C++ models.
� CGCompatibilityPre72Java makes the code generation backwards compatible with

pre-7.2 Rational Rhapsody in Java models.
Rational Rhapsody 377

Model elements
� CGCompatibilityPre73Ada makes the code generation backwards compatible with
pre-7.3 Rational Rhapsody in Ada models.

� CGCompatibilityPre73C makes the code generation backwards compatible with pre-7.3
Rational Rhapsody in C models.

� CGCompatibilityPre73Cpp makes the code generation backwards compatible with
pre-7.3 Rational Rhapsody in C++ models.

� CGCompatibilityPre73Java makes the code generation backwards compatible with
pre-7.3 Rational Rhapsody in Java models.

� CGCompatibilityPre75C makes the code generation backwards compatible with pre-7.5
Rational Rhapsody in C models.

� CGCompatibilityPre75Cpp makes the code generation backwards compatible with
pre-7.5 Rational Rhapsody in C++ models.

Types of profiles

Rational Rhapsody provides the following types of profiles:

� Rational Rhapsody predefined Profiles, such as AutomotiveC and DoDAF, can be selected
from the New Project window when creating a new project or added to a project later, as
described in Adding a Rational Rhapsody profile manually.

� User-defined profiles, as described in Creating a customized profile.
� Add On product profiles, which require an additional license, are automatically added

when the engineer uses the associated add-on product, or it can be added using File >
Add Profile to Model.

Converting packages and profiles

You can convert any existing package into a profile and vice versa. To convert a package,
right-click the package in the browser, then select Change to > Profile. Similarly, to convert a
profile to a package, right-click the profile in the browser, then select Change to > Package.

Profile properties

By default, all profiles apply to all packages available in the workspace. To associate existing
profiles with new Rational Rhapsodyannotation models, use the following properties (under
General::Profile):

� AutoCopied specifies a comma-separated list of physical paths to profiles that will
automatically be copied into new projects when they are created. By default, this property
is an empty string.
378 User Guide

Profiles
� AutoReferences specifies a comma-separated list of physical paths to profiles that will
automatically be referenced by new projects when they are created. By default, this
property is an empty string.

Note that you can specify packages in the property values. The paths can be disks, networks, or
Universal Naming Conventions (UNC), and the extension .sbs is optional. If Rational
Rhapsodyannotation cannot find at least one of the specified profiles, it generates an error
message.

You can use profiles like any other package, including exchanging them between users and using
configuration management tools with them.

Use a profile to enable access to your custom help file

This section shows you how you can enable access to your custom help file from within Rational
Rhapsody with the use of the F1 key. This feature is applicable for a Rational Rhapsody project
that has a Rational Rhapsody profile with a New Term stereotype defined for the profile. For
information about profiles, see Profiles. For information about stereotypes, see Stereotypes.

As referred to by Rational Rhapsody, a custom help file consists of a help file and a map file, both
of which you must create. There might be times when you have a project for which you would like
to access your own help file. This might be particularly useful when there is a team working on the
same project and you want them to share the same specific information. For example, your
company might create its own help file to document its project terminology and project/corporate
standards.

To enable the ability to access your custom help file from within Rational Rhapsody, you have to
set properties to identify and locate your custom help file and map file. Then for an element
associated with the New Term stereotype in the Rational Rhapsody profile for your Rational
Rhapsody project, when a user presses F1 to call a help topic, your custom help file would open
instead of the main Rational Rhapsody help file.

Keep in mind that the Rational Rhapsody product provides you with an extensive help file that
always displays when there is no custom help file available.

Note
IBM is not responsible for the content of any custom help file and map file.

The creation, functioning, testing, and maintenance of a custom help file and map file are
the responsibilities of the creators of these files.

About creating your custom Help file and map file
A custom help file consists of a help file and a map file, both of which you create. See About
creating your custom help file and Creating your map file.
Rational Rhapsody 379

Model elements
About creating your custom help file
Your custom help file must be in HTML format. (Example help file name: myhelp.htm.)

If you plan to share the custom help file with team members, place it in a shared location on a
network. You identify this file and its location in the Model::Stereotype::CustomHelpURL
property, as detailed in Enabling access to your custom help file.

Creating your map file

The map file for your custom help file must contain one or more Rational Rhapsody resource IDs
for which the custom help is provided. A resource ID corresponds to a particular GUID element in
the Rational Rhapsody product. For example, for the Attributes tab, the resource ID is 161328.

To find a Rational Rhapsody resource ID:

1. Add the following line to the [General] section of the rhapsody.ini file and save your
changes:

ShowActiveWindowHelpID=TRUE

This means that now when you press F1 to open the Rational Rhapsody help file, you will
see a window with a resource ID instead, as shown in the next step.

2. In Rational Rhapsody, press F1 for a GUID element that you plan to associate with a New
Term stereotype (for example, if your New Term stereotype is applicable to a class, the
Attributes tab of the Features window).

3. Add the resource ID number to your help map file. Each number must be on its own line.
The following figure shows the contents of a map file called myhelp.map. (Another
example of a help map file name: myhelp.txt.)

Note: For testing purposes as mentioned in Enabling access to your custom help file,
include the resource IDs shown in the following figure in your map file. You
can delete these IDs later.

Note: You might find it useful to add the name of the element next to the resource ID
number (for example, 161328 Attributes tab).
380 User Guide

Profiles
4. If you plan to share the custom help file with team members, place the help map file in a
shared location on a network. You identify this file and its location in the
Model::Stereotype::CustomHelpMapFile property, as detailed in Enabling access to
your custom help file.

Note: When your map file is complete, to ensure that help topics appear instead of
resource ID numbers when you press F1, you can comment out the
ShowActiveWindowHelpID=TRUE line in the rhapsody.ini file (for example,
insert a semicolon or pound sign in front of the line) or you can delete the line.

Bookmarking your custom help file for a specific resource ID

When you press F1 to open your custom help file (when possible), it opens at the beginning of the
help file.

If for a particular resource ID (for example, the Tags tab of the Features window) you want your
custom help file to open to a specific spot in the custom help file, add a bookmark to that spot in
the help file. Use the standard HTML <a name> and tags.

For example, the myhelp.htm help file has three sections labeled: Attributes, Ports, and Tags.
When you open the help file, you see the Attributes section first. If for the Tags tab, which is
resource ID 139316, you want to open the custom help file at the Tags section of the help file, you
would code it as follows in the myhelp.htm help file:

Tags

Then when you press F1 on the Tags tab, the custom help file opens at the Tags section of the help
file.
Rational Rhapsody 381

Model elements
Enabling access to your custom help file
To make these instructions easier to follow, they assume that there is a fictional project called
AutomobileProject that has a profile called Auto2009 with a New Term stereotype called
Stereotype_Auto2009. These profile and stereotype names are for illustrative purposes only; they
are not provided in Rational Rhapsody. (For information about creating a profile, see Creating a
customized profile. For information about stereotypes, see Stereotypes.)

Note
These instructions assume you have created your custom help file and your map file. See
About creating your custom help file and Creating your map file.

To enable access to your custom help file:

1. For the profile or its stereotype for the Rational Rhapsody project on which you want to
provide custom help, set the Model::Stereotype::CustomHelpURL and
CustomHelpMapFile properties as follows:

a. Open the Features window for the profile or its New Term stereotype. On the Rational
Rhapsody browser, double-click the profile name or stereotype name (for example,
profile Auto2009 or stereotype Stereotype_Auto2009).

b. On the Properties tab, select All from the View drop-down arrow (the label changes
to View All).

c. Locate Model::Stereotype::CustomHelpMapFile. Type the path to your help map
file.

Note: You can specify an environment variable as part of the URL (for example,
$DODAF_HLP_ROOT\dodaf_help.map).
382 User Guide

Profiles
d. Locate Model::Stereotype::CustomHelpURL. Type the path to your help file. You
can specify an environment variable as part of the URL (for example,
$DODAF_HLP_ROOT\dodaf_help.htm).

e. Click OK.

2. Create an element using the New Term stereotype. Right-click a package in your project
and select Add New > Auto2009 >Stereotype_Auto2009. Notice that these choices are
located at the bottom of the pop-up menu.

3. Double-click the stereotype created in the previous step (for example,
stereotype_auto2009_0) and press F1. If you followed these steps and used the
resource IDs show in Creating your map file, your custom help file should open.

Testing the custom help file
Test your custom help file before releasing it to the users of the help file. You should be sure the
help file works as expected before releasing it. For example:

� If the help file is to be accessed over a network, make sure it is accessible. You might want
to have someone else (besides the person who set it up) try to access the custom help file
from within Rational Rhapsody over the network before rolling out the feature to the rest
of your project team.

� If you have set it so that your custom help opens at specific spots in the help file for
specific resource IDs, be sure to check these particular links. See Bookmarking your
custom help file for a specific resource ID.
Rational Rhapsody 383

Model elements
Using the custom help file
Once set up, anyone who uses the profile and elements with the New Term stereotype you set up
can use the F1 key to open the custom help file when and where it is possible. When you press F1,
Rational Rhapsody checks if there is a custom help file for the New Term stereotype associate with
the element.

� If yes, Rational Rhapsody searches for the resource ID in your help map file and it opens
the custom help file.

� If no, Rational Rhapsody opens its main help file.

Note
The GUI element must be applicable to the New Term stereotype for the Rational Rhapsody
profile for your custom help file to work.

For example, if the Auto2009 profile has a New Term stereotype called
Stereotype_Auto2009 and you add an element with this stereotype to a package called
Default, when you open the Features window for one of these stereotypes (for example,
stereotype_auto2009_0) and then you press F1, your custom help should open (assuming
you added the resource IDs for the tabs on this window to your help map file).

However, when you open the Features window for the package and you press F1, you open
the main Rational Rhapsody help file because this package is not associated with the New
Term stereotype call Stereotype_Auto2009.
384 User Guide

Stereotypes
Stereotypes
Defined stereotypes are displayed in the browser. Stereotypes can be owned by both packages and
profiles.

To define a stereotype:

1. In the Rational Rhapsody browser, right-click the profile or package that owns the
stereotype and then select Add New > Stereotype. Rational Rhapsody creates a new
stereotype called stereotype_n under the Stereotypes category.

2. Enter a name for the new stereotype.

3. Double-click the new stereotype to open its Features window:

4. Select one or more metaclasses to which the stereotype is applicable to.

5. For profiles, if you are working in a domain with specialized terminology and notation,
select the New Term check box to create a new metaclass. Since a term is based on an
out-of-box metaclass, it functions in the same manner as its base metaclass. For more
information about new terms, see Special stereotypes.

6. Click OK.

7. Optionally, to set the formatting for the stereotype, right-click the new stereotype name in
the browser and select Format. Use the Format window to define the visual
characteristics for the stereotype.

Associating stereotypes with an element

You associate stereotypes with a model element using the Stereotype field of the Features window
for that element. The Stereotype field includes a list of all the stereotypes defined in the profiles
and packages that can extend the metaclass of that element. For example, if the element is a class,
the Stereotype list includes all the stereotypes in all the profiles and packages that extend that
class.

To associate stereotypes with an element:
Rational Rhapsody 385

Model elements
1. Open the Features window for the element.

2. Open the Stereotype list.

3. Use the check boxes to select the stereotypes you would like to apply to the element.

4. Click the arrow of the list to close the list.

5. Click Apply or OK.

Alternatively, you can select the stereotypes from a tree display, as follows:

1. Open the Features window for the element.

2. Click the Browse button next to the list.

3. Find the stereotypes you would like to apply. Use Ctrl and Shift to select more than one
stereotype.

4. Click OK to close the tree display.

5. Click Apply or OK.

Associate a stereotype with a new term element

Stereotypes can also be applied to elements that are based on “new term” stereotypes. In such
cases, the Stereotype list will not contain the stereotype on which the element is based, nor any
other “new term” stereotypes.
386 User Guide

Stereotypes
Re-ordering stereotypes in a list

Stereotypes can be selected for display at the top of the list.

To change the order in which the selected stereotypes are displayed:

1. Click the Change Stereotype Order button , or right-click the stereotype list when it is
closed and select Edit Order.

2. When the list of selected stereotypes is displayed, use the up and down arrows to reorder
the list.

3. Click OK.

Associating a stereotype with a bitmap

Rational Rhapsody provides a set of predefined bitmaps in the directory <Rational
Rhapsody_installation>\Share\PredefinedPictures. You can associate these icons with
Rational Rhapsody stereotypes and classes.

1. Define a stereotype of your own or select one of the existing stereotypes.

2. Select this stereotype for a class.

3. Rename an existing .bmp file (or add a new file) in the PredefinedPictures directory so
it has the same name as the stereotype.

4. Drag-and-drop the class into an OMD.

5. Right-click the class and then select Display Options.

6. Under Show stereotype, select Icon; change Display name to Name only.

The bitmap is included in the class box.
Rational Rhapsody 387

Model elements
To change the bitmap background to transparent (so only the graphic itself is visible), set the
property General::Graphics::StereotypeBitmapTransparentColor to the RGB value of the
bitmap background.

The following figure shows bitmaps with transparent backgrounds.

Deleting stereotypes

1. Select the stereotype to delete.

2. Click the Delete button.

3. Click OK.
388 User Guide

Stereotypes
Establishing stereotype inheritance

Stereotype inheritance allows you to extend existing stereotypes. Stereotypes can inherit from
from predefined stereotypes or from stereotypes that you have created.

The derived stereotype inherits the following characteristics from its base stereotype:

� Applicability (which elements it can be applied to)
� Properties (this includes locally-overridden properties)
� Tags

While the initial values of properties for the derived stereotype are those that were inherited from
the base stereotype, the values can be overridden for the derived stereotype.

You can add tags to the derived stereotype, and add elements to the list of elements to which it can
be applied.

To establish stereotype inheritance, in the browser, right-click the stereotype that will be the
derived stereotype and select Add New > Super Stereotype

These steps can be repeated in order to create a stereotype that inherits from a number of other
stereotypes.

Special stereotypes

If a stereotype inherits from one of the “special” stereotypes, for example, usage or singleton, it
inherits the special meaning of the base stereotype.

If a stereotype inherits from a “new term” stereotype, then it is also a “new term” stereotype.
However, the “new term” status of the derived stereotype is removed if you do something that
contradicts this status, for example, using multiple inheritance such that the derived stereotype
ends up being applicable to more than one type of element.
Rational Rhapsody 389

Model elements
Use tags to add element information
Tags are used to add information to the model base specific to the domain or platform. You can
access them using the Tags tab of the Features window for Rational Rhapsody model elements.
The Tags tab shows the tag definitions and values associated with the given element. You can
create tags for a stereotype, metaclass, or individual element.

Defining a stereotype tag

When the Tags tab applies to a stereotype, it specifies the tag definition for all elements that use
the given stereotype. To define a new tag:

1. Create the profile to hold the tag if it does not already exist (see Creating a customized
profile).

2. If it does not already exist, define a stereotype for the profile and select <<New>> (see
Stereotypes). The Features window opens.

3. Select the Tags tab to display the window.

4. The Quick Add fields let you define the name for the tag and its default value quickly and
click Add.

5. You might want to enter a more detailed description of the tag in the area above the Quick
Add.

6. Click OK.

The new tag is added to the Tags tab. In addition, it is added to the browser.

This sample tag is listed as Profile::Component::<TagName> (in this example,
Avionics::Component::RiskFactor) because it was defined under the stereotype of the profile.
You would use this tag for components with the corresponding stereotype. For example, if you
have a component named System with the SafetyCritical stereotype, its Tag tab would
include the tag Avionics::SafetyCritical::RiskFactor.

Note
To create a new tag using the browser, right-click the stereotype and select Add New > Tag.
You can rename the tag if you want.
390 User Guide

Use tags to add element information
Defining a global tag

When the Tags tab applies to a metaclass, it hosts all the tag definitions that are available to all
instances of a certain type (anywhere within the model), without the need to set a stereotype. When
you define a tag at the metaclass level, the Applicable to field is read-write so you can select the
appropriate element type from the list.

For example, you could create a new tag to specify prerequisite attributes for all primitive
operations in the project by selecting the Primitive Operation element from the Applicable to
list. This tag will be included automatically in the Tags tab of any primitive operation in the
project as <ProfileName>::<ElementType::<TagName>.

Defining a tag for an individual element

You can set a tag on an individual element to flag it in some way. When you create a tag for an
individual element, it is listed in the tab as LocalTags::Class::<TagName>. For example,
Local::Class::Review.

Adding a value to a tag

To add a value to a tag, click the Ellipsis button at the right end of the box next to the name of
the tag to open the internal text editor.
Rational Rhapsody 391

Model elements
Using the internal text editor
The Rational Rhapsody internal text editor is a simple text editor on which you can enter text or
code (depending on the functionality of the element you are working with). When using the
internal text editor is possible, Rational Rhapsody provides you with access to it. For example, to
open the internal text editor, you can click an Ellipsis button that displays on the Tags tab and the
Properties of the Features window.
392 User Guide

Use tags to add element information
Deleting a tag

You can use the Rational Rhapsody browser or the Features window to delete a tag Select.

To delete a tag using the browser:

1. Right-click the tag on the browser and select Delete from Model.

2. Click Yes to confirm your requested action.

To delete a tag using the Features window:

1. Open the Features window for the element to which the tag belongs and select the Tags
tab.

2. Select the tag you want to delete and click the Delete button in the upper-right corner
of the tab.

Note
If you delete a tag definition in a stereotype, it is removed from the list of tags. However, if
the value for the tag has been overridden, that tag will not be removed.
Rational Rhapsody 393

Model elements
394 User Guide

The Internal code editor

When you choose to edit code, Rational Rhapsody launches the internal code editor. This editor
has a wide range of features to assist with editing.

Unlike external editors, the Rational Rhapsody internal code editor provides dynamic model-code
associativity (DMCA). The DMCA feature of Rational Rhapsody enables you to edit code and
automatically roundtrip your changes back into the model. It also generates code if the model has
changed. If you use an external editor, DMCA will no longer be available.

Window properties
The Window Properties window enables you to customize the Rational Rhapsody internal code
editor window. Note that these window properties are completely separate from Rational
Rhapsody project properties. To open the window, right-click anywhere within the editor window
and select Properties.

Alternatively, press Alt+Enter on the keyboard. You can customize this shortcut using the
Keyboard tab on the Window Properties window. The window contains the following tabs:

� Color/Font
� Language/Tabs
� Keyboard
� Misc

The following sections describe how to use these tabs in detail.

The Color/Font tab

The internal code editor highlights syntax elements for easy editing. The default color settings
follow standard code editing conventions. Using the Color/Font tab, shown in the figure, you can
customize the colors and highlighting settings.

In addition to the default keywords (such as class and public), you can specify the additional
language-specific keywords to be color-coded by the Rational Rhapsody internal code editor by
Rational Rhapsody 395

The Internal code editor
setting the value of the property General::Model::AdditionalLanguageKeywords to the
comma-separated list of additional keywords you want to have color-coded.

Changing the default colors
The following table lists the default color and highlighting settings.

To change the colors or highlighting:

1. Select the Color/Font tab on the Windows Properties window.

2. Select a code element from the Item list.

3. Choose a text color by selecting it in the Foreground list.

4. Choose a highlighting color by selecting it in the Background list. Note that background
highlighting is unavailable for all elements.

5. Click Apply to apply your changes and close the window.

Item Foreground Background

Bookmarks Default Default

Comments Green Default

Keywords Blue Default

Left Margin White N/A

Numbers Teal Default

Operators Red Default

Scope Keywords Blue Default

Strings Purple Default

Text Black Default

Window Default N/A
396 User Guide

Window properties
Changing the default font
By default, the internal code editor uses Courier New, regular, 10-point font to display text. It
supports any fixed-pitch font. When you change the font, it affects the appearance of all text in the
editor.

To change the font:

1. In the Font area of the Color/Font tab, click Change. The Font window opens, as shown
in the following figure.

2. As wanted, select new values for the Font, Font style, and Size fields. You can view the
effects of your changes in the Sample field.

3. Click OK twice.
Rational Rhapsody 397

The Internal code editor
The Language/Tabs tab

The Language/Tabs tab, shown in the following figure, controls the indentation and tab size used
by the editor.

The Language/Tabs tab contains the following fields:

� Auto indentation style specifies whether lines are automatically indented according to
either the language scope or to the previous line in the file.

The possible values are as follows:
– Off turns off automatic indentation.
– Follow language scoping indents the code according to the language

specifications. This is the default setting.
– Copy from previous line uses the indentation established in the previous line

of code.
� Tab specifies how many spaces make up a tab space.

If you want the tab character converted to spaces after insertion, check the Convert
tabs to spaces while typing box.

Note: Changes to tab size do not affect existing tab spacing. The new size applies to
tabs entered after the change is made.

� Language specifies your programming language.

If you want any case errors corrected automatically for you, select the Fixup text case
while typing language keyword check box. For example, if this option is selected and
398 User Guide

Window properties
you typed “WHile” as the keyword, the internal code editor automatically corrects the
case of the keyword to read “while.”

The Keyboard tab

The Keyboard tab, shown in the following figure, allows you to create shortcuts.

The edit commands are started using keyboard shortcut keys. Mapping edit commands to easy-to-
use and easy-to-remember keyboard shortcuts reduces the time and difficulty of editing text. Most
commands have been mapped to a default shortcut. You can modify all shortcuts from the
Keyboard tab of the Window Properties window.
Rational Rhapsody 399

The Internal code editor
Assigning custom keyboard mappings
The internal code editor provides customizable keyboard mappings so you can create your own
shortcuts for edit commands, or assign shortcuts to commands that do not have a default assigned.

To assign keyboard shortcuts:

1. On the Keyboard tab, select an edit command from the Command list.

If a shortcut has been assigned to this command, it is displayed in the
Key Assignments field.

A short description of the command is displayed in the Description field.

2. Click in the New Key Assignment box to activate it for editing.

3. Use the keyboard to type the shortcut key sequence. If you make a mistake, click Reset
and type the sequence again.

4. Click OK.

Default keyboard mappings
The following table lists the default edit commands that have been assigned shortcut keys.

Command Keystroke

BookmarkNext F2
BookmarkPrev Shift + F2
BookmarkToggle Ctrl + F2
CharLeft Left

CharLeftExtend Shift + Left

CharRight Right

CharRightExtend Shift + Right

Copy Ctrl + C
Copy Ctrl + Insert
Cut Shift + Delete
Cut Ctrl + X
CutSelection Ctrl + Alt + W
Delete Delete
DeleteBack Backspace
400 User Guide

Window properties
DocumentEnd Ctrl + End
DocumentEndExtend Ctrl + Shift + End
DocumentStart Ctrl + Home
DocumentStartExtend Ctrl + Shift + Home
Find Alt + F3
Find Ctrl + F
FindNext F3
FindNextWord Ctrl + F3
FindPrev Shift + F3
FindPrevWord Ctrl + Shift + F3
FindReplace Ctrl + Alt + F3
GoToLine Ctrl + G
GoToMatchBrace Ctrl +]
Home Home
HomeExtend Shift + Home
IndentSelection Tab
LineCut Ctrl + Y
LineDown Down

LineDownExtend Shift + Down

LineEnd End
LineEndExtend Shift + End
LineOpenAbove Ctrl + Shift + N
LineUp Up

LineUpExtend Shift + Up

LowercaseSelection Ctrl + U

PageDown Next

PageDownExtend Shift + Next

PageUp PRIOR

PageUpExtend Shift + Prior

Command Keystroke
Rational Rhapsody 401

The Internal code editor
Paste Ctrl + V
Paste Shift + Insert
Properties Alt + Enter
RecordMacro Ctrl + Shift + R
Redo Ctrl + A
SelectLine Ctrl + Alt + F8
SelectSwapAnchor Ctrl + Shift + X
SentenceCut Ctrl + Alt + K
SentenceLeft Ctrl + Alt + Left

SentenceRight Ctrl + Alt + Right

SetRepeatCount Ctrl + R
TabifySelection Ctrl + Shift + T
ToggleOvertype Insert
ToggleWhitespaceDisplay Ctrl + Alt + T
Undo Ctrl + Z
Undo Alt + Backspace
UnindentSelection Shift + Tab
UntabifySelection Ctrl + Shift + Space
UppercaseSelection Ctrl + Shift + U
WindowScrollDown Ctrl + Up

WindowScrollLeft Ctrl + Page Up
WindowScrollRight Ctrl + Page Down
WindowScrollUp Ctrl + Down

WordDeleteToEnd Ctrl + Delete
WordDeleteToStart Ctrl + Backspace
WordLeft Ctrl + Left

WordLeftExtend Ctrl + Shift + Left

WordRight Ctrl + Right

WordRightExtend Ctrl + Shift + Right

Command Keystroke
402 User Guide

Window properties
The Misc tab

The Misc tab, shown in the following figure, controls numerous miscellaneous attributes for the
editor.

The following sections describe how to use some of the more interesting features available on the
Misc tab.

Using split views
You can split the editor window into up to four simultaneous views of one file, where each view
scrolls independently from the others. You can make changes in any view and all other views are
automatically updated.

To allow splitting of the screen into two horizontal panes, check the Allow Horizontal Splitting
box on the Misc tab. To allow splitting of the screen into two vertical panes, check the Allow
Vertical Splitting box.

To split the screen horizontally:

1. Click the horizontal splitter at the left end of the horizontal scroll bar (see the figure).

2. While holding down the mouse button, drag the splitter to the right until the new pane
displays.
Rational Rhapsody 403

The Internal code editor
To split the screen vertically:

1. Click the vertical splitter at the top of the vertical scroll bar.

2. While holding down the mouse button, drag the splitter downward until the new pane
displays.

Horizontal splitter

Vertical splitter
404 User Guide

Mouse actions
Mouse actions
Use the mouse to select and edit text in the editor window. The following table lists the available
mouse actions.

Using Undo and Redo
The internal code editor allows you to undo any number of operations, and redo the previous
operation.

The edit commands for undo and redo are as follows:

� Undo use Alt+Backspace, or Ctrl+Z
� Redo use Ctrl+A

For information on editing keyboard shortcuts for these commands, see Assigning custom
keyboard mappings.

You can set the maximum number of undo operations from the Window Properties window; the
default is to allow an unlimited number of undo operations.

To set the maximum number of undo actions:

1. On the Misc tab, in the Maximum Undoable Actions section, select Limited to.

2. In the adjacent box, type the maximum number of undo actions you want to allow.

3. Click OK.

Operation Mouse Action

Display menu Right-click.

Select entire line Click in the left margin next to the target line of text.

Select multiple lines Click in the left margin next to a line of text and drag the
mouse up or down

Select entire word Double-click anywhere in the word.

Move text (drag-and-drop) Select text; hold down the left mouse button while dragging
the selection to the new location.

Copy text (drag-and-drop) Select text; press Ctrl and hold down the left mouse button
while dragging the selection to the new location.
Rational Rhapsody 405

The Internal code editor
Using the search feature of the internal code editor
The internal code editor contains a useful search feature that finds keywords within the current
file.

To search for a keyword:

1. Right-click and select Find.

2. In the What box, type the search string.

3. Select one of the following options:

� Match whole word only finds instances where the search term is the whole word.
� Match case finds matching instances that have the same case as the search term.
� Direction choose Up to search text above the cursor position, or Down to search

text below the cursor position.
4. Click Find to find the next instance of the search term or click Mark All to place a

bookmark in the left margin next to all instances matching the search term.
406 User Guide

Bookmarks
Bookmarks
The bookmark feature places a blue triangular marker in the left margin to identify a line of text.

To place a bookmark in the margin, use the BookmarkToggle edit command. The default shortcut
for BookmarkToggle is Ctrl+F2.

Repeat the BookmarkToggle command to remove the bookmark.

The bookmark commands are as follows:

� BookmarkToggle use Ctrl+F2
� BookmarkNext use F2
� BookmarkPrev use Shift+F2
� BookmarkJumpToFirst is unassigned
� BookmarkJumpToLast is unassigned
� BookmarkClearAll is unassigned

For instructions on editing the keyboard shortcuts for these commands, see Assigning custom
keyboard mappings.
Rational Rhapsody 407

The Internal code editor
Printing from the internal code editor
To print a file from the internal code editor:

1. Make sure that the editor window containing the file you want to print is the active
window in Rational Rhapsody.

2. From the Rational Rhapsody File menu, select Print.

3. In the Print window, select the printing options, then click Print.
408 User Guide

Graphic editors
The Rational Rhapsody graphic editors for the different UML diagrams provide the tools needed to
create different views of a software model. Each graphic editor is described in detail in subsequent
sections of this guide. This section describes the menus and features that are common to all the
graphic editor.

Create new diagrams
You can use the Diagrams toolbar, Edit menu, Tools menu, or right-click menu commands in the
browser to create a new UML diagram.

Creating new statecharts

Statecharts describe the behavior of a particular class. They can be added only at the class level. A
class can have either a statechart or an activity diagram, but not both.

To create a new statechart, right-click a class in the Rational Rhapsody browser and select Add
New > Diagrams > Statechart. A new (blank) diagram is displayed in the drawing area.

Note
Add New > Diagrams is the default menu command structure in Rational Rhapsody. It can
be changed by users. This topic assumes that all defaults are in place.

Creating new activity diagrams

Activity diagrams describe the behavior of a particular class. They can be added only at the class
level. A class can have either a statechart or an activity diagram, but not both.

To create a new activity diagram, right-click a class in the Rational Rhapsody browser and select
Add New > Diagrams > Activity. A new (blank) diagram is displayed in the drawing area.

Note
Add New > Diagrams is the default menu command structure in Rational Rhapsody. It can
be changed by users. This topic assumes that all defaults are in place.
Rational Rhapsody 409

Graphic editors
Creating all other diagram types

The other diagrams can be grouped under the project or a package in the project hierarchy.

To create a new diagram other than a statechart or activity diagram:

1. Select the appropriate diagram type from Tools > Diagrams or click the appropriate
button on the Diagrams toolbar:

2. From the Open Diagram window, select the project or a package where you would like to
add the diagram.

3. Click the New button. The New Diagram window opens.

4. Type a name for the new diagram in the Name box.

5. Depending on the diagram type, the New Diagram window can contain the following
options:

a. Populate Diagram, which automatically populates the diagram with existing model
elements. This option applies to object model, use case, and structure diagrams. For
more information, see Automatically populating a diagram.

b. Operation Mode specifies whether to create an analysis SD, which enables you to
draw message sequences without adding classes and operations to the model; or a
design SD, in which every message you create or rename is realized to an operation
in the static model. For more information, see Sequence diagrams.

6. Click OK. A new (blank) diagram is displayed in the drawing area.

Object Model Diagram Component Diagram

Structure Diagram Deployment Diagram

Use Case Diagram Collaboration Diagram

Sequence Diagram Panel Diagram
410 User Guide

Opening existing diagrams
Opening existing diagrams
To open an existing UML diagram, double-click the diagram in the Rational Rhapsody browser.
The diagram opens in the drawing area.

Alternatively, you can:

1. Click the appropriate button in the Diagrams toolbar to open the Open <Diagram Name>
window.

2. Depending on the type of diagram you want to open:

� For statecharts and activity diagrams, select the diagram you want to open and
click OK.

� For all other diagrams, select the diagram (if there are any) you want to open and
click Open.

As with other Rational Rhapsody elements, the Features window for the diagram enables you to
edit its features, including the name, stereotype, and description. For more information, see The
Features window.

Navigating forward from opened diagram to opened diagram

To go forward from open diagram to open diagram, choose Window > Forward.

In addition, you can go to a currently opened diagram by selecting it from the last section of the
Windows menu.

Navigating backwards from opened diagram to opened diagram

To go backwards from open diagram to open diagram, choose Window > Back.

In addition, you can go to a currently opened diagram by selecting it from the last section of the
Windows menu.
Rational Rhapsody 411

Graphic editors
Deleting diagrams
In most cases, you can delete existing UML diagrams only from the Rational Rhapsody browser.
However, you can delete statecharts and activity diagrams from both the browser and from the
Tools menu.

To delete an existing diagram:

1. Select the diagram from the browser.

2. Right-click and select Delete from Model, or press the Delete key.

3. Click Yes to confirm your action.

Automatically populating a diagram
When you create a new use case, object model, or structure diagram, you can use the Populate
Diagram feature to populate the diagram automatically with existing model elements. You can
select which model elements to add to the diagram. Rational Rhapsody automatically lays out the
elements in an orderly and easily comprehensible manner.

Relation type styles

Once the diagram has been created, you can edit it by adding or deleting elements to tailor it to
your needs. This feature is particularly useful for quickly creating diagrams after reverse
engineering or importing a model. When you automatically populate a new diagram, Rational
Rhapsody offers a choice of layout style. You can select either of these styles for any relation type:

� Hierarchical
The elements are organized according to levels of inheritance, with lower levels inheriting
from upper levels. Each layer is organized to minimize the crossing and bending of
inheritance arrows and is individually centered in the diagram. You can choose this style
for any type of relation. If there are no classes or inheritance, the elements might appear
organized as layers, depending on the direction of the populated diagrams.
412 User Guide

Automatically populating a diagram
� Orthogonal
The entire drawing is made as compact as possible. Classes are placed to minimize the
intersection, length, and bending of relation arrows. You can use this style for any
relation, including inheritance relations.

Creating and populating a new diagram

To create a new, automatically populated diagram:

1. In the browser, right-click an existing use case, object model, or structure diagram
category where you want to create another of the same diagram and select Add New
<element type> (for example, Add New Object Model Diagram) to open the New
Diagram window.

2. Type the Name of the new element.

3. Select the Populate Diagram check box and click OK to open the Populate Diagram
window.

4. In the Create Contents Of Diagram Using group, indicate how you would like Rational
Rhapsody to create the contents of the diagram:

� Relations Among Selected populates the diagram only with the selected elements
and the relations between them
Rational Rhapsody 413

Graphic editors
� Relations From/To Selected populates the diagram with the selected elements,
their incoming and outgoing relations, and the model elements that complete
these relations

� Relations From Selected populates the diagram with the selected elements, their
outgoing relations, and the model elements that complete the relations

� Relations To Selected populates the diagram with the selected elements, their
incoming relations, and the model elements that complete the relations

5. In the Types Of Relations To Be Used group, select which types of relations you would
like Rational Rhapsody to use when creating the contents of the diagram:

� OMDs and structure diagrams: Instance, Association/Aggregation, Inheritance,
Dependency, Link, and Anchor/Annotations

� UCDs: Association, Generalization, and Dependency, and Anchor/
Annotations

6. In the Selection box, place a check mark next to each element you want to include in the
new diagram. To select a package without selecting the elements it contains, right-click
the package.

7. In the Preferred Layout Style group, select the type of layout you would like Rational
Rhapsody to use when creating the diagram. If you select None, Rational Rhapsody
automatically chooses the best layout style according to the type of relations you have
chosen to display.

8. Click OK. The new diagram displays in the drawing area with all of the selected elements
added. You can then begin to add information to the new diagram.

Note
When auto-populating a diagram, if you want Rational Rhapsody to populate each class so
it shows its attributes and operations, set the ObjectModelGE::Class::ShowAttributes
and ObjectModelGE::Class::ShowOperations properties to All in the scope of the
package or project.
414 User Guide

Automatically populating a diagram
Automatically populating existing diagrams

Use the Populate Diagram window to automatically add elements and their relations to an existing
and already populated object model, use case, or structure diagram. To open this window, do any
of the following actions:

� Right-click a blank spot on the diagram in its drawing area and select Populate or choose
Layout > Populate.

� Right-click the diagram on the Rational Rhapsody browser and select Populate.

See the details for the Populate Diagram window in Creating and populating a new diagram.

Note
Rational Rhapsody does not change the location of already existing elements. it just adds
the new elements.

About reverse engineering object model diagrams
During reverse engineering with the Populate Diagrams check box selected, Rational Rhapsody
creates object model diagrams visualizing the elements added during reverse engineering. If you
run reverse engineering subsequently with the Merge existing package option, Rational
Rhapsody updates the visualized diagrams to show the new elements added and the dependencies
between the diagram elements.

Limitations of populating existing diagrams automatically
The Populate feature does not support the adding of ports, though existing ports on the diagram
will be preserved.
Rational Rhapsody 415

Graphic editors
Property settings for the diagram editor
The properties under General::Graphics control how features of the diagram editors operate.
The following table lists the available properties.

Property Description

AutoScrollMargin Controls how responsive the autoscrolling functionality is

ClassBoxFont Specifies the default font for new class names

CRTerminator Specifies how multiline fields in notes and statechart names
should interpret a carriage return (CR)

DeleteConfirmation Specifies whether confirmation is required before deleting a
graphical element from the model

ExportedDiagramScale Specifies how an exported diagram is scaled and whether it
can be split into separate pages for better readability

FixBoxToItsTextuals Specifies whether to resize boxes automatically to fit their text
content (such as names, attributes, or operations)

grid_color Specifies the default color used for the grid lines

grid_snap Specifies whether the Snap to Grid feature is available for
new diagrams, regardless of whether the grid is actually
displayed

grid_spacing_horizontal Specifies the spacing, in world coordinates, between grid
lines along the X-axis when the grid is available for diagrams

grid_spacing_vertical Specifies the spacing, in world coordinates, between grid
lines along the Y-axis when the grid is available for diagrams

HighlightSelection Specifies whether items should be highlighted when you
move the cursor over them in a diagram

LandScapeRotateOnExport Rotates an exported metafile so it can fit on a portrait page

MaintainWindowContent Specifies whether the viewport (the part of a diagram
displayed in the window) is kept for window resizing
operations when you change the zoom level, providing
additional space in the diagram in a smooth manner

MarkMisplacedElements Specifies whether misplaced elements are marked in a
special way. Previously, misplaced elements were shown with
a small X in the upper corner

MultiScaleByOne Specifies whether objects in the diagram keep the same
amount of space between them when you scale them
(Cleared)

PrintLayoutExportScale Specifies the factor by which the Windows metafile format
(WMF) files are scaled down in order to fit on one page

RepeatedDrawing Specifies whether repetitive drawing mode (stamp mode) is
available
416 User Guide

Setting diagram fill color
You can set these properties by selecting File >Project Properties.

For detailed information on how the General::Graphics properties affect the drawing of your
model, see the definitions displayed in the Properties tab of the Features window.

Setting diagram fill color
To set the color of the diagram background:

1. Right-click in the diagram window and then select Diagram Fill Color.

2. Select a color.

Create elements
The diagram editors enable you to create a number of elements to enhance your model. To create
any kind of element, you must first select one of the drawing tools on it diagram editor toolbar.

When Rational Rhapsody is in drawing mode, the cursor includes a tooltip showing an icon of that
element. For example, the following cursor is displayed when you are drawing a class.

The items you can draw in the diagram editors fall into two main categories: boxes and lines. In
addition, Rational Rhapsody enables you to create freestyle shapes. The following sections
describe how to create these elements.

ShowEdgeTracking Specifies whether to show the “ghost” edges of a linked
element when you move it

ShowLabels Specifies whether to display labels instead of names in
diagrams

StereotypeBitmap
TransparentColor

Creates a “transparent” background for bitmaps associated
with stereotypes (so only the graphics are displayed in the
class box)

Tool_tips Enables the display of tooltips

Property Description
Rational Rhapsody 417

Graphic editors
Repetitive drawing mode

By default, each time you want to add an element to a diagram, you must first click the appropriate
icon in the Diagram Tools.

In some cases, however, you might want to add a number of elements of the same type. To
facilitate this, Rational Rhapsody includes a repetitive drawing mode.

To enter repetitive drawing mode, click the “stamp” icon in the Layout toolbar. Now, after
choosing a tool in the Diagram Tools, you will be able to continue drawing elements of that type
without selecting the tool again each time. If you choose a different tool from the toolbar, then
Rational Rhapsody will allow you to draw multiple elements of the newly selected type.

After you click the icon, Rational Rhapsody remains in repetitive drawing mode until you turn it
off. To turn off the repetitive mode, just click the "stamp" icon a second time.

Drawing boxes

Each editor contains tools to draw boxes. The following table lists the box elements available with
each editor.

To draw a box:

1. Select a box tool.

2. Move the cursor to the drawing area, and do one of the following actions:

a. Quick-Draw where you can click once to draw a box with the default size, shape, and
name.

Diagram Editor Box Elements

Object model Classes, packages, composite classes, objects,
files, actors, and annotations

Use case Use cases, actors, systems boundary boxes,
packages, and annotations

Component Components, files, folders, and annotations

Deployment Nodes, components, and annotations

Collaboration Objects, multi-objects, actors, and annotations

Statechart States and annotations

Activity Actions, subactivities, action blocks, object nodes,
swimlane frames, connectors, and annotations

Structure Composite classes, objects, and annotations
418 User Guide

Create elements
b. Drag where to draw classes, simple classes, and packages, you click-and-drag to the
opposite corner and release. If you hold down the Shift key, you create a square box.

Note that the cursor changes to the icon of whatever you are drawing (class, object,
package, and so on).

3. When you complete the box, the element is given a default name. To rename it, click the
text to enable editing. Type the new name, then press Enter or click outside the box.

4. Click anywhere outside the box to start a new box, or click the Select tool to stop creating
boxes.

To add an existing box element to a diagram, you can simply drag-and-drop the element from the
browser to the drawing area.

Drawing arrows

Arrows connect boxes, representing the connections between different boxes in the diagram. For
example, associations and dependencies are two types of arrows that can be drawn in use case
diagrams.

You can draw arrows in the following ways:

� Drag where you click inside the source box, drag, and release the mouse inside the
destination box.

� Simple arrow clicks where you click inside the source box and click the border of the
destination box.

� Multiple clicks where you click inside the source box, click any number of times to mark
the control points on the path of the arrow, and double-click inside the destination box.
You cannot add control points to a message arrow because it allows only two clicks.
Another point displays immediately to show where the next arrow will start.

Note that the cursor changes when you create arrows:

� If you click a valid element for the destination of the arrow (for example, you are drawing
a activity flow and you click a class), the cursor changes to crosshairs in a small circle.

� If you try to connect an arrow to an invalid element, Rational Rhapsody displays a “no
entry” symbol to show that you cannot connect the arrow to that element, as shown in the
following figure.
Rational Rhapsody 419

Graphic editors
Changing the line shape
Rational Rhapsody has three line shapes that you can use when you are drawing arrows in the
graphic editors. You can set a unique line shape for each line; the default line shape varies by
element.

The Edit menu contains the Line Shape option, which specifies your preferred line shape for the
specified arrow. You can also access the Line Shape option by right-clicking an arrow or line in a
diagram.

The possible values for the line shape are as follows:

� Straight changes the line to a straight line.
� Spline changes the line to a curved line.
� Rectilinear changes the line to a group of line segments connected at right angles.
� Re-Route removes excess control points to make the line more fluid.

Note
You can use the line_style property to change the line shape (straight, spline, rectilinear)
for a line type (for example, Link, Dependency, Activity Flow, Generalization) for a
diagram type (for example, Object Model, Activity, Statechart) by project. For example, in
your Handset project, you can use the ObjectModelGe::Depends::line_style property to
set Dependency lines for Object Model diagrams to be a spline shape. You should set this
property when you begin a project, as it takes effect going forward.

In addition, you can customize a line by adding/removing user-defined points to an arrow element.

To add points to an arrow element:

1. In the diagram, select the line you want to change.

2. Right-click and select User Points.

3. Depending on what you want to do:

� To add a user-defined point, click Add. Note that the new point is added at the
location where you accessed the menu.

� To remove a point, click Delete. Rational Rhapsody removes the point closest to
the location where you accessed the menu.

Note that you can reshape the line when the cursor changes to the icon shown in the following
figure:

Simply drag the line to reshape it.
420 User Guide

Create elements
Naming boxes and arrows

Use either of the following methods to name boxes and arrows:

� When you draw a box or a line, the cursor displays in the name field so you can edit it
immediately. Type a name and press Ctrl+Enter. Note that names, except for activity
flow labels, are limited to one line. To add an extra line to a activity flow label, press
Enter.

� For activity flows in statecharts and activity diagrams, you can select the Name tool. The
cursor changes from an arrow to a pen. Click to select the name position, type a name, and
click outside the element to finish.

To edit an existing name, do one of the following actions:

� Double-click the name to enable editing, and type a new name.
� Open the Features window and edit the Name field on the General tab.

Note
If you rename a class box, you are renaming the class in the model.
Rational Rhapsody 421

Graphic editors
Draw freestyle shapes

Use the Free Shapes tool, which are displayed in its own section on the Diagram Tools panel, to
draw elements freehand in a diagram. To display or hide the Diagram Tools panel, choose View >
Toolbars > Drawing.

The Free Shapes toolbar provides tools that enable you to customize your diagrams using
freestyle shapes and graphic images.

The Free Shapes toolbar includes the following tools:

Tool Name Description

Line Draws a straight line between the selected endpoints.

Polyline Draws a polyline using multiple points.

Polygon Draws a polygon.

Rectangle Draws a rectangle.

Polycurve Draws a curve.

Closed Curve Draws a closed, curved shape within the bounds of the specified shape.

Ellipse Draws a circle or ellipse.

Text Draws free text.

Image Enables you to import an image into the diagram.
422 User Guide

Create elements
The following figure shows examples of each freestyle shape.

The following sections describe how to draw these freestyle shapes.

Drawing lines and polylines
To draw a simple line:

1. Click the Line tool.

2. Click in the diagram and drag the cursor away from the endpoint to create the line. The
line is shown as a dashed line until you click to end the line.

If you click too early so only the square endpoint is displayed, click the endpoint and
redraw the line.

To draw a polyline using several points:

1. Click the Polyline tool.

2. Click to place the first endpoint.

3. Drag the cursor away from the endpoint, clicking once to place each subsequent point in
the polyline.

4. and once to place each point along the line.

5. Double-click to end the line.
Rational Rhapsody 423

Graphic editors
Drawing polygons
To draw a polygon:

1. Click the Polygon tool.

2. Click twice in the diagram to define two endpoints of a side, then drag and click to define
the polygon.

For example, to draw a triangle, simply define one side and drag the cursor to form the
triangle.

3. Click twice to complete the polygon.

Drawing rectangles
To draw a rectangle:

1. Click the Rectangle tool.

2. Click once in the diagram. By default, Rational Rhapsody draws a square with the
selection handles active.

3. Use the selection handles to create a rectangle.
424 User Guide

Create elements
Drawing polycurves and closed polycurves
To create a curve:

1. Click the Polycurve tool.

2. In the diagram, click to define several points that define the curve. As you define points
(and, therefore, line segments), the resulting curve is drawn as a dashed line.

3. Double-click to create the curve.

Similarly, the Closed Polycurve tool creates a closed polycurve. As you define line segments, a
dashed line shows the shape of the resulting closed curve.
Rational Rhapsody 425

Graphic editors
Double-click to create the closed curve.

Drawing ellipses and circles
To draw an ellipse:

1. Click the Ellipse tool.

2. Click once in the diagram to place the left-most point of the ellipse.

3. Holding down the mouse button, drag the cursor to create the ellipse or circle.

4. Release the mouse button to complete the shape.

Drawing text
To create floating text:

1. Click the Text tool.

2. Click once in the diagram to place the text box.

3. Type the wanted text.

4. Press Enter for a new line; press Ctrl-Enter to place the text and dismiss the text box.

To change the text color, font, size, and so on, right-click the text and select Format. For more
information on changing text attributes, see Change the format of a single element.
426 User Guide

Create elements
Adding images
To add an image to your diagram:

1. Click the Image tool. The Open window displays.

2. Navigate to the directory that contains the image you want to add to the diagram.

Note
The Rational Rhapsody distribution includes numerous bitmaps for common design
elements, such as CDs, timeouts, displays, and so on. These images are available in
Share\PredefinedPictures under the root installation directory.

3. Select the image to add.

4. Move the cursor to where you want to add the image, then click once to place it.

Deleting freestyle shapes
To delete a freestyle shape or graphic image:

1. In the diagram, select the shape to delete.

2. Click the Delete tool.
Rational Rhapsody 427

Graphic editors
Placing elements using the grid
You can display a grid and rulers to assist with positioning elements in all the graphic editors
except the sequence diagram editor.

To display the grid, click the Grid tool or select Layout > Grid > Show Grid.

Setting the grid properties

To set the attributes of the grid, select Layout > Grid > Grid Properties. The following figure
shows the resultant window.

You can set the following properties for the grid:

� Grid Visible specifies whether the grid is displayed.
� Grid Color specifies the color used for the grid dots. The default color is black.
� Grid Spacing specifies the horizontal and vertical spacing of the grid points, in inches.

Snapping to the grid

To move an element you are drawing automatically to the closest grid points, select Layout >
Grid > Snap to Grid.

Displaying the rulers

To display rulers in the drawing area, click the Rulers tool or select Layout > Show Rulers. The
following figure shows an OMD with both the grid and rulers available.
428 User Guide

Autoscroll
Autoscroll
By default, Rational Rhapsody automatically scrolls the diagram view while you are busy doing
another operation (such as moving an existing box element or drawing new edges by dragging)
that prevents you from doing the scrolling yourself. The autoscroll begins scrolling when the
mouse pointer enters the autoscroll margins, which are virtual margins that define a virtual region
around the drawing area (starting from the window frame and going X number of points into the
drawing area).

You can change the size of the autoscroll margins by setting the property
General::Graphics::AutoScrollMargin. This property defines the X number of points the
margins enter into the drawing area. If you specify a large number for this property, the margin
becomes bigger, thereby making the autoscroll more sensitive.

Set this property to 0 (no scroll region) to disable autoscrolling.
Rational Rhapsody 429

Graphic editors
Select elements
There are many ways Rational Rhapsody enables you to select elements in diagrams. You can
select an element using the mouse or using a variety of menu commands. Once you have selected
an element, you can edit it depending on what kind of element it is.

Selecting elements using the mouse

To select an element using the mouse:

1. Click the Select tool. When you move the mouse over the diagram, a standard mouse
pointer is displayed.

2. Click an element. When you select an element, all other elements are deselected.

a. To select a line or an arrow, click anywhere on it.

You can select the control point of an arrow only by clicking and dragging. For more
information, see Clicking-and-dragging.

b. To select a box, click anywhere inside it or on its border.

Selecting elements using the edit menu

Use Edit > Select to access the following commands for making selections:

� Edit > Select > Select All selects all elements in the diagram.
� Edit > Select > Select Next selects the element next to the current one, when two

elements are close together. This lets you easily navigate to each element in a diagram,
one at a time.

� Edit > Select > Select by Area enables you to draw a selection box around a group of
elements within a container element (for example, classes in a package).

� Edit > Select > Select Same Type selects all of the elements in the diagram that are of the
same type as the element currently selected. If more than one type of element is selected,
then all the elements of the different selected types will be selected.
430 User Guide

Select elements
Selection handles

When an element is selected, selection handles are displayed around its edges. The following
diagrams selection handles on different elements.

Boxes have markers on each corner and usually on each side.

Arrows and lines have a marker on each end and on each control point on the line.

Non-rectangular elements, such as use cases or actors, and groups of elements have an invisible
bounding box with eight visible handles.

Note
The cursor changes depending on how the selected element will be changed. If the cursor is
displayed as a four-pointed arrow, the selected element can be moved to a new location. If
the cursor changes to a two-headed arrow, you can resize the element.

Selecting multiple elements

There are two ways to select more than one element:

� Shift+Click
� Clicking-and-dragging

Note that the last element selected in a multiple selection is distinguished by gray selection
handles. Gray handles indicate that the element is an anchor component. Rational Rhapsody uses
anchor components as a reference for alignment operations. If you want to use a different
Rational Rhapsody 431

Graphic editors
component as the anchor, hold the Ctrl key down and click another element within the selection.
Rational Rhapsody transfers the gray handles from the previous element to the selected element

For more information, see Arranging elements.

Shift+Click
1. Click the first element you want to select.

2. Press and hold down the Shift key, then click the rest of the elements you want to select.

Note
To remove an element from the selection group, press and hold down the Shift key and click
the element you want to remove from the selection.

Clicking-and-dragging
To make a multiple selection using the click-and-drag method:

1. Move the mouse pointer to a blank area of the diagram.

2. Press and hold down the left mouse button.

3. Drag to surround the area that contains the elements you want to select.

4. To add more elements to the selection, hold down the Shift key while you click-and-drag
again.
432 User Guide

Edit elements
Edit elements
You can edit elements using the following methods:

� Features window. For detailed information, see The Features window.
� Right-click menu. When you select an element in a diagram and right-click, a menu lists

common operations you can perform on that element. Many of these options are element-
specific, but some of the common operations are as follows:

– Features or Features in New Window displays the Features window for the
specified element.

– Display Options enables you to specify how elements are displayed in the
diagram.

– Cut removes the element from the view and saves it to the clipboard.
– Copy saves a copy of the element to the clipboard and keeps it in the view.
– Copy with Model copies an element such that when it is pasted into a

diagram, a new element will be created in the model with the exact same
characteristics as the original element.

– Remove from View removes the specified element from the diagram but not
from the model.

– Delete from Model deletes the element from the model.
– Format changes the format used to draw the element (color, line style, and so

on). For more information, see Change the format of a single element.
– Line Shape enables you to change the shape of the line. For more

information, see Changing the line shape.
– User Points enables you to add additional points to, or delete points from, a

line element. This functionality enables you to customize the shape of the
line. For more information, see Changing the line shape. Element-specific
options are described with the individual elements.

� Manipulating the element in the diagram. Use any of these methods to edit an element
in a diagram:

– Resize it.
– Move its control points.
– Move it to a new location.
– Copy it.
– Arrange it relative to one or more elements.
– Remove it from the view.
– Delete it from the model.
– Edit any text associated with it.
Rational Rhapsody 433

Graphic editors
Resizing elements

You can resize an element by stretching its sides. You can resize only one element at a time.

To resize an element:

1. Select the element.

2. Move the mouse pointer over one of its selection handles. When the mouse pointer is over
a selection handle, it changes to a double-pointed arrow. If you are editing a line, you can
also move the mouse pointer over a line segment.

3. Click-and-drag the mouse until the element is the wanted size and shape. If you want the
element to maintain its proportions as you resize it, hold down the Shift key before you
begin to click-and-drag.

If the box you are editing contains text, the text wraps to fit inside the boundaries of the new box.
If you are editing a box that is connected to other lines or contains other elements, the lines and
elements move and resize according to the box as you stretch it. If you hold down the Shift key,
you can stretch diagonally while maintaining the scale for the element.

To prevent elements from being resized when you resize their parent, press and hold the Alt key
while you click-and-drag with the mouse. Alternatively, you can select the menu item Edit >
Move/Stretch Without Contained before resizing the element.

To make Rational Rhapsody automatically enlarge the text box of a box element to fit the size of
an element name, select the Expand to fit text in the menu. Alternatively, select Layout >
Expand to fit text. Note that once you apply this feature to an element, it remains available until
you resize the element.

To use this functionality as the default behavior, set the property
General::Graphics::FitBoxToItsTextuals property to Checked.

Moving control points

If you have placed control points on arrows, you can select a control point and move it individually
to change the curve of the line. This is particularly effective within statecharts where activity flows
are rendered as spline curves.

See the description of the Reroute command in Changing the line shape for information on
removing extra control points.
434 User Guide

Edit elements
Moving elements

You can move an element by clicking on it and dragging it to a new location. You can move
several elements simultaneously.

To move an element:

1. Select the element you want to move.

2. Move the mouse pointer over the element. The cursor changes to a four-pointed arrow,
which denotes a move operation.

3. Click-and-drag the element to a new location.

Note the following information:

� To prevent elements from being moved when you move their parent boxes, hold down the
Alt key while you click-and-drag with the mouse. Alternatively, you can select the menu
item Edit > Move/Stretch Without Contained before moving the element.

� If you hold down the Ctrl key when moving an element, a copy of the selected element is
created.

� If you hold the Shift key down when moving an element, you can move it only
horizontally or vertically.

Maintain line shape when moving or stretching elements

When elements are stretched or moved, Rational Rhapsody maintains the relationship between
lines and boxes as much as possible to preserve diagram layout.

When moving or stretching more than one element at the same time, lines maintain their ratio to
the other elements. That is, the line stretches and moves along with the other elements. This can be
problematic for straight lines, which do not remain straight.

To maintain straight lines when moving or stretching boxes, move the boxes one at a time.

When moving or stretching only one box, lines that connect with vertical boundaries of the box
maintain their Y-coordinate, and lines that connect with horizontal boundaries of the box maintain
their X-coordinate. The coordinates change only when the box is moved to the extent that
maintaining those coordinates is impossible. This way, lines that are straight remain straight
whenever possible.
Rational Rhapsody 435

Graphic editors
Change the format of a single element

To edit the format of a single element in a diagram, right-click the element and select Format or
select Edit > Format. Alternatively, you can use the tools in the Format toolbar. For more
information, see Format text on diagrams.

The Format window lists the current line, fill, and font information for the selected element. The
following figure shows the default line attributes for a class.

Use the Line tab of the window to change the line color, style, or width or the lines used to draw
the element.

Note
Line widths 0 and 1 are the same; however, you can specify a new line type (dashed, dotted,
and so on) only for line width 0. Otherwise, the style options remain unavailable.
436 User Guide

Edit elements
The Fill tab enables you to specify new fill attributes for the specified element, including the fill
and pattern colors, and the pattern style. The following figure shows the Fill tab for a class.

A preview of the pattern is displayed in the small box beside each pattern name.

For example, the following figure shows the preview of a fill color of green, a pattern color of
blue, with the Transparent pattern check box cleared.
Rational Rhapsody 437

Graphic editors
The Font tab enables you to specify new font attributes for the specified element, including the
font size and type, color, and whether the text should be in italics or bold, or underlined. The
following figure shows the Font tab for a class.

Note
These settings apply only to the specified element. Therefore, if you change the attributes
for an individual class, any new classes will use the default attributes. For information on
changing the attributes for a specific type of element (for example, all classes), see Change
the format of a single element.
438 User Guide

Edit elements
Format text on diagrams
The Format toolbar provides tools that affect the display of text in your diagrams, such as font,
size, color, and so on. In addition, you can access these options by selecting Edit > Format >
Change. To display or hide this toolbar, choose View > Toolbars > Format.

The Format toolbar includes the following tools:

Tool Button Name Description

Font Type Specifies the font style (“type face”) used for text. Use the drop-down list to
select a different font.

Text Size Specifies the size used for text. Use the drop-down list to select a different size.

Italic Changes the selected text to italic font.

Bold Changes the selected text to boldface font.

Left Left-justifies the selected text.
This tool is available only in fields that support RTF, including the Description
for elements and annotation elements (comment, requirement, and constraint)

Center Centers the selected text.
This tool is available only in fields that support RTF, including the Description
for elements and annotation elements (comment, requirement, and constraint).
This tool is available only in fields that support RTF, including the Description
for elements and annotation elements (comment, requirement, and constraint)

Right Right-justifies the selected text.
This tool is available only in fields that support RTF, including the Description
for elements and annotation elements (comment, requirement, and constraint).

Bullet Creates a bulleted list.
This tool is available when you are editing the Description for an element.

Font Color Specifies the color to use for the text or label of the selected element. For
example, if you select a state and use this tool to change the color to red, the
name of the selected state is displayed in red.
This tool performs the same action as right-clicking an element and selecting
Format.

Line Color Specifies the color to use for the selected line element. For example, if you
select a state and use this tool to change the line color to blue, the text box for
the state will be displayed in blue.
This tool performs the same action as right-clicking an element and selecting
Format.
Rational Rhapsody 439

Graphic editors
Copying formatting from one element to another

Rational Rhapsody provides a Format Painter button to copy formatting from one element to
another element in the same diagram.

To copy formatting by using the Format Painter button:

1. In the diagram, click the element whose formatting you want to copy.

2. Click the Format Painter button in the Standard toolbar.

3. Click the element to which you would like to apply the copied formatting.

To copy formatting without having to click the Format Painter button each time:

1. In the diagram, click the element whose formatting you want to copy.

2. Click the Stamp Mode button in the Layout toolbar.

3. Click the Format Painter button

4. Click the elements to which you would like to apply the copied formatting.

Note
The Stamp Mode button is a toggle button. Rational Rhapsody will remain in “stamp mode”
until you click the button a second time.

Fill Color Specifies the color to use as fill color for the selected element. For example, if
you select a state and use this tool to change the color to yellow, the selected
state will be filled with yellow.
This tool performs the same action as right-clicking an element and selecting
Format.

Tool Button Name Description
440 User Guide

Edit elements
Changing the format of a metaclass

In addition to changing the format of an individual element, you can change the format of an entire
metaclass. For example, you can specify styles for all classes, all actors, all associations, and so on.

To change the default settings for an entire metaclass:

1. Right-click the diagram and select Format to open the Format window.

Note: For diagrams only, the Format window has an Apply to modified elements
check box. For projects, packages, and stereotypes, there is an Apply to sub
elements check box instead.

2. In the Select Meta-class to format box, select the metaclass whose attributes you want to
change, then click the Format selected meta-class button.

Note: The Select Meta-class to format box displays only the metaclasses that are
relevant for the type of diagram.

3. Use the Format Properties window to select the new line, fill, and font attributes for the
metaclass and click OK. (For more information about using the Format Properties
window, see Change the format of a single element). The Preview box on the Format
window displays how the element will look in the diagram.

4. Click one of the available buttons on the Format window:

a. Cancel to discard all of your changes.

b. OK to save your changes to the specified metaclasses.

Note: If Apply to modified elements is available when you click OK, all the existing
elements in the selected scope (of the given metaclass) are changed to the
specified format (in addition to any elements that are created later). If Apply to
modified elements is unavailable, existing elements of the specified metaclass
that have individual overrides are not changed, but new elements will use the
new style by default.

For example, consider the case where all actors have white fill by default, but
actor A has blue fill with yellow stripes. If you change the default fill color for
all actors to be green, and Apply to modified elements is available, all the
actors will have white fill. However, if you clear this check box, all the actors
will have white fill, except for actor A, which will keep the blue fill and yellow
stripes. All subsequently created actors will use white fill.
Rational Rhapsody 441

Graphic editors
c. Reset to remove all user-specified formats for the specified element and “rolls back”
to the default values.

Note: If Apply to modified elements is available when you click Reset, Rational
Rhapsody displays a confirmation window that asks whether you want to reset
the default values for all of the modified subelements in the specified diagram
or project. Click Yes to remove all overrides; otherwise, click No and clear this
check box to reset specific metaclass styles.

d. Enforce to force a subelement to use the locally modified style. Note that this affects
only the styles that were explicitly specified; other formats remain unchanged. It is
similar to the behavior specified in Change the style scope.

Note: If Apply to modified elements is available when you click Enforce, Rational
Rhapsody displays a confirmation window that asks whether you want to force
the local style on all the elements in the specified diagram. Click Yes to remove
all overrides; otherwise, click No and disable this check box to reset specific
metaclass styles. Note that if you apply Enforce without enabling the Apply
check box, nothing is changed.

Use Edit > Format > Un-override to remove overrides on boxes and line elements in diagrams.
442 User Guide

Edit elements
Change the style scope
Where you open the Format window affects the scope of the formatting style:

� If you open the Format window from within a diagram, the format change applies only to
the metaclass in the current diagram.

For example, if you change the format of states in the Tester statechart so they are filled
with yellow, states in other statecharts will not be filled with yellow automatically.

� If you open the Format window at the project level (select the project node in the browser,
right-click and select Format), the specified style is applied to that metaclass throughout
the entire model.

� If you open the Format window by selecting an individual element in a diagram, the
specified style will be applied to that element only.

If you apply a style to an individual element and then copy it to a new diagram, it brings its style
with it. Consider the following scenario:

� OMD_A uses purple fill for classes.
� Class A in OMD_A has the individual fill style of blue cross-hatching.
� Class B in OMD_A uses the default style for classes (purple fill).
� OMD_B uses yellow fill for classes.

The following figure shows OMD_A.
Rational Rhapsody 443

Graphic editors
If you copy classes A and B into OMD_B, class A keeps its individual style, but class B now uses the
default local style (yellow fill). The following figure shows OMD_B.

To force the class to use the local style, click Enforce. In this example, class A is now forced to use
yellow as its fill color. Note that the cross-hatching is still used (because there is no setting for
cross-hatching in this OMD).
444 User Guide

Edit elements
Making the format for an element the default formatting

After you have applied formatting to a diagram element, you can make the formatting for the
element the default formatting for new elements of this type.

To make the formatting of an element the default formatting for elements of that type:

1. Right-click the element in the diagram and select Make Default (or select the element and
choose Edit > Make Default). The Make Default window opens.

2. Select the characteristics to set as default. The available options are format, display
options, and size.

3. Select the level at which you would like to set the defaults, for example, diagram level or
package level.

Note
This option sets the default formatting for all new elements of the same type. For elements
that already exist in the diagram, the default formatting will be applied unless the elements
have been overridden. (This applies only to the formatting; the size of existing elements will
not be changed, nor will the display options.)

Copy an element

There are two different ways in which elements can be copied and pasted in a diagram:

� Simple Copy where another representation of the element is created on the diagram
canvas.

� Copy with Model where a new element is created in the model and pasted into the
diagram. The new model has the exact same characteristics as the original element.

Simple copy
You can copy an element in one of three ways:

� Use the Copy and Paste commands in the Edit menu.
� Use the Ctrl+Drag method.
� Use the Layout > Replicate. Note that this applies to statecharts only.

To copy an element using the Ctrl+Drag method:

1. Select the element you want to copy.

2. Move the mouse pointer over the element.
Rational Rhapsody 445

Graphic editors
3. Press Ctrl. A small box with a plus sign in it is displayed below and to the right of the
pointer.

4. Click-and-drag the element. When you release the mouse button, a copy of the element
displays in the new location.

Note
In statecharts, copying creates new elements. In OMDs and UCDs, these methods copy
graphic elements but do not create new elements in the model.

Replicating
To copy using the Replicate command:

1. Select the element you want to copy.

2. Choose Layout > Replicate to open the Replicate window.

3. Enter the number of rows and columns you want the copied elements to use and the
spacing between them.

4. Click OK. Rational Rhapsody displays the replicated elements in the diagram.
446 User Guide

Edit elements
Copying with model
This refers to the ability to copy a diagram element such that when it is pasted into a diagram, an
entirely new element is created, with all of the characteristics of the original element. For example,
if you use this option to copy and paste a class, a new class will be created in the model and it will
contain the same attributes and operations as the original class, the same associated diagrams (such
as a statechart), and so on.

To create a new model element based on an existing diagram element:

1. Select the element to be copied.

2. From the main menu, select Edit > Copy with Model.

3. Navigate to the diagram where you would like to paste the new object.

4. From the main menu, select Paste. The new element will appear in the diagram as well as
in the browser.

5. Rename the new item if wanted. The default name will be the name of the original element
with the string “_copy” appended to it.
Rational Rhapsody 447

Graphic editors
Arranging elements

In addition to the grid and ruler tools (described in Placing elements using the grid), the Layout
toolbar includes several tools that enable you to align elements in the drawing area.

To arrange elements:

1. Select View > Toolbars > Layout. The Layout toolbar is displayed.

Note: You can dock the toolbar by clicking-and-dragging it to a window edge.

2. The tools that enable you to arrange elements are unavailable until you select an elements
in the drawing area. In the diagram, select two or elements to arrange.

3. Select one of the layout tools. The elements are arranged according to the layout selected.

Note that the selection handles use different colors to show which element is used for the default
alignment and sizing (the last element selected).

Consider the two classes in the following figure.
448 User Guide

Edit elements
The selection handles on class A are gray, which denotes that Rational Rhapsody will use the
values of class A for any alignments and sizing. Therefore, if you align the left sides of class A and
B, class A stays where it is and class B moves under it, as shown in the following figure.
Rational Rhapsody 449

Graphic editors
Layout toolbar
The Layout toolbar provides quick access to tools that help you with the layout of elements in
your diagram, including a grid, page breaks, rulers, and so on. To display or hide this toolbar,
choose View > Toolbars > Layout.

The Layout toolbar includes the following tools:

Tool
Button Name Description

Toggle Grid Displays or hides the grid in the drawing area. This is equivalent to selecting
Layout > Grid > Show Grid.

Snap to Grid Automatically aligns new elements to the closest grid points. This is equivalent to
selecting Layout > Grid > Snap to Grid.

Toggle Rulers Displays or hides the rulers in the drawing area. This is equivalent to selecting
Layout > Show Rulers.

Toggle Page
Breaks

Displays or hides the page breaks in your diagram. This is equivalent to selecting
Layout > View Page Breaks.
Page boundaries are denoted by dashed lines.

Stamp Mode Turns repetitive drawing mode on or off.

Align Top Aligns the selected elements to the top of the element with the gray selection
handles. This is equivalent to selecting Layout > Align > Top.

Align Middle Aligns the selected elements to the middle (along the horizontal) of the element with
the gray selection handles. This is equivalent to selecting Layout > Align > Middle.

Align Bottom Aligns the selected elements to the bottom of the element with the gray selection
handles. This is equivalent to selecting Layout > Align > Bottom.

Align Left Aligns the selected elements to the left side of the element with the gray selection
handles. This is equivalent to selecting Layout > Align > Left.

Align Center Aligns the elements so they are aligned to the center, vertical line of the element with
the gray selection handles. This is equivalent to selecting Layout > Align > Center.

Align Right Aligns the selected elements to the right side of the element with the gray selection
handles. This is equivalent to selecting Layout > Align > Right.

Same width Resizes all the selected elements so they are the same width as the element with
the gray selection handles. This is equivalent to selecting Layout >
Make Same Size > Same Width.
450 User Guide

Edit elements
Removing an element from the view

To remove an element from the view but not from the model:

1. Select the element to be removed.

2. Press the Delete key. The element is removed from the view.

Alternatively, right-click the element in the diagram and select Remove from View.

Deleting an element from the model

To delete an element from both the view and the model:

1. Select the element to be deleted.

2. Click the Delete tool or press Ctrl+Delete. The element is deleted from both the model
and the view.

Alternatively, right-click the element in the diagram and select Delete from Model.

Same height Resizes all the selected elements so they are the same height as the element with
the gray selection boxes. This is equivalent to selecting Layout >
Make Same Size > Same Height.

Same size Resizes all the selected elements so they are the same size as the element with the
gray selection boxes. This is equivalent to selecting Layout > Make Same Size >
Same Size.

Space across Spaces the selected elements so they are equidistant (across) from the element with
the gray selection handles. This is equivalent to selecting Layout > Space Evenly >
Space Across.

Space down Spaces the selected elements so they are equidistant (down) from the element with
the gray selection handles. This is equivalent to selecting Layout > Space Evenly >
Space Down.

Tool
Button Name Description
Rational Rhapsody 451

Graphic editors
Editing text

To edit text:

1. Double-click any text to highlight it.

2. Edit the selection.

3. To add another line of text, press Enter; press Ctrl+Enter to end the edit.

Note that both the right mouse button and the Esc key cancel the edit.

Alternatively, for some features you can right-click the element in the drawing area and select Edit
Text.
452 User Guide

Display compartments
Display compartments
One of the display options available for diagram elements is the display of contained items in
visual compartments. This option is available for the following items:

� Classes
� Objects
� Files

For the above elements, the following items can be displayed in compartments where applicable:

� Constraints
� Tags (both local and on the element's stereotype)
� Ports
� Parts

Selecting items to display

To select the items that should be displayed:

1. In the Display Options window, click Compartments.

2. In the window that is displayed, use the arrows to select the items that should be
displayed, and the order in which they should be displayed.

3. Click OK.

In each compartment, individual items are displayed with an icon indicating the type of sub-
element. If the text is too long to display, an ellipsis is displayed. When this ellipsis is clicked, you
can view/edit the full text.

Note
For constraints, the content of the specification field is displayed.

The name of items can be edited in the compartments but items cannot be added or deleted.

It is not possible to modify the order in which individual items are displayed within each
compartment.

User-defined terms are displayed in the same compartment as the item on which they are based,
however, the icon indicates that this is a user-defined term.
Rational Rhapsody 453

Graphic editors
Note
While this feature allows you to display/hide attributes and operations, it does not replace
the attribute and operation tabs, which allow more precise display options, such as the
display of only a subset of defined attributes and operations.

Display stereotype of items in list

For elements listed in compartments, Rational Rhapsody provides the option of displaying the
name of stereotypes applied to the element alongside the name of the element.

To display elements' stereotypes in the compartment list, use these guidelines:

� At the diagram level or higher, modify the property
General::Graphics::ShowStereotypes. The possible values for this property are
No, Prefix, Suffix.

� The default setting for this property is Prefix.
� This property applies to all of the compartments that can be displayed.
454 User Guide

Zoom
Zoom
There are several zoom tools available on the Zoom toolbar, shown in the following figure.

Alternatively, you can choose View > Zoom/Pan > 50%, View > Zoom/Pan > 75%, View >
Zoom/Pan > 100%, or View > Zoom/Pan > 200%; or use the zoom options available in the menu
in the drawing area.

To prevent elements from being resized when you resize their parent (for example, classes
contained in a composite class), press and hold the Alt key while you click-and-drag with the
mouse.

Zoom toolbar

The Zoom toolbar contains the zoom tools you can use with all the different diagram types. These
tools are also available in View > Zoom or View > Zoom/Pan. To display or hide this toolbar,
choose View > Toolbars > Zoom.

The Zoom toolbar includes the following tools:

Tool
Button Name Description

Zoom In Zooms in on a diagram. Click this button and click in a graphic editor window to
increase the view by 25%.

Zoom Out Zooms out on a diagram. Click this button and click in a graphic editor window to
decrease the view by 25%

Zoom to
Selection

Select an element in a diagram and click this button to zoom into the selected
section of the diagram.
Alternately, you can click Zoom In and hold down the left mouse button to draw a
selection box around the part of the diagram you want to zoom in on.

Pan Moves the diagram in the drawing area so you can see portions of the diagram that
do not fit in the current viewing area.

Zoom to Fit Resizes the active diagram to fit within the graphic editor window.
Rational Rhapsody 455

Graphic editors
Zooming in and zooming out

To zoom in or out on a diagram:

1. Click the Zoom In or Zoom Out button (or choose View > Zoom > Zoom In or View >
Zoom > Zoom Out).

2. Move the cursor over the diagram. The cursor displays as a magnifying glass with either a
plus or minus sign in it.

3. Click the diagram to enlarge or shrink it by 25%, depending on which tool you selected.

There are two ways to zoom in on a portion of a diagram:

� Click the Zoom In button, then hold down the left mouse button to draw a selection box
around the part of the diagram you want to zoom in on.

� Select an element in the diagram, then click Zoom to Selection to enlarge the selected
element so it takes up the entire drawing area.

Note
You remain in zoom mode until you select another tool from the toolbar.

Refreshing the display

If at any time the screen becomes difficult to read, you can refresh it by pressing F5 or selecting
View > Refresh.

Undo Zoom Reverses the last zoom action.

Scale
Percentage

The options on this drop-down list resize the active diagram scale by the selected
percentage.

Specification/
Structured View

Displays either the specification or structured view of the active diagram.

Tool
Button Name Description
456 User Guide

Zoom
Scaling a diagram

To scale a diagram to a certain percentage, use the drop-down scale box. You can set the diagram
scaling to a value between 10% and 500%.

Alternatively, select View > Zoom/Pan, then select the percentage used to scale the diagram.

To scale the diagram so the entire diagram in visible in the current window, click the Zoom to Fit
button (or View > Zoom/Pan > Zoom to Fit). When you click the button, the diagram is resized to
fit in the current window. This button performs the same command as View > Zoom to Fit.

Panning a diagram

Click the Pan button to move the diagram in the drawing area so you can see portions of the
diagram that do not fit in the current viewing area.

Undoing a zoom

To undo the last zoom, click the Undo Zoom button, or select View > Zoom/Pan > Undo Zoom/
Pan.

Specifying the specification or structured view

To show the specification or structured view of a diagram, click the Specification/Structured
View button.

For example, suppose you have a structured (composite) class A that contains the parts ObjectA
and ObjectB. The structured view looks like the following figure.
Rational Rhapsody 457

Graphic editors
The specification view looks like the following figure.

In addition to toggling between the two views, any new classes or objects created with the selected
mode will use that mode.

Note that if there is a mix of structured and specification elements, the button is disabled.
458 User Guide

The Bird’s Eye (diagram navigator)
The Bird’s Eye (diagram navigator)
The Bird’s Eye (diagram navigator) provides a high-level view of the diagram that is currently
displayed. This can be very useful when dealing with very large diagrams, allowing you to view
specific areas of the diagram in the drawing area, while, at the same time, maintaining a view of
the diagram in its entirety.

The Bird’s Eye contains a depiction of the entire diagram being viewed, and a rectangle viewport
that indicates which portion of the diagram is currently visible in the drawing area.

Showing and hiding the Bird’s Eye window

To show/hide the Bird’s Eye window, do one of the following actions:

� Choose View > Bird’s Eye.

� Click the Bird’s Eye button on the Windows toolbar.
� Use the keyboard shortcut, Alt+5.

� Right-click the diagram in the drawing area, and then select Bird’s Eye.

Navigating to a specific area of a diagram

To use the Bird’s Eye to move to a specific area of a diagram, do one of the following actions:

� Drag the viewport to the area you would like to view.
� Click and draw a “new” viewport in the Bird’s Eye window over the area you would like

to view.

Using the Bird’s Eye to enlarge and shrink the visible area

To use the Bird’s Eye to enlarge/shrink the visible area of the diagram, drag an edge or corner of
the viewport to enlarge/shrink the viewport.

Enlarging the viewport has the same effect as zooming out in the drawing area. Shrinking the
viewport has the same effect as zooming in the drawing area.

Note
When you drag an edge of the viewport, the viewport size will always change in both
dimensions, maintaining the height/width ratio.

By default, the viewport will grow in the direction of the edge selected. If you hold down
Rational Rhapsody 459

Graphic editors
Ctrl while dragging, however, the viewport will grow in the direction of the opposite edge
as well in order to maintain the current center point of the diagram.

Scrolling and zooming in drawing area

If the scroll bars are used to change the visible area of the diagram in the drawing area, the
viewport will move accordingly in the Bird’s Eye window.

If the zoom level is changed in the drawing area, the size of the viewport will change accordingly
in the Bird’s Eye window.

Changing the appearance of the viewport

You can modify the appearance of the viewport rectangle in the Bird’s Eye window. Display
characteristics that can be modified include line color, line style, line width, fill color, and fill
pattern.

To display the viewport appearance window: Right-click anywhere in the Bird’s Eye window.

General characteristics of the Bird’s Eye window

� The Bird’s Eye window is used only for changing the viewable area of a diagram. You
cannot modify any diagram elements in the Bird’s Eye window.

� The size and position of the Bird’s Eye window is saved in the Rational Rhapsody
workspace.

� The Bird’s Eye window can be resized, and it can float or be docked. The docking-related
options are accessed by right-clicking the borders of the window (but not the title bar).

� The black dotted line in the Bird’s Eye window represents the diagram's drawing canvas.
When the canvas size is changed in the drawing area, this dotted line changes accordingly.
Depending on the size of the Bird’s Eye window, there might be some whitespace to the
right of and below the dotted line.
460 User Guide

Complete relations
Complete relations
The Layout > Complete Relations menu completes relation lines in diagrams. For example, you
can define relations in the browser, draw the participating classes in an OMD, then select
Complete Relations to speed up the drawing of the relation lines.

� Layout > Complete Relations > All completes all the relation lines
� Layout > Complete Relations > Selected to All completes relation lines only for

relations originating in the selected classes
� Layout > Complete Relations > Among Selected completes relation lines only for

relations existing between the selected classes
Rational Rhapsody 461

Graphic editors
Use IntelliVisor
The IntelliVisor feature offers intelligent suggestions based on what you are doing to reduce:

� The number of steps required to complete a task
� The amount of time spent changing between different views (browser, graphics editor,

code editor, and so on), giving more time to actually complete the task
� The time spent in the “build and run” cycle because of fewer compilation problems

resulting from wrong type usage, misspellings, and so on
The suggestions offered by IntelliVisor depend on the current context. The context is a model
element (usually a class or a package) in which the IntelliVisor is activated. The IntelliVisor
contents is defined by the scope of the context. For example, the context can be class MyClass;
the list contents will be all the methods, attributes, and relations, including superclasses and
interfaces implemented by MyClass, and all the global methods defined in the package containing
the class.

The property IntelliVisor::General::ActivateOnGe specifies whether to enable IntelliVisor
in the Rational Rhapsody graphics editors. By default, IntelliVisor is available.

Activating IntelliVisor

When you press Ctrl+Space in the graphic editor, Rational Rhapsody displays a list box with
information from which to choose. You can navigate in this list box using either the arrow keys or
the mouse. When you select an item from the list of suggestions and press Enter, that text is
placed in the text box.

To dismiss the IntelliVisor list box, do one of the following actions:

� Press one of the following keys:
– Esc
– Enter

� Double-click the mouse button.
� Change the window focus.
� Press space/Alt.
� Click outside of the text box.
462 User Guide

Use IntelliVisor
IntelliVisor information

When you are using a graphics editor, IntelliVisor can simplify your tasks by offering shortcuts to
similar model elements.

For example, if you are drawing a class in an OMD or structure diagram and start IntelliVisor, the
list box contains the default name of the new class and all the classes that already exist in the
model. If you highlight one of the classes in the list, IntelliVisor displays summary information
available for that element, including:

� Its type, name, and parent information
� Its stereotype, if one exists
� The first few lines of the description for the element, if one exists

The following figure shows information displayed by IntelliVisor.

To replace the new class with an existing class, simply highlight the class in the list box and double
left-click. IntelliVisor replaces the new class with the specified class.

In addition to classes, IntelliVisor can be opened in OMDs when you are drawing actors and
packages.
Rational Rhapsody 463

Graphic editors
Collaboration diagrams
If you open IntelliVisor on an object or multi-object, the list box contains all the classes in the
current project. For example:

If you apply a selection from the list, IntelliVisor replaces the part after the role name. For
example, AcmeTank:Tank will become AcmeTank:Jet if you select the Jet class in the list box.

In addition to classes, IntelliVisor can be started in collaboration diagrams when you are drawing
actors.

Component diagrams
If you start IntelliVisor for a component in a component diagram, the list box contains all the
components in the model. For example:
464 User Guide

Use IntelliVisor
Deployment diagrams
If you start IntelliVisor on a node in a deployment diagram, the list box contains all the nodes
defined in the model. For example:

Note that you cannot activate component instances in IntelliVisor.

Sequence diagrams
If you start IntelliVisor within a sequence diagram, the list box contains the events, operations, and
triggered operations consumed by the target class. If there are base classes that consume events,
operations, and triggered operations, they are included in the list.

Note the following information:

� If you select a constructor line, IntelliVisor displays the list of constructors.
� The instance line should be associated with a part class, or the IntelliVisor list box will be

empty.
Rational Rhapsody 465

Graphic editors
Statecharts and activity diagrams
If you start IntelliVisor inside a activity flow trigger in a statechart or activity diagram before the “/
” or “[” symbol, the list box contains all the events that can be consumed by the class, as in this
example.
466 User Guide

Use IntelliVisor
If you start IntelliVisor after the “/” or “[” symbol, the list box contains the default class content.
For example:

In addition, you can start IntelliVisor in activity diagrams to help you perform the following tasks:

� Write initialization code for actions.
� Edit the code for an activity.
Rational Rhapsody 467

Graphic editors
Use case diagrams
If you apply IntelliVisor on an actor, the list box contains all the actors defined in the project.

Similarly, if you start IntelliVisor on a use case, the list box contains all the use cases defined in the
project.

Structure diagrams
If you start IntelliVisor for an object in a structure diagram, the list box contains all the objects
defined in the project. For example:

Similarly, if you start IntelliVisor on a composite class, the list box contains all the composite
classes defined in the project.
468 User Guide

Customizations for Rational Rhapsody
You can customize Rational Rhapsody in the following ways:

� Add helper applications (also know as helpers). Helpers are custom programs that you
attach to Rational Rhapsody to extend its functionality. They can be either external
programs (executables) or Visual Basic for Applications (VBA) macros that typically use
the Rational Rhapsody COM API. They connect to a Rational Rhapsody object via the
GetObject() COM service. See Helpers.

� Use Visual Basic for Applications (VBA), an OEM version of Microsoft Visual Basic to
develop automation and extensibility scripts that interact with the tool repository that
provides a full complement of user interface components (“forms”). See Visual Basic for
applications.

� Create a customized profile to use in the models for your company. A customized profile
has the following advantages:

– Contains terminology specific to your company
– Forces adherence to special requirements or industry standards
– Can be reused in other models to simplify and standardize development efforts

See Creating a customized profile.

� Add new element types to your models. See Adding new element types.
� Create a customized diagram. See Creating a customized diagram.
� Customize the Add New menu. See Customize the Add New menu.
� Create a Rational Rhapsody plug-in. See Creating a Rational Rhapsody plug-in.
Rational Rhapsody 469

Customizations for Rational Rhapsody
Helpers
Helpers are custom programs that you attach to Rational Rhapsody to extend its functionality.
They can be either external programs (executables) or Visual Basic for Applications (VBA)
macros that typically use the Rational Rhapsody COM API. They connect to a Rational Rhapsody
object via the GetObject() COM service.

You can add your helper to the Rational Rhapsody Tools menu. To open, the Helpers window,
open a Rational Rhapsody project and choose Tools > Customize.

The following tools are available on the Helpers window:

Use the following boxes on the Helpers window to identify and apply your helper application:.

At the bottom of the window, identify if your helper application is an external program helper or
VBA macro helper.

Click the New icon to create a new helper menu item.

Click the Delete icon to delete a helper menu item.

Click the Move Up icon to move up the helper item on the Rational Rhapsody Tools
menu.

Click the Move Down icon to move down the helper item on the Rational Rhapsody
Tools menu.

Command Browse to the path to your helper application.

Arguments Optionally, add a binding for a parameter that resolves to a run-time instance.

Initial directory For an external program helper only, browse to the path of the default directory
for the helper application.

Applicable to From the drop-down list, select the model elements to associate with the
helper.

Project type From the drop-down list, select one or more profiles (for example, FunctionalC,
DoDAF, SysML) to which the helper applies.

Helper trigger From the drop-down list, select the action that will trigger this helper.
470 User Guide

Helpers
List of helper triggers

The following helper triggers are available:

� After Project New
� After Project Open
� Before Project Save
� After Project Save
� Before Check Model
� Before Code Generation
� After Roundtrip
� After Change To
� After Add Element
Rational Rhapsody 471

Customizations for Rational Rhapsody
Creating a link to a helper application

To create a link to a helper:

1. Open a Rational Rhapsody project and choose Tools > Customize to open the Helpers
window.

2. Click the New icon to add a blank line for a new menu item in the Menu content box.

3. In the blank field, type the name of the new menu item (for example, My New Command).

� To specify a submenu structure, enter the menu text with a backward slash (\), for
example, External\My New Command1.

Note that you can have more than one item in your submenu structure. You can
create another link to a helper and specify it as, for example, External\My New
Command2.

� To make a shortcut key, add an ampersand character before a letter in the name.
For example, &My makes the letter M a menu shortcut. You can press Alt+M to
open this particular helper application once it has been created. Be sure to not use
a letter that is already used as a shortcut key on the Tools menu or the pop-up
menu for the associated model element.

4. Specify the applicable helper parameters:

� In the Command box, enter the command that the menu item should start, such as
E:\mks\mksnt\cp.exe or click its Ellipsis button to browse to the location
of the application.

� Optionally, in the Arguments box, enter any arguments for the command.
� Optionally, in the Initial Directory box, enter an initial default directory for the

program. This applies only to external programs.
� In the Applicable To list, specify which model elements to associate with the new

command.

If you do not specify a value for this field, the menu command for this helper
application can be added to the Tools menu depending on what you do in Step 6.

� In the Project Type list, select a project profile, as defined in Creating a project.

If leave this box blank, it uses as the default the profile of the current project you
have opened.

� In the Helper Trigger list, select the actions that triggers the new command.
472 User Guide

Helpers
5. Specify the helper type:

� Select the External program radio button if the new command is an external
program, such as Microsoft Notepad.

Select the Wait for completion check box if you want the external program to
complete running before you can continue to work in Rational Rhapsody.

� Select the VBA macro radio button if the new command is a VBA macro and is
defined in the <Project>.vba file. See Adding a VBA macro.

6. Depending on what you decided for the Applicable To list:

� If you did not specify an applicable element for the command, verify that the
Show in Tools menu check box is selected. This means the new menu command
for your link to a helper application displays on the Tools menu. If you clear this
check box, there is no menu command for it on the Tools menu, though the link to
the helper application still works once the trigger for this command is started.

� If you specified an applicable element for the command, verify that the Show in
Pop-up menu check box is selected. This means the new command displays in
the menu for the specified model element. If you clear this check box, there is no
menu command for it on the pop-up menu for the specified model element,
though the link to the helper application still works once this command is started.

7. Click OK to apply your changes and close the window. (You can click the Apply button if
you want to save your changes but keep the window open to continue working with it.)

Once you save and close the Helpers window, the link to the helper application you just
created is immediately available if the current project is within the parameters that you set
for the link. For example, if the Rational Rhapsody project you currently have open uses
the FunctionalC profile and you created the My New Command helper application for this
profile, then this link to the helper application is immediately available. However, if you
specified the DoDAF profile (as selected in the Project Type drop-down list) for the My
New Command link, then it will not work in your current project.
Rational Rhapsody 473

Customizations for Rational Rhapsody
Examples of helper application menu commands
If you did not specify an applicable model element and you selected the Show in Tools menu
check box on the Helpers window, as shown in the following figure on the left, your helper
application menu command is added to the Tools menu, as shown on the right.
474 User Guide

Helpers
If you specified an applicable model element for your command and you selected the Show in
pop-up menu check box on the Helpers window, as shown in the following figure on the left, you
can right-click either the model element on the Rational Rhapsody browser to access the menu
command for the helper application, as shown on the right, or the applicable element in a graphical
editor. Note that the command now does not show on the Tools menu.
Rational Rhapsody 475

Customizations for Rational Rhapsody
Using a .hep file to link to helper applications
You can use a .hep file to group links to helper applications that help achieve the purpose of a
Rational Rhapsody profile. Helper applications are custom programs created by you or a
third-party that you can link to within the Rational Rhapsody product. Helper applications add
functionality that a profile might not have, such as the ability to query a model or write to a
project. For more information about profiles, see Profiles.

Using a .hep file is ideal for teams where all members should use the same helper applications.
When your project profile and its corresponding .hep file are loaded by reference, when your team
members update, they get the latest versions of these files. A .hep file is considered part of a
profile and is treated as such.

To see sample .hep files, you can look at the ones provided with the Rational Rhapsody product for
certain profiles, such as AUTOSAR, DoDAF, MODAF, NetCentric, and Harmony. For example,
<Rational Rhapsody installation path>\Share\Profiles\DoDAF contains DoDAF.sbs (the
profile file) and DoDAF.hep. Java users might want to look at the sample .hep files for the
AUTOSAR and NetCentric profiles.

If sharing links to helper applications is not an issue, or perhaps it is company policy that everyone
have access to the same helper applications for all Rational Rhapsody projects, then adding links
to helper application in the rhapsody.ini file might suffice.

However, you might find using a .hep file more convenient:

� Easier maintenance. The rhapsody.ini file is typically overwritten when you get a new
version of Rational Rhapsody. Since the name of a .hep file must correspond with the
name of a profile, there is less likelihood of the .hep file being overwritten.

� Less clutter on your list of menu commands. The links to help applications can appear as
menu commands on the Tools menu. Typically, many people work on various projects
that might use different models (and profiles) and different helper applications. Using the
rhapsody.ini file to store all your links to helper applications might cause clutter on
your list of menu commands. You can use a different .hep file for each profile so that you
only see the helpers needed for your project.
476 User Guide

Helpers
To use a .hep file to link to helper applications:

Note
The method described here is the typical way to link to a helper application. If you prefer to
not use Tools > Customize (which opens the Helpers window), you should review the
options on the Helpers window to familiarize yourself with the available options and their
syntax. For example, look at the Helper Trigger box for the list of available triggers and
notice how they are spelled out and capitalized. For more information about the Helpers
window, see Helpers.

1. Open Rational Rhapsody and choose Tools > Customize to create one or more links to
helper applications. See Creating a link to a helper application.

The code for your links is added to the rhapsody.ini file.

2. Close Rational Rhapsody.

3. Open the rhapsody.ini file and from the [Helpers] section of the file, copy the code for
your help application. The following example show helper application code that was
added to the rhapsody.ini file:

[Helpers]
...
name30=AutoCommand45
command30=C:\WINDOWS\NOTEPAD.EXE
arguments30=
initialDir30=C:\WINDOWS
JavaMainClass30=
JavaClassPath30=
JavaLibPath30=
isVisible30=1
isMacro30=0
isPlugin30=0
isSynced30=0
UsingJava30=0
applicableTo30=
applicableToProfile30=Auto2009
helperTriggers30=After Project Open
isPluginCommand30=0

Note: Each section of link code starts with name##.

4. Open your .hep file and paste the code for the link to a helper application (what you copied
in the previous step).

Your .hep file must have the same name as the name of the profile for your Rational
Rhapsody project. For example, if the profile for your Rational Rhapsody project is called
Auto2009, your .hep file must be called Auto2009.hep. In addition, both the profile and
the .hep file must reside in the same folder.

5. In the rhapsody.ini file, delete the code that you copied in Step 3. The code to link to a
helper application should only reside in the .hep file when you are using a .hep file.
Rational Rhapsody 477

Customizations for Rational Rhapsody
6. Open Rational Rhapsody and open your model.

7. Load the applicable profile by reference. This is the profile that has the corresponding .hep
file; see Step 4.

8. Test to make sure your link to a helper application works as expected.
For example, if a link is suppose to open a helper application after you open a model
(helperTriggers30=After Project Open, as shown in the sample code in Step 3),
make sure that happens.

Note
You can use the General::Model::HelpersFile property to associate a .hep file with a
model.

Note that if you specify a .hep file using this property, Rational Rhapsody will not recognize
the helper applications defined in the profile-specific .hep file if one is provided for the
profile you are using.

Modifying a link to a helper application
To modify a link to a helper application:

1. With a project open in Rational Rhapsody, choose Tools > Customize to open the Helpers
window.

2. If you want to edit the name of the helper application, double-click it in the Menu content
box and make your changes.

3. Make other changes on the Helpers window as you want. For an explanation of the
controls on the Helpers window, see Creating a link to a helper application.

Modifying a .hep file
To modify a link to a .hep file by modifying the applicable .hep file:

1. Close the Rational Rhapsody model.

2. Open the .hep file in a text editor (such as Microsoft Notepad) and make your changes.

3. Save your changes to the .hep file.

4. Open the Rational Rhapsody model.

5. Test to make sure your changes work as expected.
478 User Guide

Helpers
Adding a VBA macro

The Helpers window can also be used to add a VBA macro. To add a VBA macro:

1. With a project open in Rational Rhapsody, choose Tools > Customize to open the Helpers
window.

2. Click the New icon to add a blank line for a new VBA macro menu command in the
Menu content box.

3. In the blank field, type the name of the new menu item (for example, My VBA Command).

4. Select the VBA macro radio button as the helper type. The Helpers window lists
VBA-specific options.

5. Specify the applicable helper parameters:

� In the Module box, enter the name of the VBA module.
� In the Macro name box, enter the name of the VBA macro.
� In the Applicable To list, specify which model elements to associate with the new

command.

If you do not specify a value for this field, the menu command for this link to a
helper application might be added to the Tools menu depending on what you do
in Step 6.

� In the Project Type list, select a project profile, as defined in Creating a project.

If leave this box blank, it uses as the default the profile of the current project you
have opened.

� In the Helper Trigger list, select the actions that triggers the new command.
6. Depending on what you decided for the Applicable To list:

� If you did not specify an applicable model element for the command, verify that
the Show in Tools menu check box is selected. This means the new menu
command for your link to a helper application displays on the Tools menu. If you
clear this check box, there is no menu command for it on the Tools menu, though
the link to the helper application still works once the command is started.

� If you specified an applicable model element for the command, verify that the
Show in Tools menu check box is selected. This means the new command
displays in the menu for the specified model element. If you clear this check box,
there is no menu command for it on the pop-up menu for the specified model
element, though the link to the helper application still works once the command is
started.

For examples, see Examples of helper application menu commands.
Rational Rhapsody 479

Customizations for Rational Rhapsody
7. Click OK.
The helper application you just created is immediately available if the current project is
within the parameters that you set for the helper application. For example, if the Rational
Rhapsody project you currently have open uses the FunctionalC profile and you created
the My New Command helper application for this profile, then this helper application is
immediately available. However, if you specified the DoDAF profile (as selected in the
Project Type list) for the My New Command helper application, then it will not work in
your current project.

Note
It is your responsibility to add code to your VBA macro to verify that the selected object is
actually the core object for your command. The COM command to get the selected element
is getSelectedElement().
480 User Guide

Visual Basic for applications
Visual Basic for applications
Visual Basic for Applications (VBA), an OEM version of Microsoft Visual Basic, is integrated as
an automation engine into the Microsoft Office family and for use in all Microsoft tools. It
provides a complete application development environment based on Visual Basic.

With VBA, you can develop automation and extensibility scripts that interact with the tool
repository that provides a full complement of user interface components (“forms”). There is
virtually no limit to application extensibility that can be achieved using VBA. Conceptually, it
would be possible to completely transform the hosting application into another application using
VBA extensibility.

VBA and Rational Rhapsody

The basic interaction between VBA and Rational Rhapsody is facilitated through the Rational
Rhapsody COM API, similar to the way Visual Basic interacts with Rhapsody using API external
programs. Rhapsody exports a set of COM interfaces that represent its metamodel objects, as well
as its application operational functions. Through the COM interfaces, a VBA macro can easily
access all the Rhapsody objects and manipulate them.

The VBA project file

A VBA project is a file container for other files and components that you use in Visual Basic to
build an application. After all the components have been assembled in a project and code written
for it, you can compile the project into an executable file.

Each Rational Rhapsody project is associated with a single VBA project that contains all VBA
artifacts (scripts, forms, and so on) that you created within the Rational Rhapsody project. This
project file has the name <project name>.vba and is located in the same directory as the
Rational Rhapsody project file (<project>.rpy). This binary file will be loaded (if present) with
the Rational Rhapsody project and saved when you select Save from Rational Rhapsody or the
VBA IDE.

VBA versus VB programs

The major difference between writing API external programs with VB and writing VBA scripts
inside Rational Rhapsody is the availability of the Rational Rhapsody root object, known as the
Rational Rhapsody application. External VB programs need to create a Rhapsody application
object; Rhapsody VBA scripts have direct access to the already existing application object.

Whether accessed by VB or VBA programs, operations of the Application object are identical
in function. To the VBA user, however, it looks like all the methods of the root object are local
methods in the VBA context. For example, traversing the Rhapsody model always starts with
Rational Rhapsody 481

Customizations for Rational Rhapsody
accessing the project object. The following example shows a VBA script that displays the name of
the project:

Dim a as Object
Set a = getProject
MsgBox a.name

Note: The method getProject is a function of the root object.

Writing VBA macros

Rhapsody allows you to program a script (or “macro”) in the Microsoft Visual Basic programming
language to perform automated activity.

To write a Visual Basic macro for Rational Rhapsody:

1. Launch the VBA IDE in one of the following ways:

a. Select View > Toolbars > VBA and then select the first icon from the left to launch
the VBA IDE.

b. Select Tools > VBA and then select Visual Basic Editor from the popup menu.

2. Edit the Visual Basic project file, <project>.vba, to implement different macros. Once
you are finished editing, exit the VBA IDE and save the Rhapsody project. The VBA
project is automatically saved whenever the Rhapsody project is saved.

Running and sharing macros

Later, you can run a Rhapsody VBA macro from the Macros window or as a helper in the Tools
menu. In addition, macros can be shared with other users through the macro exporting and
importing process.

API methods for a VBA macro

Note that helper applications might not close the current document. This means that you should
not use the following API methods in a VBA macro that you specify as a helper:

Method Interface Object

quit IRPApplication

openProject IRPApplication

close IRPProject
482 User Guide

Visual Basic for applications
Creating and editing macros

You can create a new macro or edit an existing macro in two ways:

� Using the VBA Macros window in Rational Rhapsody
– To create a macro, type in a new name in the Macro Name field, then select

Create.
Note: Since VBA macros are contained in modules, you must first create a module

before creating your first macro. If you have not yet created a module, the
Create button is disabled. Modules cannot be created from the Macros
window. You must open the VBA IDE to do so.

– To edit a macro, highlight the existing macro in the Macro window, then
select Edit.

� Launch the VBA IDE and create and edit new macros there. There, you can do one of the
following actions:

– Select Tools > VBA > Macros to open the Macros window.

Start typing the new macro with the line Sub xxxx(), where xxxx is the name
of the new macro. The last line of the macro must be “End Sub.”

– Find an existing macro by expanding the Modules folder of the Project
window and double-clicking the appropriate module. You can scroll the code
window to the existing macro or select it in the right pull-down above the
code window.

This is a simple VBA macro:

Sub GetNameOfProject()
Dim a as Object
Set a = getProject
MsgBox a.name
End Sub

Once you have finished typing this macro, return to the Rhapsody window and run the new macro
through the Macros window. You see a small message box with the name of the currently loaded
project.
Rational Rhapsody 483

Customizations for Rational Rhapsody
VBA Macros window
The VBA Macros window enables you to run, edit, or delete a macro.

To open the Macros window, use the VBA Toolbar shortcut or select Tools > VBA > Macros. The
following figure shows the Macros window. The window contains the following fields:

� Macro Name contains the name of the highlighted macro in the Macro Box field. This
field is blank if there are no macros in the Macro Box.

� Macro Box lists the available macros in the VBA project selected in the Macros In box.
� Macros In lists the available VBA projects that contain macros.

The window contains the following buttons:

� Run runs the selected macro.
To run a macro, highlight a macro in the Macro box, then click Run.

� Step Into highlights the first line of the macro and places the Current Execution Line
Indicator.

� Edit opens the Code window with the selected macro visible so you can modify your
macro.

To edit a macro, highlight the macro in the Macro box, then click Edit.

� Create opens a module in the Code window so you can create a new macro.
To create a macro, type in a new name in the Macro Name field, then click Create.

Note: Since VBA macros are contained in modules, you must first create a module
before creating your first macro. If you have not yet created a module, the
Create button is disabled. Modules cannot be created from the Macros
window. You must open the VBA IDE to do so.

� Delete removes the selected macro from your project.
To delete a macro, highlight a macro in the Macro box, then click Delete.

Saving your macros
Rational Rhapsody VBA macros are saved automatically with your Rhapsody project. When you
load the project again, the macros you have created for it will be available.
484 User Guide

Visual Basic for applications
Exporting and importing VBA macros

To export the VBA macros for a module from the VBA IDE:

1. Select a module from the modules tree.

2. From the VBA IDE, select File > Export File.

3. In the Export Files window, browse to the correct location and enter the name of the
receiving file.

4. Select OK to dismiss the Export Files window.

Rational Rhapsody also enables you to import an existing module or form to the project.

To import VBA macros:

1. From the VBA IDE, select File > Import File. The Import Files window is displayed.

2. Browse to the correct location and select the file to import.

A copy of the file is added to the project and the original file is left intact. If you import a form or
module with the same name as an existing form or module, the new form or module file is added
with a number appended to its name.
Rational Rhapsody 485

Customizations for Rational Rhapsody
Creating a customized profile
To create a customized profile:

1. Create a project that you want to use as the basis for your customized profile. If you select
a Rational Rhapsody profile for this project, the characteristics of that profile are going to
be used as the default values.

2. Right-click the top-level project name (for example, Dishwasher) and select Add New >
Profile, and then enter a name for your profile. Notice that Rational Rhapsody creates a
Profiles category and places your profile within it.

Alternatively, if you have a package that you want to change to be a profile, right-click the
package and select Change to > Profile. For more information, see Converting packages
and profiles.

3. Enter any information about the profile that you want your team members to know about
on the Description tab.

4. Optionally, you can do the following actions:

a. Define global tags for your profile: Open the Features window for the profile (for
example, double-click the profile name) and define tags on the Tags tab.

b. Add a stereotype to your profile: On the General tab of the Features window for your
profile, select <<New>> from the Stereotype box. A Features window opens for the
stereotype on which you can name the stereotype. Notice that by default Rational
Rhapsody sets that this stereotype is applicable to a profile. Notice also that you can
make it a New Term stereotype. For more information about creating stereotypes, see
Stereotypes.

After you close the Features window for the stereotype and return to the Features
window for the profile, notice that the stereotype you just created is showing in the
Stereotype box of the General tab for the profile.
486 User Guide

Creating a customized profile
Creating a new stereotype for the new profile

To create a stereotype, but not immediately apply it to a profile:

1. Right-click your profile and select Add New > Stereotype. Remember to select the
metaclass to which the stereotype applies.

Later you can apply the stereotype to a profile by opening the Features window for the
profile and selecting the particular stereotype on the General box.

2. Once Rational Rhapsody creates the Stereotype category on the browser, you can
right-click the name and select Add New Stereotype to create more stereotypes.

Re-using your customized profile

Since a profile is a package, it can be used in other projects to save time and support corporate
standards easily.

To re-use your customized profile:

1. Make a corresponding text file for your custom profile and give it the same name but with
the .txt extension. Add a description for the profile. The content of the text files displays
on the description area of the New Project window.
For example, if your customized profile is MyProfile.sbs, create a MyProfile.txt file.

2. Copy the .sbs file for the profile and the corresponding .txt file to <Rational Rhapsody
installation path>\Share\Profiles\<customized profiles foldername>. For
example, you would place a copy of the MyProfile.sbs and MyProfile.txt files in, for
example, C:\Rhapsody\Share\Profiles\CustomProfiles.

If you have packages under your profile, choose to not make each package its own
separate unit so that you can keep the entire profile in a single .sbs file (clear the Store in
separate file for those package).

3. When you want to use a custom profile with a new project, you can select the profile from
the Project Type drop-down list of the New Project window.
Rational Rhapsody 487

Customizations for Rational Rhapsody
You can also share your custom profiles through the following methods:

� Save the customized profile (package) and make it available through a CM system or in a
shared area where other developers can access it.

� Add a custom profile to an existing project with File > Add Profile to Model. Select the
customized profile (an .sbs file) from its stored location.
Note that with this method certain elements might not be brought over to your new project
is they are not associated specifically with the profile/project.

� When multiple projects are displayed in a browser, a developer can drag and drop the
customized profile from one project to a different open project to re-use it. For more
information about this process, see the instructions in Copy and reference elements among
projects.

Note
You can set your customized profile to be automatically added to a new project either as a
copy or a reference using the AutoCopied or AutoReferences properties. For more
information, see Profile properties.
488 User Guide

Adding new element types
Adding new element types
The stereotype mechanism is used for introducing such new elements. In general, stereotypes are
used to add new information to a model element. However, if you define a new stereotype and
specify that it should be a New Term, it becomes a new element that can be used in models.

To add a new type of element:

1. Create a new stereotype. See Stereotypes.

2. Open the Features window for the new stereotype and select one item from the Applicable
To list. This item is the element on which the new element is based.

3. Select New Term.

4. Click OK.

Once the new term is created, it is possible to add elements of this type via the context menu in the
browser.

New terms and their properties

For each new term introduced, properties can be used to specify characteristics such as the type of
icon to use for the term in the browser or the icon to be used in the Diagram Tools. For each of the
available properties, if no value is provided, Rational Rhapsody uses the value provided for the
element on which the new term is based.

Note
Since stereotypes can be added to profiles and packages, the new terms created can be
shared across models.
Rational Rhapsody 489

Customizations for Rational Rhapsody
Availability of out-of-the-box model elements

In addition to allowing the introduction of new element types, Rational Rhapsody allows you to
hide any out-of-the-box element types that your users do not need.

The availability of metaclasses is determined by the General::Model::AvailableMetaclasses
property. This property takes a comma-separated list of strings.

Note
To keep all of the out-of-the box metaclasses, leave this property blank.

To limit the availability of certain metaclasses, use this property to indicate the metaclasses that
you would like to have available. The strings to use to represent the different metaclasses are as
follows

� ActivityDiagram
� ActivityFlow
� Actor
� Argument
� Association
� AssociationEnd
� Attribute
� Block
� Class
� ClassifierRole
� CollaborationDiagram
� CombinedFragment
� Comment
� Component
� ComponentDiagram
� ComponentInstance
� Configuration
� Connector
� Constraint
� Constructor
490 User Guide

Adding new element types
� ControlledFile
� Dependency
� DeploymentDiagram
� Destructor
� EnumerationLiteral
� Event
� ExecutionOccurrence
� File
� Flow
� FlowItem
� Folder
� Generalization
� HyperLink
� InteractionOccurrence
� InteractionOperand
� Link
� Message
� Module
� Node
� Object
� ObjectModelDiagram
� Package
� Pin
� Port
� PrimitiveOperation
� Profile
� Project
� Reception
� ReferenceActivity
� Requirement

� SequenceDiagram
� State
Rational Rhapsody 491

Customizations for Rational Rhapsody
� Statechart
� Stereotype
� StructureDiagram
� Swimlane
� SysMLPort
� Tag
� Transition
� TriggeredOperation
� Type
� UseCase
� UseCaseDiagram
492 User Guide

Creating a customized diagram
Creating a customized diagram
In addition to allowing you to filter out certain out-of-the-box diagrams that you do not want to
see, Rational Rhapsody allows you to add customized diagrams. This is done by creating a new
diagram type on the basis of one of the Rational Rhapsody basic diagrams and adding customized
diagram elements, if needed, to the list of elements available for the new type of diagram.

Note
The procedure for adding customized diagrams with custom elements can only be used for
adding new types of diagrams. It is not possible to add new diagram element types to the
standard Rational Rhapsody diagrams.

Customized diagrams can be added at the individual model level, or they can be added to profiles
so that they can be used with other models as well.

To create your customized diagram:

1. In the browser window, add your customized profile. See Creating a customized profile.
(While the customized diagram can be added for the current model only, usually
developers and designers want to add it to a profile so that it can be reused.)

2. Select the name of the new profile in the browser, and use the context menu to create a
new stereotype. See Stereotypes.

3. Open the Features window for the new stereotype you created, and set the following
values:

a. On the General tab, from the Applicable to list select the type of diagram that should
serve as the base diagram for the new diagram type you are creating. In addition,
select the New Term check box.

b. On the Properties tab, enter the required values for the following properties:

– Model::Stereotype::DrawingToolIcon supplies the name of the .ico file
that should be used as the icon for the new diagram type in the Diagrams
toolbar.

– Model::Stereotype::BrowserIcon supplies the name of the .ico file that
should be uses as the icon to represent the new diagram type in the browser.

If no value is provided for DrawingToolIcon, the file name entered for
BrowserIcon are used in the Diagrams toolbar as well. If values are not
provided for either of these properties, then the icon for the base diagram is
displayed both in the browser and in the Diagrams toolbar.

– Model::Stereotype::DrawingToolbar is a comma-separated list
representing the elements that should be included in the Diagram Tools for
this type of diagram, for example, RpyDefault,RpySeparator,Actor,Block.
Rational Rhapsody 493

Customizations for Rational Rhapsody
RpyDefault represents all the elements included in the Diagram Tools of the
base diagram. If this property is left empty, only the tools from the base
diagram is displayed. The toolbar can contain any drawable elements
supported by the base diagram, and any new elements based on these
elements.

Adding customized diagrams to the diagrams toolbar

Once you have created a customized diagram type, it is included automatically in the Tools menu.
You also have the option of including an icon for the new diagram type in the Diagrams toolbar.
To add the new type of diagram to the Diagrams toolbar:

1. Open the Features window for the profile to which you added the new type of diagram.

2. On the Properties tab, modify the value of the General::Model::DiagramsToolbar
property to include the name of the new diagram type in the comma-separated list, for
example, OV-1, RpySeparator,RpyDefault. (If this property is left empty, the toolbar
includes only the default icons.)

The strings to use in this list are given in Diagram types.

Creating a customized diagram element

After a new diagram type have been defined, you can define new drawing elements that can be
included in the Diagram Tools for the new type of diagram. This is done by basing the new
element on one of the elements that is available by default in the diagram type that served as the
base for the new customized diagram, as follows:

1. Select the name of the relevant profile in the browser, and use the context menu to create a
new stereotype.

2. Open the Features window for the new stereotype you created, and set the following
values:

a. On the General tab, from the Applicable to list select the type of drawing element
that should serve as the base element for the new diagram element type you are
creating. Also, select the New Term check box.

b. On the Properties tab, provide values for the following properties:

– Model::Stereotype::DrawingToolIcon provides the name of the .ico file
that should be used as the icon for the new drawing element when it is
included in a Diagram Tools.

– Model::Stereotype::DrawingToolTip provides the text that should be
displayed as a tool tip for the icon in the Diagram Tools.
494 User Guide

Creating a customized diagram
– Model::Stereotype::DrawingShape where if you would like to customize,
to a certain degree, the appearance of the new element that you created, you
can select one of the options provided for this property, for example, you can
create a new element based on Class, but specify that the object have
"rounded corners" when displayed on a diagram.

– Model::Stereotype::AlternativeDrawingTool where in certain cases, a
number of different out-of-the-box drawing elements are based on the same
metaclass, for example, both Class and Composite Class are based on a
metaclass called Class. In these cases, in addition to specifying the base
metaclass in the Applicable to box, you must provide the name of the wanted
base element in the property. This property does not have to be provided for
the "default" element for the metaclass. Using our example above, if you were
basing the new element on the Class element, there would be no need to
provide a value for this property.

The complete list of diagram elements and corresponding metaclasses is provided in Diagram
elements. This table also indicates the “default” diagram element for each metaclass.
Rational Rhapsody 495

Customizations for Rational Rhapsody
Adding customized diagram elements

After customized diagram elements have been created, they can be added to one or more of the
customized diagram types you have created:

1. In the browser, under Stereotypes, select the customized diagram to which you would like
to add the custom element, and open its Features window.

2. On the Properties tab, for the Model::Stereotype::DrawingToolbar property, add the
name of the new element type you created to the comma-separated list representing the
elements that should be included in the Diagram Tools for this type of diagram.

Then names of the elements that can be used for this list are given in Diagram elements.

Note
After defining new diagrams or diagram elements, you need to reload the model to have
access to the new items or, alternatively, choose View > Refresh New Terms.

Diagram types

The following list contains the strings to use for the General::Model::DiagramsToolbar
property:

� ActivityDiagram
� CollaborationDiagram
� ComponentDiagram
� DeploymentDiagram
� ObjectModelDiagram
� SequenceDiagram
� Statechart
� StructureDiagram
� UseCaseDiagram
� RpyDefault
� RpySeparator
496 User Guide

Creating a customized diagram
Diagram elements

The following elements can be customized for the specified diagrams, as described in Adding
customized diagram elements.

Element Name Metaclass Name AlternativeDrawingTool
Property Required

Object Model Diagram

Object Object

Class Class

Composite Class Class Yes

Package Package

Port Port

Inheritance Generalization

Association AssociationEnd

Directed Association AssociationEnd Yes

Composition AssociationEnd Yes

Aggregation AssociationEnd Yes

Link Link

Dependency Dependency

Flow Flow

Actor Actor

Sequence Diagram

InstanceLine ClassifierRole Yes

EnvironmentLine ClassifierRole Yes

Message Message

ReplyMessage Message Yes

CreateMessage Message Yes

DestroyMessage Message Yes

TimeoutMessage Message Yes

CancelTimeoutMessage Message Yes

TimeIntervalMessage Message Yes

PartitionLine ClassifierRole Yes

Condition Mark Message Yes

ExecutionOccurrence ExecutionOccurrence
Rational Rhapsody 497

Customizations for Rational Rhapsody
InteractionOccurrence InteractionOccurrence

InteractionOperatorCombinedFra
gment

CombinedFragment

InteractionOperand InteractionOperand

Use Case Diagram

UseCase UseCase

Actor Actor

Package Package

Association AssociationEnd

Generalization Generalization

Dependency Dependency

System Border ClassifierRole Yes

Flow Flow

Collaboration Diagram

Classifier Role ClassifierRole Yes

Multi Object ClassifierRole Yes

Classifier Actor ClassifierRole Yes

AssociationRole ClassifierRole Yes

Link Message Message Yes

Reverse Link Message Message Yes

Dependency Dependency

Structure Diagram

Composite Class Class Yes

Object Object

Block Block

Port Port

Link Link

Dependency Dependency

Flow Flow

Deployment Diagram

Node Node

Component Component

Element Name Metaclass Name AlternativeDrawingTool
Property Required
498 User Guide

Creating a customized diagram
Dependency Dependency

Flow Flow

Component Diagram

Component Component

File File (Component)

Folder Folder

Dependency Dependency

Interface Class Yes

Realization Cannot use as base element

Flow Flow

Statechart

State State

ActivityFlow Transition

InitialFlow DefaultTransition

AndLine Cannot use as base element

StateChartConditionConnector Connector Yes

HistoryConnector Connector Yes

TerminationConnector Connector Yes

JunctionConnector Connector Yes

DiagramConnector Connector Yes

StubConnector Connector Yes

JoinConnector Connector Yes

ForkConnector Connector Yes

TransitionLabel Transition Yes

TerminationState State Yes

Dependency Dependency

Activity Diagram

Action State Yes

ActionBlock State Yes

SubActivityState State Yes

ObjectNode State Yes

Element Name Metaclass Name AlternativeDrawingTool
Property Required
Rational Rhapsody 499

Customizations for Rational Rhapsody
ReferenceActivity ReferenceActivity

Transition Transition

DefaultTransition DefaultTransition

LoopTransition Transition Yes

ActivityChartConditionConnector Connector Yes

TerminationState Connector Yes

JunctionConnector Connector Yes

DiagramConnector Connector Yes

JoinConnector Connector Yes

ForkConnector Connector Yes

TransitionLabel Transition Yes

Swimlane Frame Swimlane Yes

SwimlaneDivider Swimlane Yes

Dependency Dependency

ActivityPin Connector Yes

ActivityParameter Connector Yes

Element Name Metaclass Name AlternativeDrawingTool
Property Required
500 User Guide

Customize the Add New menu
Customize the Add New menu
Rational Rhapsody offers you a number of ways to customize the Add New menu. This menu is
the one you see when you right-click an item in the Rational Rhapsody browser and select Add
New.

Re-organizing the common list section of the Add New menu

The top section of the Add New menu is known as the common list portion of this menu. The
General::Model::CommonList property controls which elements appear in this section, when
applicable.

To re-organize the common list section of the Add New Menu for a project:

1. Open your project in Rational Rhapsody.

2. Open the Features window. Choose File > Project Properties.

3. Locate General::Model::CommonList and change the values for this property.

4. Click OK.

5. To confirm your change, right-click a package in your project and select Add New. Only
those values you entered in CommonList appear, as long as they are applicable to your
project.

Note the following information:

� Whatever element that is removed from the common list group of the Add New menu will
appear in the middle section of the Add New menu if it is relevant for your project. The
element must appear somewhere if it is a valid element for your project.

� If the AddNewMenuStructure property is in use, that property overrides the properties
mentioned here. See Customizing the Add New menu completely.

� If you want to use this Add New menu customization in other projects (without having to
manually change the property for each of them), see Re-using property changes to the Add
New menu.

� See also Re-organizing the bottom section of the Add New menu.
Rational Rhapsody 501

Customizations for Rational Rhapsody
Re-organizing the bottom section of the Add New menu

You can re-organize the groups and their elements located at the bottom section of the Add New
menu. If there are groups or elements that you do not use by project, you can re-organize this
section of the Add New menu to list only those groups/elements that you want to use.

To re-organize the Add New menu, use the following properties in General::Model:

� SubmenuList

� Submenu1List

� Submenu1Name

� Submenu2List

� Submenu2Name

� Submenu3List

� Submenu3Name

� Submenu4List

� Submenu4Name

A definition for each property displays on the Properties tab of the Features window.

The following example shows how you could re-organize the groups and their elements located at
the bottom of the Add New menu. In this scenario, you want to show only the activity diagram,
flowchart, and panel diagram in the Diagrams group of the Add New menu for your project. In
addition, you want to remove the Table\Matrix group.

Note: This example assumes that the properties mentioned in this topic have the
default values.

1. Open your project in Rational Rhapsody.

2. Open the Features window. Choose File > Project Properties.

3. Locate General::Model::Submenu1List.
Note that this property is associated with the Submenu1Name property, which has a value
of Diagrams.

4. Type ActivityDiagram, Flowchart, and PanelDiagram as the values for Submenu1List.

5. Click OK.

6. Locate General::Model::SubmenuList.
This property controls what submenu groups appear at the bottom of the Add New menu.

7. Delete Submenu3 from the values entered for the SubmenuList property.
Submenu3 specifies the Table\Matrix submenu that can appear on the Add New menu.
502 User Guide

Customize the Add New menu
8. To confirm your changes, right-click a package in your project and select Add New. Only
those diagram types you entered in Submenu1List appear, as long as they are applicable
to your project. Meaning, if a flowchart is not applicable to your project, that choice will
not appear on the Add New menu under the Diagrams category. In addition, the
Table\Matrix submenu item no longer displays on the Add New menu.

Note the following information:

� Whatever element that is removed from a group from the bottom of the Add New menu
will appear in the middle section of the Add New menu if it is relevant for your project.
When you remove a group, all the elements in that group will appear in the middle section
of the Add New menu. Elements must appear somewhere if they are valid elements for
your project.

� The Submenu1List and Submenu1Name properties are also used by Tools > Diagrams.
When you make a change to Submenu1List, to have it take effect on Tools > Diagrams,
you must save your project, close it, and then open it again. In addition, if you delete the
Submenu1 value from the SubmenuList property, all the Rational Rhapsody diagram
choices will appear in the Tools menu, instead of under Tools > Diagrams (after you save
your project and open it again).

� If the AddNewMenuStructure property is in use, that property overrides the properties
mentioned in this topic. See Customizing the Add New menu completely.

� If you want to use this Add New menu customization in other projects (without having to
manually change the properties for each of them), see Re-using property changes to the
Add New menu.

� See also Re-organizing the common list section of the Add New menu.
Rational Rhapsody 503

Customizations for Rational Rhapsody
Customizing the Add New menu completely

You can completely customize the choices that appear in the Add New menu to focus on a
particular process or need.

To completely customize the choices that appear in the Add New menu for your project:

1. Open your project in Rational Rhapsody.

2. Open the Features window. Choose File > Project Properties.

3. Locate the General::Model::AddNewMenuStructure property and set the elements you
want to appear for the Add New menu.
The property definition on the Properties tab of the Features window provides you with
more information on how to use this property.

4. Click OK.

5. To confirm your changes, right-click a package in your project and select Add New. Only
those elements you entered in AddNewMenuStructure appear on the Add New menu, as
long as they are applicable to your project.

Note: If you want to use this Add New menu customization in other projects (without
having to manually change the property for each of them), see Re-using
property changes to the Add New menu.

Compare with Re-organizing the common list section of the Add New menu and Re-organizing the
bottom section of the Add New menu.
504 User Guide

Customize the Add New menu
Re-using property changes to the Add New menu

You can automatically apply the changes you make to the properties that control the Add New
menu for use in other projects by setting your applicable property changes in a New Term
stereotype that is associated with a particular profile that is set to be applicable to a project, and
then applying the profile to your other projects.

To apply property changes to the Add New menu to other projects:

1. Create a new project (name it, for example, Project2).

2. Create a profile for the project. Right-click the project name, select Add New > Profile
and name it (for example, MyProfile).

3. Create a stereotype for the profile. Right-click the profile and select Add New >
Stereotype and name it the same as the profile.
If you name this stereotype the same name as the profile (in this example, MyProfile,
Rational Rhapsody will auto-apply the stereotype to a project when you use the profile.

4. Open the Features window for the stereotype:

a. On the General tab:

– Click the New Term check box to make this a New Term stereotype for this
profile.

– From the Applicable to drop-down list, select the Project check box to make
this New Term stereotype applicable to a project.

b. On the Properties tab, set the elements you want to appear for the Add New menu
through the use of the following properties:

– General::Model::CommonList property if you want to re-organize the
common list section of the Add New menu.

– General::Model::SubmenuList, General::Model::Submenu#List, and
General::Model::Submenu#Name if you want to re-organize the bottom
section of the Add New menu

– General::Model::AddNewMenuStructure property if you want to
completely customize the Add New menu.
Note that using this property overrides the other properties mentioned in this
topic.

c. Click OK.
Rational Rhapsody 505

Customizations for Rational Rhapsody
5. Set the stereotype for the project (in this example, Project2) to the New Term stereotype
(in this example, MyProfile).

a. Open the Features window for the project.

b. On the General tab, in the Stereotype drop-down list, select the check box for
stereotype (in this example, MyProfile).

c. Click OK.

6. To confirm your changes, right-click a package in your project and select Add New. Only
those elements you entered in the CommonList property and/or SubmenuList,
Submenu#List, and Submenu#Name properties, or AddNewMenuStructure appear, as long
as they are applicable to your project.

7. Make a corresponding text file for your custom profile and give it the same name but with
the .txt extension. Add a description for the profile. The content of the text files displays
on the description area of the New Project window.
For example, if your customized profile is MyProfile.sbs, create a MyProfile.txt file.

8. Copy the .sbs file for the profile and the corresponding .txt file to <Rational Rhapsody
installation path>\Share\Profiles\<customized profiles foldername>. For
example, you would place a copy of the MyProfile.sbs and MyProfile.txt files in, for
example, C:\Rhapsody\Share\Profiles\CustomProfiles.

If you have packages under your profile, choose to not make each package its own
separate unit so that you can keep the entire profile in a single .sbs file. Right-click the
package, select Unit > Edit Unit, and clear the Store in separate file check box on the
Unit Information window that opens).

9. To use the custom profile, when you create a new project, select the profile from the
Project Type drop-down list of the New Project window.
506 User Guide

Creating a Rational Rhapsody plug-in
Creating a Rational Rhapsody plug-in
Rational Rhapsody plug-ins are Java applications that users can write to extend the capabilities in
Rational Rhapsody. Rational Rhapsody loads these applications into its process, and provides the
applications with an interface to the functions in Rational Rhapsody.

The capabilities added via plug-ins can be accessed through customized menu items integrated
into the out-of-the-box menus in Rational Rhapsody. Plug-ins can also provide capabilities that are
not opened directly by the user via the GUI, but rather are triggered by specific Rational Rhapsody
events, such as model checking or code generation. Plug-ins can respond to any of the events
defined in the Rational Rhapsody Callback API.

To write and prepare a plug-in for use with Rational Rhapsody:

1. Write the Java application.

2. Create a .hep file that contains the information that Rational Rhapsody requires to load the
plug-in, or add this information to an existing .hep file if you have already created one.

3. Attach the .hep file to a profile.

Writing a Java plug-in for Rational Rhapsody

While the steps described in this section can be carried out using any Java IDE, the text and screen
captures provided demonstrate how to perform these steps in Eclipse (version 3.4).

In terms of writing the Java code for your plug-in, you should:

1. Create a new Java project

2. Add the Rational Rhapsody library to the project's build path

3. Define a Java class for the plug-in

4. Implement the required methods

Creating a new Java project
To create a new Java project:

From the Eclipse main menu, select File > New > Project > Java Project.
Rational Rhapsody 507

Customizations for Rational Rhapsody
Adding Rational Rhapsody library to project build path
To add the Rational Rhapsody library to the project's build path:

1. In the Package Explorer View, right-click the project you created, and then select Build
Path > Configure Build Path.

2. Go to the Libraries tab and click Add External JARs.

3. Select rhapsody.jar, under <Rational Rhapsody installation path>\Share\JavaAPI

4. After rhapsody.jar has been added to the list, expand it and set the Native library location
to <Rational Rhapsody installation path>\Share\JavaAPI
508 User Guide

Creating a Rational Rhapsody plug-in
Defining Java class for plug-in
To define a Java class for the plug-in:

1. In the Package Explorer View, right-click the project, and then select New > Class

2. When the New Java Class window is displayed, give the class a name, enter
RPUserPlugin for the Superclass, and make sure the Inherited abstract methods check
box is selected.

Implementing the required methods
Your plug-in class must implement the following methods:

//called when the plug-in is loaded

public abstract void RhpPluginInit(final IRPApplication rhpApp);

//called when the plug-in's menu item under the "Tools" menu is selected

public void RhpPluginInvokeItem();

//called when the plug-in popup menu (if applicable) is selected

public void OnMenuItemSelect(String menuItem);
Rational Rhapsody 509

Customizations for Rational Rhapsody
//called when the plug-in popup trigger (if applicable) is fired

public void OnTrigger(String trigger);

//called when the project is closed - if true is returned, the plug-in will be
unloaded

public boolean RhpPluginCleanup();

//called when Rhapsody exits

public void RhpPluginFinalCleanup();

Creating a .hep file for the plug-in

To provide Rational Rhapsody with the information necessary to load your plug-in, you must
create a .hep file or add this information to an existing .hep file if you have already created one.

.hep file structure
To understand the types of information that must be included for plug-ins in .hep files, it's best to
start with the issue of what types of elements can be described in .hep files.

.hep files are used to describe the following items:

� helpers
� plug-ins
� plug-in commands

While these items differ from one another, they use the same .hep file entries to provide Rational
Rhapsody with the required information.

Helpers are also used to extend the capabilities in Rational Rhapsody, but they use a different
mechanism than plug-ins. Helpers are basically stand-alone applications. Plug-ins, on the other
hand, are not stand-alone applications. They just use the Rational Rhapsody callback mechanism
to respond to Rational Rhapsody events.

Plug-in commands don't really add any functionality of their own; they just describe context menu
items that Rational Rhapsody should add to allow you to open a certain plug-in.

For plug-ins, the .hep file must contain the following information:

� the number of items (plug-ins/helpers/plug-in commands) defined in the file
� the name of the plug-in
� the Java class that implements the required methods
� the Java classpath used by your plug-in
510 User Guide

Creating a Rational Rhapsody plug-in
� an indication that the item is a plug-in (not a helper or plug-in command)
� an indication of whether or not a menu item should be added to the Tools menu

The best way to describe the required syntax for the .hep file is to look at an example.

[Helpers]

Category for the entries that follow

Note
The .hep file must contain a [Helpers] section because the helper recognition mechanism
is the same one used when you include helper definitions in your rhapsody.ini file, which
has other sections as well. Since plug-ins are usually designed for use by groups of users, in
most cases it does not make sense to include the plug-in definition information in the
rhapsody.ini file, which is unique to each user.

numberOfElements=2

Number of plug-ins/helpers described in the file

name1=Diagram Formatter

The name that will appear on the Tools menu (if isVisible is set to 1)

JavaMainClass1=JavaPlugin.PluginMainClass

The Java class containing the plug-in code

JavaClassPath1=$OMROOT\..\Samples\JavaAPI Samples\Plug-in

Path for locating the java classes required by the plug-in. Keep in mind that if .jar files are
used, the classpath should include the names of the .jar files.

isPlugin1=1

Indicates the item is a plug-in (as opposed to a helper, which is the default, or a "plug-in
command")

isVisible1=1

Indicates that the name should be displayed in the Tools menu.

The entries below describe a "plug-in command"

name2=Format Diagram

The text that will appear in the context menu

isPluginCommand2=1

Indicates that this is a plug-in command (as opposed to a helper or plug-in)

command2=Diagram Formatter
Rational Rhapsody 511

Customizations for Rational Rhapsody
Then name of the plug-in that will be opened by this context menu item

applicableTo2=ObjectModelDiagram

Indicates the context to which the menu will be added. In this case, when you right-click an
OMD in the browser, you will see the option "Format Diagram".

isVisible2=1

Indicates that the menu item should be displayed

If you would like to see another sample .hep file, take a look at the .hep file for the plug-in sample
included with <Rational Rhapsody installation path>\Samples\ExtensibilitySamples\
Simple Plug-in\SimplePluginProfile.hep).

Attaching a .hep file to a profile

To attach your .hep file to a profile, do one of the following actions:

� Give the .hep file the same name as the profile, and place it in the same directory as the
profile's .sbs file

� Indicate the path to the .hep file in the value of the property
General::Profile::AdditionalHelpersFiles for the profile

Troubleshooting Rational Rhapsody plug-ins

If the plug-in does not appear to be loaded, or if it does not respond as expected to Rational
Rhapsody events, you can log Rational Rhapsody's attempts to interact with the plug-in. To have
Rational Rhapsody create such a file, add the following entry to the [General] section of the
rhapsody.ini file:

JavaAPILogFile=[path and filename to use]

The log file does not clear its contents between Rational Rhapsody sessions. You might want to
remove the JavaAPILogFile entry from the rhapsody.ini file as soon as you have solved the
problem.

In the log file, you might encounter the following common errors:

� ClassNotFoundException: <Class name> - check that the classpath is correct
� UnsupportedClassVersionError: <Class name> - indicates that the class was compiled

with a newer version of Java than the one that Rational Rhapsody is using. Try to compile
your plug-in with lower compliance, or change the JVM used by Rational Rhapsody
(specified in the JVM section in the rhapsody.ini file).

� NoSuchMethodException: <Class name>.<Method signature> - make sure the method has
been defined in your plug-in class
512 User Guide

Creating a Rational Rhapsody plug-in
Debugging Rational Rhapsody plug-ins

You can debug your plug-in:

� as a stand-alone Java application
� from within a Rational Rhapsody process

Debugging as a stand-alone Java application
To debug as a stand-alone application, you will need to write a main operation that simulates a
Rational Rhapsody callback. Below is an example:

public static void main(String[] args) {

//create an instance of my plug-in

MyPlugin myPlugin = new MyPlugin ();

//get Rhapsody application that is currently running

 IRPApplication app

 =RhapsodyAppServer.getActiveRhapsodyApplication();

//init the plug-in

myPlugin.RhpPluginInit(app);

//simulate a call to the plug-in

myPlugin.RhpPluginInvokeItem();

}

Once you have included such a main operation, you can run Rational Rhapsody and debug the
plug-in as you would any other Java application.

Debugging from within Rational Rhapsody
To debug from within Rational Rhapsody:

1. Add the following debug options to the JVM section of the rhapsody.ini file:

[JVM]

Options=ClassPath,LibPath,Debug1,Debug2,Debug3

Debug1=-Xnoagent

Debug2=-Xdebug

Debug3=-Xrunjdwp:transport=dt_socket,address=6743,server=y,suspend=y
Rational Rhapsody 513

Customizations for Rational Rhapsody
2. Open your Java plug-in project in Eclipse and create a Remote Java Application
configuration as follows:

a. Choose Run > Debug Configurations.

b. In the Debug Configurations window, right-click Remote Java Application, and
then select New.

c. Set the port number to 6743 or any other number that you entered for "address" in the
JVM settings in the rhapsody.ini file.

3. Open Rational Rhapsody and open the project that loads your plug-in. Once the project is
loaded, Rational Rhapsody will wait until you start the debug session.

4. Set breakpoints in your code and start the debug session.
514 User Guide

Creating a Rational Rhapsody plug-in
The simple plug-in sample

The Rational Rhapsody installation contains a sample plug-in called Simple Plug-in (under
ExtensibilitySamples).

To see the capabilities that this sample plug-in adds to Rational Rhapsody, add
SimplePluginProfile.sbs to a Rational Rhapsody model "As Reference".

This profile will load the plug-in and a message will be displayed indicating the Rational
Rhapsody build number you are using.

The plug-in adds the following menu items:

� SimplePlugin under the Tools menu - when you select this menu item, Rational Rhapsody
displays properties that were overridden in the project.

� Invoke SimplePlugin For OMD, Invoke SimplePlugin For Class, and Invoke
SimplePlugin For Package, for the context menus for OMDs, classes, and packages,
respectively. Selecting these context menu items will display the element's name.

In addition, the plug-in causes messages to be displayed at the following points: before code
generation, before project save, after project save, before check model.
Rational Rhapsody 515

Customizations for Rational Rhapsody
516 User Guide

Use case diagrams
Use case diagrams (UCDs) model relationships between one or more users (actors) and a system
or class (classifier). You use them to specify requirements for system behavior. In addition,
Rational Rhapsody UCDs depict generalization relationships between use cases as defined in the
UML (see Creating generalizations). Rational Rhapsody does not generate code for UCDs.

Use case diagrams overview
Use cases (for example, wash dishes and service dishwasher) represent the user’s expectation for a
system. Actors (a cleansing engineer and service person) represent any external object that
interacts with the system. Uses cases reside inside the system boundary, and actors reside outside.
Association lines show relationships between the use cases and the actors. The following UCD
demonstrates these features.

Actor

Association

Use Case

Generalization

System Boundary
Rational Rhapsody 517

Use case diagrams
Opening an existing use case diagram
To open an existing use case diagram in the drawing area:

1. Double-click the diagram name in the browser.

2. Click OK. The diagram opens in the drawing area.

As with other Rational Rhapsody elements, use the Features window for the diagram to edit its
features, including the name, stereotype, and description. For more information, see The Features
window.
518 User Guide

Create use case diagram elements
Create use case diagram elements
The following sections describe how to use the use case diagram drawing tools to draw the parts of
a use case diagram. For basic information on diagrams, including how to create, open, and delete
them, see Graphic editors.

Use case diagram drawing tools

The Diagram Tools for a use case diagram contains the following tools:

Drawing
Tool Button Name Description

Use Case Draws a representation of a user-visible function. A use case can be large or small,
but it must capture an important goal of a user for the system.

Actor Represents users of the system or external elements that either provide information
to the system or use information provided by the system.

Package Groups systems or parts of a system into logical components.

Association Shows relationships between actors and use cases.

Generalization Shows how one use case is derived from another. The arrow head points to the
parent use case.

Dependency Defines dependencies between an actor and a use case, between two actors, or
between two use cases.

Boundary box Delineates the design scope for the system and its external actors with the use
cases inside the system boundary and the actors outside.

Flow Provides a mechanism for specifying exchange of information between system
elements at a high level of abstraction. This functionality enables you to describe the
flow of data and commands within a system at a very early stage, before committing
to a specific design. As the system specification evolves, you can refine the
abstraction to relate to the concrete implementation.

For detailed information on flows, see Flows and flowitems.
Rational Rhapsody 519

Use case diagrams
System boundary box

The system boundary box should be the first element placed in a UCD. It distinguishes the border
between use cases and actors (use cases are inside the borders of the system boundary box and
actors are outside of it).

To create a system boundary box:

1. Click the Boundary box button .

2. Click once in the drawing area. Rational Rhapsody creates a boundary box named System
Boundary Box. Alternatively, click-and-drag with the mouse to draw the system boundary
box.

3. If wanted, edit the default name and press Enter.

Use cases

Use cases represent the externally visible behaviors, or functional aspects, of the system. They
consist of the abstract, uninterpreted interactions of the system with external entities. This means
that the content of use cases is not used for code generation. A use case is displayed in a UCD as
an oval containing a name.

Creating a use case
To create a use case:

1. Click the Use Case button .

2. Click once in the diagram or click-and-drag with the mouse to draw a use case of a
specific size. By default, the use case is named usecasen, where n is an integer greater
than or equal to 0.

3. If wanted, edit the default name and press Enter.

The new use case is displayed in both the UCD and the browser. The browser icon for a use case is
an oval.
520 User Guide

Create use case diagram elements
Modify the features of a use case
Use the Features window to define these use case features.

� Name allows you to replace the default name with the name you want for this use case.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the use case, if any. They are enclosed in guillemets,

for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

Note that the COM stereotypes are constructive; that is, they affect code generation.
� Default Package specifies a group for this use case.

Adding attributes to a use case
Because a use case is a stereotyped class, it can have attributes. No code is generated for these
attributes. Rational Rhapsody does not display attributes in the UCD. To access attributes for a use
case, use the browser.

To add a new attribute to a use case:

1. Select the use case in the UCD editor.

2. Right-click the use case, and then select New Attribute. The Attribute window opens.

3. Type a name for the attribute in the Name field.

Use the L button next to the name field to assign a logical label. For more information on
labels, see Descriptive labels for elements.

4. Select the Type, Visibility, and Multiplicity for the attribute.

5. Type a description in the Description tab.

6. Click OK.

To add an existing attribute to a use case:

1. In the browser, locate the class that contains the attribute.

2. Click-and-drag the attribute to the use case in the browser. This creates a separate copy of
the attribute under the use case.

Note
If you click-and-drag an attribute from one use case to another, the attribute is moved, not
copied.
Rational Rhapsody 521

Use case diagrams
Adding operations to a use case
Because a use case is a stereotyped class, it can have operations.

To add a new operation to a use case:

1. Select the use case in the UCD editor.

2. Right-click the use case, and then select New Operation. The Primitive Operation
window opens.

3. Type a name for the operation in the Name field.

4. If wanted, specify a stereotype.

5. Select the visibility of the operation.

6. Select a type for the operation in the Type field.

7. Select the Return Type for the operation.

8. Specify the operation modifiers.

9. Add any arguments using the Arguments section.

10. Type a description in the Description tab.

11. Select the Implementation tab.

12. Type the implementation code for the operation in the Implementation text box.

Note: Code is not generated for the contents of use cases. This implementation is for
descriptive purposes only.

13. Click OK.
522 User Guide

Create use case diagram elements
Adding extension points
To create an extension point for the base use case:

1. Right-click the use case in a diagram.

2. Select Features and click New on the General tab.

3. Type a name for the new extension point and click OK.

Creating a statechart or activity diagram for a use case diagram
Because use cases are stereotyped classes, it is possible to add a statechart or an activity diagram.

To add a statechart or activity diagram to a use case:

1. Select the use case in the UCD editor.

2. Right-click the use case, and then select either New Statechart or New Activity
Diagram.

For more information on these diagrams, see Statecharts and Activity diagrams.
Rational Rhapsody 523

Use case diagrams
Actors

Actors are the external entities that interact with a use case. Typical actors that operate on real-
time, embedded systems are buses (for example, Ethernet or MIB), sensors, motors, and switches.
An actor is represented as a figure in UCDs.

Actors are a kind of UML classifier similar to classes and they can participate in sequences as
instances. However, actors have the following constraints imposed on them:

� They cannot aggregate or compose any elements.
� They generalize only from other actors.
� They cannot be converted to classes, or vice versa.

Rational Rhapsody can generate code for an actor, which can be used in simulation testing of the
system you are building. For more information, see Generating Code for Actors.

Creating an actor
To create an actor:

1. Click the Actor button , and then click once in the UCD. Alternatively, click-and-drag
to draw the actor.

2. Edit the default name, and then press Enter.

Modify the features of an actor
The Features window enables you to define the features of an actor. An actor has the following
features:

� Name specifies the name of the element. The default name is actor_n, where n is an
incremental integer starting with 0.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the actor, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. For
information on creating labels, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Main Diagram specifies the main diagram for the actor.

More than one UCD can contain the same use case or actor. You can select one of these
diagrams to be the main diagram for the use case or actor. This is the diagram that will
open when you select the Open Main Diagram option in the browser.

� Concurrency specifies the concurrency of the actor. The possible values are as follows:
524 User Guide

Create use case diagram elements
– Sequential where the element will run with other classes on a single system
thread. This means you can access this element only from one active class.

– Active where the element will start its own thread and run concurrently with
other active classes.

� Defined In specifies which element owns this actor. An actor can be owned by a package,
class, or another actor.

� Class Type specifies the class type. The possible values are as follows:
– Regular creates a regular class.
– Template creates a template. To specify the necessary arguments, click the

Arguments button.
– Instantiation creates an instantiation of a template.

To create an instance of a class, select the Instantiation radio button and
select the template that the instance is from. For example, if you have a
template class A and create B as an instance of that class, this means that B is
created as an instance of class A at run time.

To specify the necessary arguments, click the Arguments button.

Adding attributes and operations
Attributes and operations are added to actors just as they are added to classes.

To add an attribute or operation to an actor:

1. Open the Features window for the actor.

2. Select the Attributes tab or Operations tab, as appropriate.

3. Select the <New> label. A new row is displayed, with the default values filled in.

4. If needed, change the default values for the new attribute or operation.

5. Click OK.

For detailed information on creating attributes and operations, see Defining the attributes of a class.
Rational Rhapsody 525

Use case diagrams
Creating a statechart, activity, or structure diagram
Because an actor is a special type of class, it can have a statechart, an activity diagram, or a
structure diagram.

To use the editor to add one of these diagrams to an actor:

1. Select the actor in the UCD editor.

2. Right-click the actor, and then select New Statechart, New Activity Diagram, or New
Structure Diagram.

For more information on these diagrams, see Statecharts, Activity diagrams, or Structure diagrams.

Generating code for an actor
To generate code for an actor:

1. Locate the active configuration in the browser.

2. Open the Features window for the active configuration.

3. On the Initialization tab, select Generate Code for Actors.

Alternatively, you can generate code for the actor by right-clicking on the actor in the UCD and
selecting Generate.

When you generate code for the configuration, code is also generated for any actors that are part of
the configuration. For detailed information on configurations, see Component configurations in the
browser.

Creating packages

Packages logically group system components. They are represented in UCDs as a file folder.

To create a package:

1. Click the Package button , and then click once in the UCD. Alternatively,
click-and-drag with the mouse to draw the package.

2. Edit the default name, and then press Enter.

The new package will be displayed in both the diagram and the browser (listed under Packages).
526 User Guide

Create use case diagram elements
Creating associations

Associations represent lines of communication between actors and use cases. Use cases can
associate only with actors, and vice versa.

To create an associations:

1. Click the Association button .

2. Click either the actor or the use case. Note that the crosshairs change to a circle with
crosshairs when you are on an element that can be part of an association.

3. Move the cursor to the target of the association and click once. If the source is an actor, the
target must be a use case, and vice versa.

4. Type a name for the association, then press Enter.

The new association is displayed in both the UCD and the browser (under the actor’s
Association Ends category).

For information on modifying an association, see Association features. Association features
include the type, name, roles, multiplicity, qualifiers, and description.

Creating generalizations

UML allows for generalization as a way of factoring out commonality between use cases. In other
words, it provides a means to derive one use case from another. Generalizations are allowed
between use cases and actors.

To create a generalization relationship:

1. Click the Generalization button.

2. Click the derived use case.

3. Move the cursor to the closest edge of the super-use case and click once.
Rational Rhapsody 527

Use case diagrams
Creating dependencies

A dependency is a directed relationship from a client to a supplier in which the functioning of a
client requires the presence of the supplier, but the functioning of the supplier does not require the
presence of the client. Generalizations are allowed between any two UCD elements: use case,
actor, or package.

To create a dependency relationship:

1. Click the Dependency button .

2. Select the client element.

3. Move the cursor to the closest edge of the supplier element and click once.

You can set the dependency stereotype using the Features window. See Dependencies.

Sequences

UCDs assist in the analysis phase of a project. They capture hard and firm constraints at a high
level. As design decisions are made, you further decompose UCDs to create more possible use
cases and scenarios, or sequences, that implement the use case. Each use case has a folder in the
browser containing some of its possible sequences.

Scenarios describe not only the main path through a use case, but can also include background
environmental and situational descriptions to set the stage for future events. In other words, they
can provide detailed definitions of preconditions for a use case. Therefore, a sequence describes
the main path through a use case, whereas a variant, represented by a child use case, describes
alternate paths. For example, consider a VCR. One sequence of the InstallationAndSetup use case
might be the following steps:

1. Add the VCR and accessories.

2. Insert batteries in the remote control.

3. Connect the antenna or cable system to the VCR.

4. Set the CH3/CH4 switch.

5. Turn on the VCR and select an active channel.

6. Learn to use the TV/VCR button.

7. Test the VCR connections.

The specific sequence of steps through a particular use case is better expressed through a sequence
diagram. For detailed information, see Sequence diagrams.
528 User Guide

Object model diagrams
Object model diagrams (OMDs) specify the structure and static relationships of the classes in the
system. Rational Rhapsody OMDs are both class diagrams and object diagrams, as specified in the
UML. They show the classes, objects, interfaces, and attributes in the system and the static
relationships that exist between them.

Structure diagrams focus on the objects used in the model. Although you can put classes in
structure diagrams and objects in the OMD, the toolbars for the diagrams are different to allow a
distinction between the specification of the system and its structure. For more information, see
Structure diagrams.

Object model diagrams overview
More than simply being a graphical representation of the system structure, OMDs are constructive.
The Rational Rhapsody code generator directly translates the elements and relationships modeled
in OMDs into source code in a number of high-level languages. The following sample OMD
shows a dishwasher project.
Rational Rhapsody 529

Object model diagrams
In this diagram, the thick sidebars on the Dishwasher class denote that it is the active class.

You can specify and edit operations and attributes directly within class and object boxes. Simply
highlight the appropriate element to make it active, then type in your changes. To open the
Features window for a given attribute or operation, just double-click the element within the
compartment.

Note
To add a new operation or attribute, press the Insert key when the appropriate compartment
is active.

Object model diagram elements
The following sections describe how to use the object model diagram drawing tools to draw the
parts of an object model diagram. For basic information on diagrams, including how to create,
open, and delete them, see Graphic editors.

Object model diagram drawing tools

The Diagram Tools for an object model diagram includes the following tools:

Drawing
Tool Button Name Description

Select A pointing tool to identify parts of the diagram requiring changes or additions.

Object A structural building block of a system. Objects form a cohesive unit of state (data)
and services (behavior). Every object has a public part and an private part. For more
information, see Objects.

Class Defines properties that are common to all objects of that type. For more information,
see Creating classes.

Composite
class

A container class. You can create objects and relations inside a composite class. For
more information, see Creating composite classes.

Package A group of classes. For more information, see Creating a package.

File Available only in Rational Rhapsody in C has an additional icon. Use it to create file
model elements. A file is a graphical representation of a header (.h) or code (.c)
source file. For more information, see Files.

Port Draws connection points among objects and their environments.

Inheritance Shows the relationship between a derived class and its parent.
530 User Guide

Object model diagram elements
The following sections describe how to use these tools to draw the parts of an OMD. For basic
information on diagrams including how to create, open, and delete them, see Graphic editors.

Objects

Rational Rhapsody separates objects from classes in diagrams. There are two types of objects:

An object is basically an instance of a class; however, you can create an object directly without
defining a class. Objects belong to packages and parts belong to structured classes; the browser
separates parts and objects into separate categories.

Association Creates connections that are necessary for interaction such as messages.

Directed
association

Indicates the only object that can send messages to another object. For more
information, see Directed associations.

Aggregation Specifies an association between an aggregate (whole) and a component part. For
more information, see Aggregation associations.

Composition Defines a class that contains another part class. For more information, see
Composition associations.

Link Creates an association between the base classes of two different objects. For more
information, see Links.

Dependency Creates a relationship in which the proper functioning of one element requires
information provided by another element. For more information, see Dependencies.

Flow Specifies the flow of data and commands within a system. For more information, see
Flows and flowitems.

Realization Specifies a realization relationship between an interface and a class that implements
that interface. For more information, see Realization.

Interface Adds a set of operations that publicly define a behavior or way of handling
something so knowledge of the internals is not needed.

Actor Represents an element that is external to the system. For more information, see
Actors.

Objects with explicit object types specifies only the features that are relevant for the
instance. An explicit object instantiates a “normal” class from the model.

Objects with implicit types enables you to specify other features that belong to
classes, such as attributes, operations, and so on. An implicit object is a combination of
an instance and a class. Technically, the class is hidden.
Note that Rational Rhapsody in J does not support objects with implicit types.

Drawing
Tool Button Name Description
Rational Rhapsody 531

Object model diagrams
Opening an existing object model diagram
To open an existing object model diagram in the drawing area:

1. Double-click the diagram name in the browser.

2. Click OK. The diagram opens in the drawing area.

As with other Rational Rhapsody elements, use the Features window for the diagram to edit its
features, including the name, stereotype, and description. For more information, see The Features
window.

Creating an object
To create an object:

1. Click the Object icon in the Diagram Tools.

2. Click, or click-and-drag, in the drawing area.

3. Edit the default name, then press Enter.

If you specify the name in the format <ObjectName:ClassName> (for an object with
explicit type) and the class <ClassName> exists in the model, the new object will
reference it. If it does not exist, Rational Rhapsody prompts you to create it.

Object characteristics
By default, Rational Rhapsody creates objects with implicit type. In the OMD, an object is shown
like a class box, with the following differences:

� The name of the object is underlined.
� The multiplicity is displayed in the upper, left-hand corner.

The following example shows an object of explicit type:
532 User Guide

Object characteristics
Parts in an object model diagram

As with classes, you can display the attributes and operations in the object. For more information,
see Display option settings.

The following example shows an object model diagram that contains parts.
Rational Rhapsody 533

Object model diagrams
Object features

The Features window enables you to change the features of an object, including its concurrency
and multiplicity.

An object has the following features:

� Name specifies the name of the element. The default name is object_n, where n is an
incremental integer starting with 0.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the object, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Main Diagram specifies the name of the diagram of which this is a part.
� Concurrency specifies the concurrency of the object. This field is available only for

objects with implicit type. The possible values are as follows:
– Sequential means the element will run with other classes on a single system

thread. This means you can access this element only from one active class.
– Active means the element will start its own thread and run concurrently with

other active classes.
� Type specifies the class of which the object is an instance. To view the classes for that

class, click the Invoke Feature Dialog button next to the Type field.

In addition to the names of all the instantiated classes in the model, this list includes the
following choices:

– <Implicit> specifies an implicit object
– <Explicit> specifies an explicit object
– <New> enables you to specify a new class
– <Select> enables you to browse for a class using the selection tree

� Multiplicity specifies the number of occurrences of this instance in the project. Common
values are one (1), zero or one (0,1), or one or more (1..*).

� Initialization specifies the constructor being called when the object is created. If you click
the Ellipsis button, the Actual Call window opens so you can see the details of the call.

If the part does not have a constructor, with parameters, this field is dimmed.

� Relation to whole enables you to name the relation for a part. If the object is part of a
composite class, enable the Knows its whole as check box and type a name for the
relation in the text box. This relation is displayed in the browser under the Association
534 User Guide

Object characteristics
Ends category under the instantiated class or implicit object.

If the Relation to whole field is specified on the General tab, the Features window
includes tabs to define that relation and its properties. However, on the tab that specifies
the features of its whole (in the illustration of the itsController tab), only the fields Name,
Label, Stereotype, and Description can be modified.

Converting object types

You can easily change the type of an object using the Features window for the object.

If you convert an object with implicit type to an object with explicit type (by selecting <Explicit>
in the Type field), a new class is created. By default, the name of the new class is <object
name>_class.

If you convert an object of explicit type to an object of implicit type, the following actions occur:

� The original class is copied into the object of implicit type.
� Graphical relations are removed.
� Symmetric associations become directional.
� Links disconnect from associations.

Converting classes to objects

To convert a class to an object, right-click the class in the diagram and select Make an Object.
Rational Rhapsody converts the class to an object named its<ClassName>:<ClassName>. For
example, if you converted class A to an object, the name of the object would be itsA:A.
Rational Rhapsody 535

Object model diagrams
Code generation for objects

For objects with explicit type, code is generated as in previous versions of Rational Rhapsody. The
following table lists the results of generating code for objects with implicit type.

Situation Results of Code Generation

Implicit type During code generation, the object is mapped in
two parts:

• An implicit class with the name <object>_C.
• The instance of the class in its owner (either a

composite class or package). The name of the
instance is <object>.

Implicit type in a package
(global)

The code for the instance is generated in the
package file and the code for the implicit class is
generated into files named <object>.h and
<object>.cpp.

Implicit type in a structured
class (part)

The code for the instance is generated in the
composite class file and the code for the implicit
class is generated as a nested class of the
composite (in the file for the composite).

Embeddable objects The default code scheme for code generation for
objects is changed to embeddable. The default
values of the following properties were changed:

• CPP_CG::Class::Embeddable is Checked
• CPP_CG::Relation::ImplementWithSta
ticArray is FixedAndBounded
536 User Guide

Object characteristics
Editing the declaration order of objects

To change the order of objects:

1. In the browser, right-click the Objects category icon and then select Edit Objects Order.
The Edit Objects declaration order window opens and lists all the files and objects in the
current package.

2. Unselect the Use default order check box.

3. Select the object you want to move.

4. Click Up to generate the object earlier or Down to generate it later.

5. Click OK.

Changing the value of an instance

You can specify the value of attributes for instances. An attribute value is the value assigned to an
attribute during run time. This functionality enables you to describe a possible setup of objects and
parts at a certain point in their lifecycle, you can see a “snapshot” of the system, including the
instances that exist and their values. To support this functionality, the Features window for
instances includes a new column, Value.

Note
Initial values are features of the attributes of the class, whereas instance values characterize
the specific instance of the class (that object).
Rational Rhapsody 537

Object model diagrams
For example, consider the class, Date, and an object of Date called newYear2004. The class Date
has the attributes Day, Month, and Year. The following example shows the initial values for the
class Date.

The following example shows the attributes for object newYear2004 of class Date. Note that the
Show Inherited check box specifies whether to display the inherited attributes so you can easily
modify them.
538 User Guide

Object characteristics
Click the Specification View icon to view the attributes and operations of an object in the OMD.
The following OMD shows the class, Date, and the object of Date called newYear2004.

In the OMD, the object values are displayed using the following format:

[visibility]<attribute name>:<attribute type>=<value>

Note the following information:

� Instance values are always displayed. To hide the entire attribute, right-click the object and
select Display Options.

� Both the instance and the class must be “available” in the model.
Rational Rhapsody 539

Object model diagrams
Creating a vacuum pump model as an example
The following model shows how to use instance attribute values to take snapshots of a vacuum
pump model at different stages in the lifecycle.

The vacuum pump removes the air from a chamber. The model needs to show the state of the
system at various points in time, the initial value, the value after one hour, and the final value.

The following example shows the OMD for the model.

To create a vacuum pump model as an example:

1. Create a package called ConstantPumping.

2. Set the CG::Class::UseAsExternal property to Checked so the package is considered
external (and code will not be generated for it).

Alternatively, you can create a new stereotype for the class («snapshot»), then set this
property to Checked.

3. In this package, each phase is represented by a different class. For the initial conditions,
create a class called InitialConditions.
540 User Guide

Creating a vacuum pump model as an example
4. Add a structure diagram to InitialConditions and add the elements (and their attribute
values) to the diagram.
Rational Rhapsody 541

Object model diagrams
5. To show the conditions after an hour, copy the InitialConditions class and rename it
AfterAnHour. Specify the attribute values for this stage in the process. The following
example shows the attribute values after the pump has been running for an hour.
542 User Guide

Creating a vacuum pump model as an example
6. To show the final values for the system, copy the InitialConditions class and rename it
FinalState. Specify the attribute values for this stage in the process. The following
example shows the final values.
Rational Rhapsody 543

Object model diagrams
7. To show the order and transitions between snapshots, you can draw a simple OMD, as
shown in the following example.
544 User Guide

Creating classes
Creating classes
Classes can contain attributes, operations, event receptions, relations, components, superclasses,
types, actors, use cases, diagrams, and other classes. The browser icon for a class is a three-
compartment box with the top, or name, compartment filled in.

To create a class:

1. In the Diagram Tools, click the Class tool.

2. Click in the drawing area.

3. Edit the default class name.

4. Press Enter.

Class compartments

In the OMD, a class is shown as a rectangle with three sections, for the name, attributes, and
operations. You can select and move the line separating the attributes and operations to create
more space for either compartment.

If you shrink the box vertically, the operations and attributes sections disappear and the class
graphic shows only the class name. The attributes and operations reappear if you enlarge the
drawing.

When you rename a class in the OMD editor, the class name is changed throughout the model.

For more information about classes, see Classes and types.

Name

Attributes

Operations
Rational Rhapsody 545

Object model diagrams
Creating composite classes

Instances in a composite class are called parts. To identify a component in code (actions or
operations), use the expression instance-of-composite.name-of-part. The multiplicity of a
component is relative to each instance of the composite containing it. For example, each car has
one engine.

If the multiplicity is well-defined (such as 1 or 5), Rational Rhapsody creates the components at
run time, when the composite is instantiated. If an association is instantiated by a link, Rational
Rhapsody initializes the association at run time.

When a composite is destroyed, it destroys all its components.

To create a composite class:

1. Click the Composite Class tool.

2. Click in the diagram, or click-and-drag to create the composite class. The new composite
class is displayed in the diagram.

Because a composite class is a container class, you can create objects and relations inside it, as
shown in this example.

A composite class uses the same Features window as objects and parts (see Class features).

Another way of having the functionality of a composite class is to use a composition. For more
information, see Composition associations.
546 User Guide

Creating a package
Creating a package
In Rational Rhapsody, every class belongs to a package. Classes drawn explicitly in a package are
placed in that package in the model. Classes not drawn explicitly in a package are placed in the
default package of the diagram. If you move a class to a package, it is also placed in that package
in the model. If you do not connect this diagram to a package with the browser, Rational Rhapsody
assigns the diagram to the default package of the model.

To draw a package in the diagram:

1. Select the Package icon.

2. Click once in the diagram. Now you must define the package using the Features window.

3. Right-click the package and select Features.

Package features

The Features window allows you to define the characteristics of a package, such as its Name or
Main Diagram.

� Name specifies the name of the package. Package names cannot contain spaces or begin
with numbers.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the package, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

Note that package stereotypes are not constructive (see Constructive dependencies).
� Main Diagram specifies the name of the diagram of which this is a component.

The Description tab allows you to write a detailed description of the package. The Relations tab
lists all of the relationships of the package. The Tags tab lists the available tags for this package.
The Properties tab enables you to define code generation properties for the package.
Rational Rhapsody 547

Object model diagrams
Inheritance

Inheritance is the “mechanism by which more specific elements incorporate structure and behavior
of more general elements related by behavior.” Inheritance is also known as generalization, or a
“taxonomic relationship between a more general element and a more specific element. The more
specific element is fully consistent with the more general element and contains additional
information. An instance of the more specific element may be used where the more general
element is allowed.” (Both references are from the UML Specification, v1.3.)

Creating an inheritance with an inheritance arrow
You can create inheritance by drawing an inheritance arrow between two classes or by using the
browser. To create an inheritance arrow between two classes:

1. Click the Inheritance icon.

2. Click in the subclass.

3. Move the cursor to the superclass and click once to end the arrow.

An inheritance arrows points from the subclass to the superclass, with a large arrowhead on the
superclass end.

The browser icon for a superclass is an inheritance arrow:

� The icon for the SuperClass category is a black arrow.
� The icon for an individual SuperClass is a blue arrow.

Double-clicking a SuperClass icon in the browser opens the Features window for the superclass.
548 User Guide

Creating a package
Creating inheritance in the browser
To create inheritance using the browser:

1. Right-click a class and then select Add New > SuperClass. The Add Superclass window
opens.

2. Use the list to specify the superclass.

3. Click OK.

Inheriting from an external class
To inherit from a class that is not part of the model, set the CG::Class::UseAsExternal property
for the superclass to Checked. This prevents code from being generated for the superclass.

To generate an #include of the superclass header file in the subclass, do one of the following
actions:

� Add the external element to the scope of some component.
� Map the external element to a file in the component.
� Set the CG::Class::FileName property for the superclass to the name of its specification

file (for example, super.h). That file is included in the source files for classes that have
relations to it. If the FileName property is not set, no #include is generated.

Another way to inherit from an external class is to exclude the external class from the code
generation scope. For example, if you want a class to extend the Java class javax.swing.JTree
without actually importing it:

1. Draw a package javax.

2. Draw a nested package swing inside javax.

3. Draw a class JTree inside the swing package.

4. Exclude the javax package from the component (do not make it one of the selected
elements in the browser). This prevents the component from generating code for anything
in the javax package.

This gives the rest of the model the ability to reference the JTree class without generating code for
it. In this way, a class in the model (for example, MyJTree) can inherit from javax.swing.JTree.
If the subclass is public, the generated code is as follows:

import javax.swing.JTree;
...
public class MyJTree extends JTree {
...
}

Rational Rhapsody 549

Object model diagrams
If you need a class to import an entire package instead of a specific class, add a dependency (see
Dependencies) with a stereotype of «Usage» to the external package, in this case javax.swing.
The generated file will then include the following line:

import javax.swing.*

For more information on using external elements, see External elements.

Realization
Rational Rhapsody allows you to specify a realization relationship between an interface and a class
that implements that interface. This type of relationship is specified using the realization connector
in the Diagram Tools for object model diagrams.

Note
Realization is a "new term" based on the generalization element. This means that it is also
possible to right-click a generalization element in a diagram and then select Change To >
Realization.

The realization connector only serves a visual purpose when used in an object model diagram. The
code generation for realization relationships is not determined by the connector used between the
class and the interface, but by the application of the interface stereotype to the class element in the
diagram that represents the interface.

If you apply the interface stereotype to a class element, then the appropriate code will be generated
for the interface and the implementing classes in Rational Rhapsody in Java and Rational
Rhapsody in C.

For details regarding the code generation for realization relationships in C, see Components-based
Development in C.
550 User Guide

Associations
Associations
In previous versions of Rational Rhapsody, the term “relations” referred to all the different kinds
of associations. Note that the term “relations” refers to all the relationships you can define between
elements in the model (not just classes), associations, dependencies, generalization, flows, and
links.

Associations are links that allow related objects to communicate. Rational Rhapsody supports the
following types of associations:

� Bi-directional association where both objects can send messages back and forth. This is
also called a symmetric association. For more information, see Bi-directional associations.

� Directed association where only one of the objects can send messages to the other. For
more information, see Directed associations.

� Aggregation association defines a whole-part relationship. For more information, see
Aggregation associations.

� Composition aggregation defines a relationship where one class fully contains the other.
For more information, see Composition associations.

Bi-directional associations

Bi-directional (or symmetric) associations are the simplest way that two classes can relate to each
other. A bi-directional association is shown as a line between two classes, and can contain control
points. The classes can be any mix of classes, simple classes, or composite classes.

When you create an association or an aggregation association between two classes and give it a
role name that already exists, you have created another view of an existing relation.

In previous versions of Rational Rhapsody, an association was described by one or two association
ends. An association can be composed of the following elements:

� Association ends means the associated objects
� Association element means a view of the association as a whole
� Association class means an association element that has class characteristics (attributes

and operations)

Note
If you draw an anchor from a class to a relation (association, aggregation, or composition),
it semantically implies that the class is an association class for this relation. Removing the
icon changes the association class into a regular class.
Rational Rhapsody 551

Object model diagrams
Creating a bi-directional association

To create a bi-directional association between classes:

1. Click the Create Association icon .

2. Click in a class.

3. Click in another class.

In this example note the bi-directional Association line between two classes.

Note the following information:

� Associations specify how classes relate to each other with role names. The relative
numbers of objects participating is shown with multiplicity.

� You can move an association name freely.
� If you remove the class at one end of an association from the view, the association is also

removed from the view. If you delete a class at one end of an association from the model,
the association is also deleted.

� The role names and multiplicity are set in the Features window for the association. To edit
a role name or multiplicity, double-click it.

� If you move an association line from between class x and class y to between class x and
class z, where z is a subclass of y, it is removed from y. But if z is a superclass of y, it
remains because all relationships with a superclass are shared by their subclasses. If z and
y are independent, Rational Rhapsody moves it from y to z.
552 User Guide

Associations
Association features

The Features window enables you to change the features of an association, such as what it consists
of (for example, two ends or a single end) and its association ends. The following figure shows the
Features window for a bi-directional association.

A bi-directional association has the following features:

� Name specifies the name of the association.
� L specifies the label for the element, if any.Rational Rhapsody For information on creating

labels, see Descriptive labels for elements.
� Stereotype specifies the stereotype of the association, if any. They are enclosed in

guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.
Rational Rhapsody 553

Object model diagrams
� Consists of specifies whether the association consists of:
– A single association end (End <X>)
– Two given ends (Both Ends)
– An association element and two association ends (Association Element)
– An association class and two association ends (Association Class)

Note: There is no representation of the association class in the diagram, nor is there
code generation for the association class. The only representation of the
association class is in the Consists of field.

� Association Ends specifies the ends of the association. If only one end is specified, the
Role Name field for End2 field is unavailable.

Using this group box, you can change the role name of each enabled end. An enabled end
is an end that is part of the specification of the association. The label under this field
contains the type of the association end (the class to which the end is connected), the
navigability of the end, and its aggregation kind. For a non-existing end, this label
contains only “Role of.”

� Description describes the association. This field can include a hyperlink. For more
information, see Hyperlinks.

Note
If the association class or element does not exist, the Name, Stereotype, Label, and
Description fields are disabled.

In addition to the General tab, the Features window for an association contains the following tabs:

� End1 or End2
� End1 properties or End2 properties
554 User Guide

Associations
If the Consists of field is set to Association Class, the window also includes tabs for attributes and
operations, as shown in this example.
Rational Rhapsody 555

Object model diagrams
The End1 and End2 tabs
The End1 and End2 tabs enable you to specify features of the individual ends of the association.
The following figure shows an End1 tab.

The End1 and End2 tabs contain the following fields:

� Name specifies the name of the element.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,

for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Role of a read-only field that specifies the class, actor, or use case that plays a role in the
association.

� Multiplicity specifies the number of occurrences of this instance in the project. Common
values are one (1), zero or one (0,1), or one or more (1..*).
556 User Guide

Associations
� Qualifier shows the attributes in the related class that could function as qualifiers.

A qualifier is an attribute that can be used to distinguish one object from another. For
example, a PIN number can serve as a qualifier on a BankCard class. If a class is
associated with many objects of another class, you can select a qualifier to differentiate
individual objects. The qualifier becomes an index into the multiple relation. Adding a
qualifier makes the relation a qualified association.

� Aggregation Kind specifies the type of aggregation. The possible values are as follows:
– None means no aggregation.
– Shared (empty diamond)\ means shared aggregation (whole/part

relationship).
– Composition (filled diamond) means composition relationship. The instances

of the class at this end contains instances of the class at the other end as a part.
This part cannot be contained by other instances.

� Navigable specifies whether the association allows access to the other class. Both ends of
a bi-directional association are navigable. In a directed association, the element that has
the arrow head is navigable; the other end is not. For more information, see Directed
associations.

The navigability of an association influences the appearance of the association arrow in
the diagram. If one end of a symmetric association is navigable and the other is not, the
association line includes an arrow head.

� Description describes the association. This field can include a hyperlink. For more
information, see Hyperlinks.

Similarly, the End2 tab shows the features for the second end of the association.

Note that if an end is read only, its feature fields are also read-only.

The End1 and End2 properties tabs
The End1 properties and End2 properties tabs enable you to specify properties for the individual
ends of the association.
Rational Rhapsody 557

Object model diagrams
Directed associations

In a directed (or one-way) association, only one of the objects can send messages to the other. It is
shown with an arrow, as shown in this example.

Creating a directed association
To create a directed association:

1. Click the Directed Association icon .

2. Click in the source class.

3. Click in the destination class.

Rational Rhapsody draws an arrow between the two objects, with the arrow head pointing to the
target object.
558 User Guide

Associations
Directed association features
The Features window enables you to change the features of a directed association, such as what it
consists of (for example, two ends or a single end) and its association ends.

The Features window for a directed association is the same as the Features window for a
bi-directional association (see Association features), but the available tabs are different. As shown
in the figure, a directed association has one role name and one multiplicity.

If the directed association is not named (as shown in the figure), the Consists of field is set to End
<X> and the window contains only the tabs General, End1, and End1 properties.

However, for a named directed association, the Consists of field of the Features window is set to
Association Element, which means there is one more non-navigable end. The window contains
the following additional tabs:

� Association Tags specifies the tags that can be applied to this association. For more
information on tags, see Profiles.

� Association properties specifies the properties that affect this association.

Aggregation associations

Associations and aggregation associations are similar in usage. An association portrays a general
relationship between two classes; an aggregation association shows a whole-part relationship.
When you create an association or an aggregation association between two classes and give it a
role name that already exists, you have created another view of the existing association.

An aggregation association is a whole-part relationship similar to the relationship between a
composite class and a part. Other than their graphic representations, these differ mainly in that the
composite/component relationship implies a whole lifetime dependency. Parts are created with
their composites and are destroyed with them.

An aggregation association is shown as a line with a diamond on one end. The side with the
diamond indicates the whole class, whereas the side with the line is the part class. In the following
sample Aggregation Association, the diamond is placed at the first point of the aggregation:
Rational Rhapsody 559

Object model diagrams
Creating an aggregation association
To create an aggregation:

1. Click the Aggregation icon .

2. Click in the class that represents the whole.

3. Click in the class the represents the part.

Aggregation association features
The Features window for an aggregation is the same as that for a bi-directional association. For
more information, see Association features.

Note that for an aggregation association:

� Both ends are navigable.
� The Aggregation Kind value for the diamond end of an aggregation association is set to

None; the other end must be set to Shared.
560 User Guide

Associations
Composition associations

Another way of drawing a composite class is to use a composition association. A composition
association is a strong aggregation relation connecting a composite class to a part class
(component). The notation is a solid diamond at the composite end of the of the relationship, as
shown in this example.

The composite class has the sole responsibility of memory management for its part classes. As a
result, a part class can be included in only one composite class at a time. A composition can
contain both classes and associations.

Creating a composite association
To create a composite association:

1. Click the Composition icon .

2. Click the composite class.

3. Click the part class.

4. If wanted, name the composition.

5. Press Enter to dismiss the text box.

Composition association features
The Features window for compositions is the same as that for associations. For more information
about the available fields, see Association features.

Note that for a composition association:

� Both ends are navigable.
� The Aggregation Kind value for the filled-diamond end of the composition line is set to

None; the other end must be set to Composition.
Rational Rhapsody 561

Object model diagrams
Associations in the browser
An association can be represented in the browser as:

� A single association end
� Two association ends
� An association element and two association ends
� An association class and two association ends

Associations are listed in the browser under the category Association Ends under the owning
class, as shown in this example. Note that the browser display includes separate icons for each
association type.
562 User Guide

Associations
Associations implementation
Rational Rhapsody implements associations using containers. Containers are objects that store
collections of other objects. To properly generate code for associations, you must specify the
container set and type within that set you are using for the association.

Generally, you use the same container set for all associations. You specify the container set using
the CG::Configuration::ContainerSet property. There are many options, depending on the
language you are using. You can assign various container types, as defined in the selected
container set, to specific relations. Container types include Fixed, StaticArray,
BoundedOrdered, BoundedUnordered, UnboundedOrdered, UnboundedUnordered, and
Qualified, among others. In addition, you can define your own container type called User. You
specify the container type using the Implementation and ImplementWithStaticArray properties
(under CG::Relation).

Associations menu
In addition to the common operations (see Edit elements), the menu for associations includes the
following options:

� Select Association lists the available associations for this class, as shown in this example.
This functionality is useful when you have more than one association between the same
elements.

For more information, see Select associations.

� Show Labels shows the role labels in the diagram.
� Display Options enables you to specify how associations are displayed in the diagram. By

default, Rational Rhapsody displays the name of the association, and the multiplicity and
qualifiers for End1 and End2.
Rational Rhapsody 563

Object model diagrams
Select associations
In OMDs, you can select associations for classes that have more than one association defined
between the same two classes. To do this, hold down the right mouse button over an association
line to bring up the menu, then select Select Association.

Association names are displayed as follows:

� If the association has a name, the name is listed.
� If the association does not have a name and it is symmetric, the identifier uses the format

<role_1>-<role_2>.
� If the association does not have a name and it is unidirectional, the identifier uses the

format -><role>.
� If you select a different association from the list, the association line is directed to

reference the selected association.
564 User Guide

Associations
Links

A link is an instance of an association. In previous releases of Rational Rhapsody, you could link
objects in the model only if there were an explicit relationship between their corresponding
classes. An association line between two objects meant the existence of two different model
elements:

� An association between the objects’ classes
� A link between the objects

Rational Rhapsody separates links from associations so you can have unambiguous model
elements for links with a distinct notation in the diagrams. This separation enables you to:

� Specify links without having to specify the association being instantiated by the link.
� Specify features of links that are not mapped to an association.

In addition, Rational Rhapsody supports links across packages, including code generation. To
support this functionality, the default value of the property
CG::Component::InitializationScheme was changed to ByComponent.

Creating a link
To create a link, there must be at least one association that connects one of the base classes of the
type of one of the objects to a base class of the type of the second object.

To create a link:

1. Click the Link tool.

2. Click the first object.

3. Click the second object.

4. If wanted, name the link and press Enter.

The new link is created in the diagram, and is displayed in the browser under the Link category.
Note that you can drag-and-drop links in the browser to other classes and packages as needed;
however, you cannot create links in the browser.

The following figure shows links in an OMD. Note that links shown in dark green to distinguish
them from associations, which are drawn in red. In addition, the names and multiplicity of links
are underlined.
Rational Rhapsody 565

Object model diagrams
By default, the role name and multiplicity of a link are not displayed. Right-click the link and
select Display Options to select the items you want to display. For more information, see Link
menu.

Note the following behavior:

� Links can be drawn between two objects or ports that belong to objects. One exception is
the case when a link is drawn between a port that belongs to a composite class and its part
(or a port of its part).

� When drawing a link, Rational Rhapsody finds the association that can be instantiated by
the newly drawn link and automatically maps the link to instantiate the association.

� If you draw a link between two objects with implicit type and there no associations to
instantiate, Rational Rhapsody automatically creates a new, symmetric association.
566 User Guide

Associations
Link features
The Features window enables you to change the features of a link, such as the association being
instantiated by the link.

The title bar is in the form:

Link: [end1 instance](end1 role name)-[end2 instance] (end2 role name)

For example, a(itsA)-b(itsB).

A link has the following features:

� Name specifies the name of the link.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the link, if any. They are enclosed in guillemets, for

example «s1» and enable you to tag classes for documentation purposes. For information
on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Association specifies the association being instantiated by the link.

Rational Rhapsody allows you to specify a link without having to specify the association
being instantiated by the link. Until you specify the association, this field is set to
<Unspecified>.

If you select <New> from the list, Rational Rhapsody creates a new, symmetric
association based on the data (its name and multiplicity) for the link. Note that once you
specify an association for the link, you cannot change the role name or multiplicity for the
link (the corresponding fields of the Features window are unavailable).

To change the features of an association of which the link is an instantiation, you must
open the Features window of the association itself. Any changes you make to the
association are instantly applied to links that are instantiated from it.

� End1 and End2 specifies the two ends of the link, including:
– Name means the name of the link.
– Multiplicity means the multiplicity of the link.
– Via Port means the port used by the link, if any. This is a read-only field.

� Description describes the element. This field can include a hyperlink. For more
information, see Hyperlinks.
Rational Rhapsody 567

Object model diagrams
Link menu
In addition to the common operations (see Edit elements), the menu for links includes the
following options:

When you right-click a link, the menu contains the following options:

� Select Link lists the available links in the model. For more information, see Referencing
links.

� Select Association to instantiate lists the associations available in the model so you can
easily select one for the link to instantiate. For more information, see Mapping a link to an
association.

� Show Labels specifies whether to display element labels in the diagram.

Note that if you select this option and the link instantiates an association, the link ends
will use the labels instead of the role names of the corresponding association ends.

� Display Options determines whether the names and multiplicities of link ends are
displayed. For more information, see Displaying links.

Referencing links

To map a link line to an existing link in the model, right-click the link and select Select Link, as
shown in this example. This functionality is very useful when you have more than one link
between the same elements.

To reference an existing link, select it from the submenu.

Mapping a link to an association

To map a link line to an existing association in the model, right-click the link and select Select
Association to instantiate, as shown in this example.
568 User Guide

Associations
To change the association, simply select a different association from the submenu. If you do this
and the Active Code View is active, the corresponding code updates to reflect the change.

Displaying links

By default, the names and multiplicities of link ends are not displayed. To change the display,
right-click the link and select Display Options.

Note
Although the Link Name field is available by default, the “generated” link name is not
shown on the diagram. However, if you change the name of the link, the new name will be
displayed in the diagram.

Enable (check) the fields you want displayed in the diagram.

Using the complete relations functionality
The following table shows the results of using the Complete Relations functionality with
associations, generalizations, dependencies, and links.

For more information in the Complete Relations functionality, see Complete relations.

Completing relations
between these

elements...
Results in...

Two classes Rational Rhapsody draws the
associations, generalizations, and
dependencies but not the links.

Two objects with implicit type Rational Rhapsody draws the
associations, generalizations,
dependencies, and links. If the link
instantiates an association, the link
is drawn, but the association is not.

Two objects with explicit type Rational Rhapsody draws only the
links.
Rational Rhapsody 569

Object model diagrams
Code generation for links
The code for run-time connection of objects is based on links. The connection code is generated
when the following conditions are met:

� Links are specified with an association.
� The objects connected by the link has an owner (composite class or object) or are global

(both objects are owned by a package).

If the objects are parts of a composite, the link is owned by the composite. When the
objects are global, the link is owned by a package. Links across packages are initialized
by the component.

� The package and objects for the link are in the scope of the generated component.
� The CG::Component::InitializationScheme property for the component is set to

ByComponent for links across packages.
� If more than one link exists between two objects over the same relation, Rational

Rhapsody arbitrarily chooses which link to instantiate. The packages that contain the
objects are given priority in this decision.
570 User Guide

Associations
Populating one-to-many associations with objects
If you draw a one-to-many directed association between a class A and a class B, and create an
object of A and several objects of B, you can connect the objects with a link that instantiates the
association. The Rational Rhapsody-generated code for such a relationship creates a container
class for the one-to-many relationship in A, and creates objects of A and B. However, it does not
necessarily populate the container for A with the objects of B. When you model a relationship as
one-to-n, Rational Rhapsody instantiates n objects in the container. Rational Rhapsody populates
only associations with known multiplicity, and graphically shows when an association instance, or
link, actually exists and when it does not.

You can populate a one-to-many container by creating the objects in source code and adding them
to the container. However, you cannot model a generic one-to-many relationship and populate it
with an unknown number of diagrammatically modeled objects. Therefore, it is not possible to
populate a one-to-many relationship between classes drawn in one OMD with objects drawn in
another OMD.

Restrictions
Note the following limitations and restrictions:

� Code generation for links across composite classes is not supported.
� You cannot make a link when one or both sides of the relation are classes (as opposed to

objects).
Rational Rhapsody 571

Object model diagrams
Dependencies
A dependency exists when the implementation or functioning of one element (class or package)
requires the presence of another element. For example, if class C has an attribute a that is of class
D, there is a dependency from C to D.

In the UML, a dependency is a directed relationship from a client (or clients) to a supplier stating
that the client is dependent on, and affected by, the supplier. In other words, the client element
requires the presence and knowledge of the supplier element. The supplier element is independent
of, and unaffected by, the client element.

Dependency arrows

A dependency arrow is a dotted line with an arrow. You can draw a dependency arrow between
elements, or you can have one end attached and the other free. It can have a label, which you can
move freely. If a dependency arrow is drawn to or from an element, it is attached to the element;
the attached end moves with the attached border of the element.

Dependency arrows show that one thing depends on something else:

� An object that is a (logical) instantiation of another
� An object that creates or deletes another
� Constraints attached to an element
� A class that uses another class or package
� A package that uses another package or class

You can create a dependency in a diagram or in the browser.
572 User Guide

Dependencies
Drawing the dependency

To draw a dependency in the diagram:

1. Click the Dependency icon .

2. Click the dependent object.

3. Click the object on which it depends. This object also known as the provider.

Note that you can create more than one dependency between the same two elements. For example,
if you create one dependency from element X to element Y, the default name of the dependency is Y.
If you create a second dependency between the same two elements, the second dependency is
named Y_0 by default. To rename a dependency, do one of the following actions:

� Open the Features window for the dependency, and type the new name in the Name field.
� In the browser, left-click the dependency whose name you want to change, and type the

new name in the text box.

Creating the dependency in the browser
To create a dependency using the browser:

1. In the browser, right-click the element that depends on another element and then select
Add New > Dependency. The Add Dependency window opens.

2. Use the list to select the element on which the specified element depends.

Click the <<Select>> line to open a browsable tree of the entire project, as shown in
the following example.
Rational Rhapsody 573

Object model diagrams
3. Highlight the appropriate element, then click OK.

4. Rational Rhapsody creates the new dependency under the Dependency category for the
dependent element, with an open text box so you can easily rename the dependency.

5. If wanted, rename the dependency.
574 User Guide

Dependencies
Dependency features
The Features window enables you to change the features of a dependency, including its name and
stereotype.

A dependency has the following features:

� Name specifies the name of the dependency.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the dependency, if any. They are enclosed in

guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Depends On specifies the class or package that provides information to the dependency.
� Description describes the dependency. This field can include a hyperlink. For more

information, see Hyperlinks.
Rational Rhapsody 575

Object model diagrams
Dependency menu
In addition to the common operations (see Edit elements), the menu for dependencies includes the
following options:

� Display Options specifies how dependencies are displayed. The following figure shows
the display options for dependencies.

� Select Dependency enables you to select a dependency. This functionality is useful when
you have more than one dependency between the same elements.

Constructive dependencies
Rational Rhapsody supports the dependency stereotypes «Send», «Usage», and «Friend».

Note
If a class has a dependency on another class that is outside the scope of the component,
Rational Rhapsody does not automatically generate an #include statement for the external
class. You must set the «Usage» stereotype and the <lang>_CG::Class::SpecInclude
property for the dependent class.

Stereotypes are shown between guillemets («..») and are attached to the dependency line in the
OMD, as shown in this example.

The Properties tab in the Features window enables you to define the UsageType property for the
dependency. This property determines how code is generated for dependencies to which a «Usage»
stereotype is attached. The possible values for the UsageType property are as follows:

� Specification where an #include of the provider is generated in the specification file
for the dependent.

� Implementation where an #include of the provider is generated in the implementation
file for the dependent.

� Existence where a forward declaration of the provider is generated in the specification
file for the dependent.

For more information on stereotypes, see Stereotypes.
576 User Guide

Actors
Actors
An actor is a “coherent set of roles that users of use cases play when interacting with these use
cases. An actor has one role for each use case with which it communicates.” (UML specification,
version 1.3) An actor is a type of class with limited behavior. As such, it can be shown in an OMD.

Creating an actor

To create an actor:

1. Click the Actor icon .

2. Click, or click-and-drag, in the diagram.

For a detailed explanation of actors, see Actors. Note that an actor has a Features window that is
very similar to that of a class; for more information about the Features window Creating classes.

The actor menu

In addition to the common operations (see Edit elements), the menu for actors includes the
following options:

� New Statechart opens the statechart editor (see Statecharts)
� New Activity Diagram opens the activity diagram editor (see Activity diagrams)
� New Attribute opens the Attribute window (see Defining the attributes of a class)
� New Operation opens the Operation window (see Class operations)
� Generate generates code for the actor (see Basic code generation concepts)
� Edit Code opens the actor code in a text editor (see Editing Code)
� Roundtrip where roundtrips edits made to generated code back into the model (see The

roundtripping process)
� Open Main Diagram opens the main diagram for the actor
� Display Options opens the Display Options window
� Cut removes the actor from the view and saves it to the clipboard
� Copy saves a copy of the actor to the clipboard, while leaving it in the view
Rational Rhapsody 577

Object model diagrams
Flows and flowitems
Flows and flowitems provide a mechanism for specifying exchange of information between
system elements at a high level of abstraction. This functionality enables you to describe the flow
of data and commands within a system at a very early stage, before committing to a specific
design. As the system specification evolves, you can refine the abstraction to relate to the concrete
implementation.

Flows can convey flowitems, classes, types, events, attributes and variables, parts and objects, and
relations. You can draw flows between the following elements:

� Actors
� Classes
� Components
� Nodes
� Objects
� Packages
� Parts
� Ports
� Use cases

You can add flows to all of the static diagrams supported by Rational Rhapsody.
578 User Guide

Flows and flowitems
The flows in this object model diagram show the black-box representation of an air conditioning
unit and the actors that interact with it. It includes the information that is passed either from an
actor to the AC unit or from the AC unit to an actor.

Creating a flow

Every static diagram toolbar includes an Flow tool, which is drawn like a link. Static (or
structural) diagrams include object model diagrams, structure diagrams, use case diagrams,
component diagrams, and deployment diagrams.

To create a flow:

1. In the Diagram Tools, click the Flow icon or choose Edit > Add New > Relations
> Flow.

Note: Add New > Relations is the default menu command structure in Rational
Rhapsody. It can be changed by users. This topic assumes that all defaults are
in place.

2. In the diagram, click near the first object to anchor the flow.
Rational Rhapsody 579

Object model diagrams
3. Click to place the end of the flow.

4. In the edit box, type the element conveyed by the flow, then press Enter.

By default, a flow is displayed as a green, dashed arrow with the keyword «flow» underneath it.

To suppress the «flow» keyword, open the Display Options window and disable the <<flow>>
keyword check box. You can also control the display of the <<flow>> keyword for new flows by
setting the <Static diagram>::Flow::flowKeyword Boolean property.

The flows and flowitems are both displayed in the browser, as shown in the following example.
580 User Guide

Flows and flowitems
Features of a flow

The Features window enables you to change the features a flow, such as its name or flow ends. A
flow has the following features:

� Name specifies the name of the flow. By default, the flow is named using the following
convention:

<source>_<target>[_###]

In this convention, the source and target are end1 and end2 of the flow, based on the
direction (end1 is the source in bidirectional flows as well as flows from end1 to end2);
_### specifies additional numbering when the name is already used.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the flow, if any. They are enclosed in guillemets, for
example «s1» and enable you to tag classes for documentation purposes. For information
on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Flow Ends specifies how the information travels, from the source (End1) to the target
(End2). To change either end, use the pull-down list to select a new source or target from
the selection tree.

� Direction specifies the direction in which the information flows. To invert the flow, or to
make it bidirectional, use the appropriate value from the
pull-down list.

� Description describes the flow. This field can include a hyperlink. For more information,
see Hyperlinks.
Rational Rhapsody 581

Object model diagrams
Conveyed information

All the information elements that are conveyed on the flow are listed on the Flow Items tab, as
shown in this example.

An information element can be any Flowitem, as well as elements that can realize a flowitem
(classes, events, types, attributes and variables, parts and objects, and relations).

This tab enables you to perform the following tasks on information elements:

� Add a new information element.
� Add an existing information element.
� Remove an information element.
� View the features of an information element.

For detailed information on manipulating information elements, see Flowitems.
582 User Guide

Flows and flowitems
Note that you can specify multiple information elements using a comma-separated list. For
example, in the OMD the flow from the AC unit to the Display actor contains two information
elements: the DisplayInfo flowitem and the evStateChg event. The following figure shows the
corresponding Flow Items tab.

Flow menu

In addition to the common operations (see Edit elements), the menu for flows includes the
following options:

� Display Options opens the Display options window for the flow.
� Select Information Flow provides a list of the flows already defined between these ends

so you can easily reuse flows in your model.

Flowitems

A flowitem is an abstraction of all kinds of information that can be exchanged between objects. It
does not specify the structure, type, or nature of the represented data. You provide details about the
information being passed by defining the classifiers that are represented by the flowitem.

Flowitems can be decomposed into more specific flowitems. This enables you to start in a very
high level of abstraction and gradually refine it by representing the flowitem with more specific
items.
Rational Rhapsody 583

Object model diagrams
A flowitem can represent either pure data, data instantiation, or commands (events). Flowitems
can represent the following elements:

� Classes
� Types
� Events
� Other information items
� Attributes and variables
� Parts and objects
� Relations

Flowitem features
To view the features of a particular information element, double-click the element in the list on the
Flow Items tab for the flow. The corresponding Features window opens.

A flowitem has the following features:

� Name specifies the name of the flowitem.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the flowitem, if any. They are enclosed in

guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Represented lists all the information elements that are represented by this flowitem. In
this example, the DisplayInfo flowitem represents the ACInfo class.

� Description describes the information element. This field can include a hyperlink. For
more information, see Hyperlinks.
584 User Guide

Flows and flowitems
Adding a new information element
To add a new information element to the flow:

1. To create a new attribute, either click the <Add> row in the list of information elements,
or click the New icon in the upper, right corner of the window and select the appropriate
element from the list.

The new element is added to the list and its Features window automatically opens.

2. Set the new values for the element.

3. Click OK twice.

Adding an existing information element to the flow
To add an existing information element to the flow:

1. On the Flow Items tab for the flow, highlight the <Add> row and select the <Select>
option in the menu.

2. Expand each subcategory as needed to select the information element from the tree, then
click OK.

3. You return to the Flow Items tab, where the specified information element now displays
in the list of elements.

4. Click OK.
Rational Rhapsody 585

Object model diagrams
Embedded flows

In SysML notation, flows can be embedded in links. Rational Rhapsody allows you to use this
notation in object model diagrams.

Creating an embedded flow
To add a flow to a link:

1. Click the Flow icon .

2. Click the link to which you want the flow added.

Once the flow is created, it has the same features as an ordinary flow element, representing the
flow of data between the two objects that are linked. Visually, the flow is displayed on top of the
link, and it is depicted by an arrow.

To select the embedded flow element, double-click the arrow.

To move the embedded flow diagram element, drag the arrow to a new position on the link.

Changing the flow direction
To change the flow direction, right-click the flow, and then select Flip Flow Direction.

Changing display options for embedded flows
For an ordinary flow diagram element, the <flow> keyword is displayed alongside the flow
element. To display this for embedded flows:

1. Select the flow.

2. Right-click and select Display Options.

3. Select <flow> keyword or Stereotype.

4. Click OK.

Restrictions
Note the following restrictions and limitations:

� Flows cannot be animated.
� There is no code generation for flows.
586 User Guide

Files
Files
Rational Rhapsody Developer for C allows you to create model elements that represent files. A file
is a graphical representation of a specification (.h) or implementation (.c) source file. This new
model element enables you to use functional modeling and take advantage of the capabilities of
Rational Rhapsody (modeling, execution, code generation, and reverse engineering), without
radically changing the existing files.

Note
Files are not the same as the file functionality in components that existed in previous
versions of Rational Rhapsody. To differentiate between the two, the new file is called File
in Package and the old file element is called File in Component. A File in Component
includes only references to primary model elements (package, class, and object) and shows
their mapping to physical files during code generation.

A file element can include variables, functions, dependencies, types, parts, aggregate classes, and
other model elements. However, nested files are not allowed.

Rational Rhapsody supports the following modeling behavior for files:

� You can drag files onto object model diagrams and structure diagrams.
� If you use the FunctionalC profile, then the File tool is available in the Diagram Tools for

object model diagrams and structure diagrams.
� You can drag files onto a sequence diagram, or realize instance lines as files.
� A file can have a statechart or activity diagram.
� Files are implicit and always have a multiplicity of 1.
� Files are listed in the component scope and the initialization tree of a configuration. They

have influence in the initialization tree only in the case of a Derived scope.
� Files can be defined as separate units, and can have configuration management performed

on them. For more information, see Using project units.
� Files can be owned by packages only.
Rational Rhapsody 587

Object model diagrams
Creating a file

To create a file element:

1. Click the File icon in the Diagram Tools, or select Edit > Add New > File.

2. Click, or click-and-drag, in the drawing area. By default, files are named file_n, where n
is an integer greater than or equal to 0.

3. Edit the default name, then press Enter.

The file is shown as a box-like element in the diagram, with the «File» notation in the top of the
box.

The following figure shows an OMD that contains files.

You can specify whether file variables and functions are displayed in diagrams using the Display
Options feature. The Display Options window for files is identical to that for classes, except the
tab names are Variables instead of Attributes and Functions instead of Operations. For more
information, see Display option settings.
588 User Guide

Files
Files can be owned by packages only. File elements are listed in the browser under the Files
category under the owning package, as shown in this example.
Rational Rhapsody 589

Object model diagrams
File features
The Features window enables you to change the features of an file, including its name, stereotype,
and main diagram. The following figure shows the Features window for a file.

The General tab for a file is very similar to that of an object (see Object features), with the
following differences:

� The Type, Initialization, Multiplicity, and Relation to whole fields are unavailable.
Multiplicity has no meaning with files, because a file is simply a file (not an object that
can be instantiated). Similarly, a file cannot be an instantiation of a class (it is always
implicit).

� The Path field is a read-only field that displays the path to the file. Click the icon to
navigate directly to the specified source file.

The Variables tab

The Variables tab of the file Features window enables you to add, edit, or remove variables from
the file. It contains a list of all the variables belonging to the file. The following figure shows the
Variables tab.
590 User Guide

Files
The Functions tab

The Functions tab of the file Features window enables you to add, edit, or remove functions from
the file. It contains a list of all the functions defined in the file. The following figure shows the
Functions tab.
Rational Rhapsody 591

Object model diagrams
Converting files

You can easily convert a file to an object or vice versa by simply highlighting the object in the
browser, then selecting Change to and the intended result.

To convert a file to a class:

1. Highlight the file in the browser, right-click and then select Change to > Object. The file
changes to an object and moves to the Objects category in the browser.

2. Highlight the object in the browser, right-click and then select Expose Class. This create a
new class with the name <object> class. It contains all of the content of the copied
object including the attributes, operations, and statechart. This option is only available for
an implicit object.

Note the following information:

� If you are trying to convert an object to a file and there are aggregates that are not allowed
for files, Rational Rhapsody issues a warning message.

� Objects that are owned by another class or object cannot be converted to files.
When the element has been converted, the graphical representations change in the diagrams and
the converted element is moved to the appropriate category in the browser.

For information on changing the order of files, see Editing the declaration order of objects.

Associations and dependencies

Files can be connected through associations or «Usage» dependencies. As standard practice, you
should use associations.

For example, consider the files shown in the following figure.

Because these files are connected through bi-directional association, File1 can call doFunction()
directly from an operation or action on behavior.
592 User Guide

Files
Code generation for files

During code generation, files produce full production code, including behavioral code. In terms of
their modeling properties, modeled files are similar to implicit singleton objects.

For an active or a reactive file, Rational Rhapsody generates a public, implicit object (singleton)
that uses the active or reactive functionality. The name of the singleton is the name of the file.

Note
The singleton instance is defined in the implementation source file, not in the package
source file.

For a variable with a Constant modifier, Rhapsody generates a #define
statement. For example:

 #define MAX 66

The following table shows the differences between code generation of an object and a file.

Model Element File Code Object Code

Data member (attribute,
association, or object)

A global variable A member in the singleton
struct

Function name1 The function name pattern is
<Function>.

The name pattern for public
functions is
<Singleton>_<function
>.
The pattern for private
functions is <Function>.

Function signature The me argument is generated when
required to comply with the signature of
framework callback functions (for reactive
behavior).

The same.

Initialization Variables and associations are initialized
directly in the definition. For example:
int x=5;
Objects are initialized in a generated Init
function.

Done in the initialize
function.

Type name The name pattern for types (regardless of
visibility) is <Type>.

The name pattern for public
types is
<Singleton>_type.
The name pattern for private
functions is <Type>.
The name pattern can be
configured using the
properties
<lang>_CG::Type::Publ
icName and PrivateName.
Rational Rhapsody 593

Object model diagrams
Visibility Public members are declared as extern
in the specification (.h) file and defined in
the implementation (.c) file.
For example:
extern int volume;
Private members are declared and
defined in the implementation file as
static.

For example:
static int volume;

Member visibility is ignored;
the visibility is a result of the
visibility of the struct.
For example:
struct Ob_t {
 int volume;
};

Auto-generated

Initialization and
cleanup

Only algorithmic initialization is done in the
initialization method (creating parts;
initializing links, behavior, and animation).
The initialization and cleanup methods are
created only when needed.
The name of the initialization function is
<file>_Init; the cleanup function is
<file>_Cleanup.

Any initialization is done in
the Init method.
Init and Cleanup
methods are generated by
default.

Framework data
members

Rational Rhapsody generates a
designated struct that holds only the
framework members, and a single
instance of the struct named <file>.
The struct name is <file>_t.
For example:
struct Motor_t {
 RiCReactive ric_reactive;
}

Framework members are
generated as part of the
object struct declaration.

Call framework
operations

Framework operations on the file are
called using the file.
For example:
CGEN(Motor, ev());

Framework operations on
the singleton are called
passing the singleton
instance.
For example:
CGEN(Motor,ev());

Statechart data
members

Statechart data members are generated
as attributes of the generated structure.
For example:
struct F_t {
 ...
 enum F_Enum {
 F_RiCNonState=0,
 F_ready=1}
 F_EnumVar;
 int rootState_subState;
 int rootState_active;
};

Statechart data members
are generated as part of the
struct.

Model Element File Code Object Code
594 User Guide

Files
Files with other tools

The following table lists the effect of files on both Rational Rhapsody and third-party tools.

Statechart function
names

Public statechart functions are generated
using the prefix <file>_.
For example:
myFile_sIN()

Use the same naming
convention as any other
operation.

1. You can configure the name pattern for functions (for files, objects, and other elements)
using the properties <lang>_CG::Operation::PublicName and PrivateName.

Tool Description

COM API Files are supported by the COM API via the IRPFile and
IRPModule interfaces

Complete Relation When you select Layout > Complete Relations, files and
their relations are part of the information added to the
diagram.
For more information on this functionality, see Complete
relations.

DiffMerge Files are included in difference and merge operations,
completely separate from objects.

Java API Files are supported by the Java API

Populate Diagram Files and their relations are fully supported

References If you use the References functionality for a file, the tool lists
the owning package for the file and the diagrams in which the
specified file displays. When you select a diagram from the
returned list, the file is highlighted in the diagram.
For more information on this functionality, see Searching in
the model.

Report on model In a report, the objects and files in the package are listed in
separate groups in that order.
For more information on this reporting tool, see Reports.

Search in model You can search for files in the model and select their type
from the list of possible types. When selected, the file is
highlighted in the browser.
For more information on this functionality, see Searching in
the model.

XMI Toolkit When you export a file to XMI, it is converted to an object with
a «File» stereotype. Files imported from XMI are imported
into Rational Rhapsody as files.

Model Element File Code Object Code
Rational Rhapsody 595

Object model diagrams
Attributes, operations, variables, functions, and types
In object model diagrams, attributes and operations are contained in classes. Therefore, they are
not included as separate items in the Diagram Tools. Similarly, variables, functions, and types are
not included in the Diagram Tools.

There might, however, be situations where you will want to show a higher level of detail and
include attributes, operations, variables, functions, or types as individual diagram elements.
Rational Rhapsody provides a solution for these situations by allowing you to drag these elements
from the browser to an OMD diagram

Adding details to the object model diagram

To add an attribute, operation, variable, function, or type to the diagram:

1. Select the relevant item in the browser.

2. Drag the item to the diagram window.

Note
Rational Rhapsody allows these types of elements to be dragged from the browser to any of
the static diagrams, not just object model diagrams.

When an item of this type is added to a diagram, the graphic element will display by default, the
element name, the stereotype applied (if there is one) or the metatype of the element, and the
associated image (if one has been defined).

Like all diagram elements, the Features window for these elements can be opened by double-
clicking on the element in the diagram.

The connectors provided in the Diagram Tools can be used to connect individual elements of
these types if the connection is semantically logical.

Once an element has been added to a diagram, the element can be added to a container element by
dragging the element into the container element, for example, an attribute on the diagram can be
dragged into a class.

Note
Graphic representations for these types of items can only be created by dragging them from
the browser to the diagram. There is no API equivalent for this action.
596 User Guide

Attributes, operations, variables, functions, and types
Flow ports

Flow ports allow you to represent the flow of data between objects in an object model diagram,
without defining events and operations. Flow ports can be added to objects and classes in object
model diagrams. They allow you to update an attribute in one object automatically when an
attribute of the same type in another object changes its value.

Note
Flow ports are not supported in Rational Rhapsody in J.

Adding a flow port
To add a flow port, right-click the object or class and then select Ports > New Flowport.

The method used for specifying the data that is to be sent/received via the flow port depends upon
the type of flow port used - atomic or non-atomic. Non-atomic flow ports can only be used if your
model uses the SysML profile. The following sections describe these two types of flow ports.

Atomic flow ports
Atomic flow ports can be input or output flow ports, but not bidirectional. To specify the flow
direction, open the Features window for the flow port and select the appropriate direction.

You specify the attribute that is to be sent/received via the flow port by giving the attribute and
flow port the same name. If no attribute name matches the name of the flow port, a warning to this
effect will be issued during code generation.

Atomic flow ports allow the flow of only a single primitive attribute.

When connecting two atomic flow ports, you have to make sure that one is an input flow port and
one is an output flow port. The type of the attribute in the sending and receiving objects must
match.

To connect two flow ports, use the Link connector.
Rational Rhapsody 597

Object model diagrams
Defining non-atomic flow ports
Non-atomic flow ports are available only in models that use the SysML profile.

Non-atomic flow ports can transfer a list of flow properties (a flow specification), which can be
made up of flow properties of different types. For each flow property in the list, you indicate the
direction of the flow. (Non-atomic flow ports are bi-directional.)

To define the flow properties to be sent/received via the flow port:

1. Create a flow specification.

2. Add flow properties to the flow specification. This can be done using the relevant browser
context menu, or directly on the FlowProperties tab of the Features window for the flow
specification. You can also use drag-and-drop in the browser to add existing flow
properties to the flow specification. (If you want to use an existing attribute, you can
convert the attribute to a flow property by selecting Change To > FlowProperty from the
attribute context menu.)

3. For each of the flow properties defined, specify the direction.

4. Create two objects and add a flow port to each.

5. In the Features window for each of the two flow ports (the sending and receiving), set the
Type to the name of the flow specification you created previously.

6. For one of the flow ports, open the Features window and select the Reversed check box
on the General tab

7. Connect the two flow ports with a link.

Updating attribute values
To have the value of an attribute updated when the attribute on the other end of flow is updated,
you must use the function setflowportname, for example, if you have a flow port called x, you
would call setX(5).

When this function is called, there is also an event generated called chflowportname. In our
example, it would be chX. In order to be able to react to this event, you must define an event with
this name in your model.

For both of these functions, the first letter of the flow port name is upper-case even if the actual
name of the flow port begins with a lower-case letter.

Note
For details regarding the use of flow ports when importing Simulink models, see Integrating
Simulink components.
598 User Guide

External elements
External elements
Rational Rhapsody enables you to visualize frozen legacy code or edit external code as external
elements. This external code is code that is developed and maintained outside of Rational
Rhapsody. This code will not be regenerated by Rational Rhapsody, but will participate in code
generation of Rational Rhapsody models that interact or interface with this external code so, for
example, the appropriate #include statement is generated. This functionality provides easy
modeling with code written outside of Rational Rhapsody, and a better understanding of a proven
system.

Rational Rhapsody supports the following functionality for external elements:

� Reverse engineering can import elements as external.
� Reverse engineering populates the model with enough information to:

– Model external elements in the model.
– Enable you to open the source of the external elements, even if the element is

not included in the scope of the active component.
� Rational Rhapsody generates the correct #include for references to external elements.
� Elements inherit their externality from the parent. For example, if a package is external, all

its aggregates are also external.
� You can add external elements to component files to define the exact location of the source

code.
� Rational Rhapsody displays external elements in the scope tree of the component.

There are two ways to create external elements:

� By reverse engineering the files
� By modeling
Rational Rhapsody 599

Object model diagrams
Reverse engineering

When creating external elements using reverse engineering, the preferred method depends on
whether the code is frozen legacy code or the code is still being modified.

Reverse engineering a single iteration
For legacy code or a library that will not change, it is appropriate to model external code for
referencing, without regenerating it.

To use reverse engineering to create the external elements a single time:

1. Create a new model or open an existing one.

2. Add a new component for the reverse engineered, external code.

3. Set your new component (created in the previous step) to be the active component
(right-click it in the Rational Rhapsody browser and select Set as Active Component).

4. Choose Tools > Reverse Engineering to open the Reverse Engineering window.

5. Specify the files or folders you want to reverse engineer.

6. Click the Advanced button to open the Reverse Engineering Options window.

7. On the Mapping tab, specify the following settings:

a. Select the Visualization Only (Import as External) check box.
The following figure shows an example for Rational Rhapsody in C.
600 User Guide

External elements
b. For Rational Rhapsody in C, select the Files radio button (default) in the Modeling
Policy area; for the other languages, select the appropriate option for your situation.
The availability of these radio buttons might depend on whether you select the
Visualization Only (Import as External) check box.

8. Set the other reverse engineering options as appropriate for your model. (For more
information on the available options on the Mapping tab, see Mapping classes to types
and packages.)

9. Click OK.

10. Click the Start button on the Reverse Engineering window.The specified files are
imported into Rational Rhapsody as external elements.

As a result of the import:

� The imported elements are added to the scope of the configuration.
� All the imported packages have the property CG::Package::UseAsExternal set

to Checked.
� The Include Path or Directory of the Features window for the configuration (in

the example, ExternalComponent) is set to the correct include path.
Rational Rhapsody 601

Object model diagrams
� In Rational Rhapsody in C, when the Directory is a Package radio button is
selected, the C_CG::Package::GenerateDirectory property is set to Checked
for the configuration.

Note that external elements include a special icon in the upper, right corner of the
regular icon, as shown in this example.

11. Verify the import to make sure the implementation and specification files are named
correctly, the correct folders were created, and so on. Make any necessary changes.

12. Set the original component to active.

13. For the original component, create a dependency with a «Usage» stereotype to the
ExternalComponent.

14. Make sure that the external elements are included in the scope of the ExternalComponent
only.
602 User Guide

External elements
Reverse engineering multiple iterations
Suppose you want to model external code for referencing, without regenerating it (but the external
code might change and the external element should be updated according to the changes in the
code).

Set up your model as follows:

1. Complete the steps in the previous procedure (see Reverse engineering) to create a new
external model (for example, ExternalModel).

2. Save your model, then close it.

3. Open a new, development model.

4. Choose File > Add to Model, then select the external model. Select As Reference and
select all the top-most packages and the component (ExternalModel). The elements are
imported as read-only (RO).

5. Create a dependency with a «Usage» stereotype to the ExternalModel.

To synchronize the code changes:

1. Open the external model.

2. Update the reverse engineering options as needed to include the code modifications (such
as including new folders), and then click Import.

3. Close the external model.

4. Open the development model.

5. Update the model according to the changes in the external model:

a. Remove references to elements deleted from the external model.

b. Update references to renamed elements from the external model (they become
unresolved).

c. New elements are simply added to the model.
Rational Rhapsody 603

Object model diagrams
Creating external elements in pre-V5.2 models
To add external elements to models created before Version 5.2:

1. Unoverride the following properties:

� CG::Configuration::StrictExternalElementsGeneration

� CG::Component::SupportExternalElementsInScope

These properties are automatically overridden by Rational Rhapsody when you load
an older model.

2. Follow the procedure described in Reverse engineering a single iteration.
604 User Guide

External elements
External elements created by modeling

Alternatively, you can add external elements to the model manually. This option is used when
there are very few elements to be modeled as external.

There are two ways to model the elements manually:

� Using rapid external modeling
� Using the component model

Using rapid external modeling
To model the elements manually using rapid external modeling:

1. Open an existing model or create a new one.

2. Create the external elements:

� Create the new element to be referenced.
� Set its CG::Class::UseAsExternal property to Checked.
� Set its CG::Class::FileName property to the value expected in the #include. For

example, MySubsystem\C.
3. Add the rest of the path to the Include Path field of the component. In the example, this

would be C:\MyProjects\Project1.

4. Add the external elements to the scope of the component.

5. Add relations to the external elements (for more information, see External element code
access).
Rational Rhapsody 605

Object model diagrams
Using the component model
To model the elements manually using the component model:

1. Open an existing model or create a new one.

2. Add a new component for the external elements (for example, ExternalComponent).

3. Set the scope of the component to Selected Elements.

4. Create a package that will contain all the external elements, and set its
CG::Package::UseAsExternal property to Checked.

Note: This step is optional; you can also add external elements to existing packages.

5. Add the package that contains the external elements to the scope of the external
component. Make sure that the package is not included in the scope of other components.

6. Create a new element that will be referenced in the package.

7. Provide the following information about the source files of the external elements:

a. Create a hierarchy of packages as needed for the proper #include path. For example,
suppose you want reference class C, which is defined in
C:\MyProjects\Project1\MySubsystem\C.h; you would create the package
MySubsystem.

b. Add a file with the necessary name to the folder and map the external element to it.
You do not need to do this if the external element has the same name as the file.

c. Create a usage dependency to the external component.

8. Add relations to the external elements (for more information, see External element code
access).

In the generated files, the following #include is generated for the example element:

#include <MySubsystem\C.h>
606 User Guide

External elements
Creating a shortcut for Rational Rhapsody Developer for C
In Rational Rhapsody Developer for C, you can use the following shortcut in place of Steps 2–7 in
the previous procedure:

1. Create a hierarchy of packages as needed for the proper #include path.

For example, suppose you want reference class C, which is defined in
C:\MyProjects\Project1\MySubsystem\C.h; you would create the package
MySubsystem.

2. Set the CG::Package::UseAsExternal property for the top-most package to Checked.

3. Create the appropriate files (for more information, see Creating a file). Continuing the
example, you would simply create the file C.

4. Create a new element that will be referenced in the file.

5. Add the rest of the path to the Include Path field of the component. In the example, this
would be C:\MyProjects\Project1.

6. Set the property C_CG::Package::GenerateDirectory to Checked for the component.
Rational Rhapsody 607

Object model diagrams
Converting external elements

You can convert external elements so they are no longer external (and therefore include them in
code generation). This functionality enables you to gradually move code that was developed
outside of Rational Rhapsody to an application being developed using Rational Rhapsody.

To convert all the external elements at once:

1. Open the model.

2. Change the following properties:

� Unoverride the property CG::Package::UseAsExternal for the top-most
packages.

� Unoverride the properties Generate and AddToMakefile (under CG::File) for
the top-most folders in the external element component.

3. Add the packages and classes to the scope of the development component and remove the
packages and classes from the external element component.

4. Delete the external component.

5. Generate and build the code.

6. Continue development in Rational Rhapsody as usual.

To convert specified external elements:

1. Create a new package for the converted elements (for example, RedesignPackage).

2. Add the new package to the scope of the development component.

3. Move one class or file from the external package to the RedesignPackage.

4. Generate, build, and test the code. Repeat as necessary.

5. Repeat Steps 3 and 4 for as many classes or files as you want to convert.

6. Continue development in Rational Rhapsody as usual.
608 User Guide

External elements
Viewing the path to the source file
The Features window for an external file in Rational Rhapsody in C includes a new field, Path,
which shows the full path to the specification source file. The path is read-only, but you can copy
it.

The following figure shows the updated window.

Click the icon to navigate directly to the specified source file.
Rational Rhapsody 609

Object model diagrams
External element code access
To access the code in the external files, create relations to them (such as dependencies with
«Usage» stereotypes, generalizations, associations, and so on). Note that the resultant source code
will automatically contain the correct #include statements for the external elements.

In the Features window for the configuration, set the scope to Selected Elements, and verify that
the external files are not checked.

When you generate code that includes relations to external elements:

� Dependencies are converted to #includes.
� Generalizations are converted to inheritance and #include.
� Associations are converted to data members and #includes.
� Types are converted to type and #include.
� Objects and parts are instantiated.

Once you have created the external elements, you can edit the code using the Edit menu, edit
options in the menu, or active code view window, just as you do for any Rational Rhapsody code.

Adding source files to the build
To add the source files of an external element to the build:

1. Add the component file that contains the mapping of the necessary external elements to
the component.

2. Set the property CG::File::Generate to Cleared.

3. Set the property CG::File::AddToMakefile to Checked.
610 User Guide

External elements
Code generation for external elements
The following table lists how Rational Rhapsody generates code for external elements.

Code generation for relations
During code generation, Rational Rhapsody generates either an #include or a forward declaration
for a relation in the source file of the dependent element.

Forward declaration (class)

If a dependency has a «Usage» stereotype and the CG::Dependency::UsageType property is set to
Existence, it is generated as a forward declaration. For example:

class ExternalClass;

Element Type Description

Package The code generator does not generate code for an external package.
However, you can map the package to a file or folder for a component
(and then relate it to a file or directory). You can include the package
in the component scope.
During code generation, a relation to a package is converted an
#include to a file, if the package is mapped to a file for the
component.

Class, object, or file The code generator does not generate code for an external class,
object, or file.
During code generation, a relation to a class, object, or file is
converted to an #include or a forward declaration.

Type The code generator does not generate code for an external type. A
relation to a type is converted to an #include of its parent.

File (component) A file is external if all its elements are external.
If the CG::File::Generate property for a file is set to Cleared,
the file becomes external and code is not generated for it.
To include a file in the build, set its CG::File::AddToMakefile
property to Checked.
Rational Rhapsody 611

Object model diagrams
#includes for a class, object, or file

External dependencies (dependencies with a «Usage» stereotype and the
CG::Dependency::UsageType property set to Specification/Implementation) and implicit
dependencies (such as associations and generalizations) are generated as forward declarations and
#include statements.

To generate a local #include statement (for example, #include <C.h>), set the property
CG::File::IncludeScheme to LocalOnly.

To generate a relative #include statement (for example, #include <MySubsystem\C.h>), set the
CG::File::IncludeScheme to RelativeToConfiguration.

You can also use the C_CG/CPP_CG/JAVA_CG::Package::GenerateDirectory and CG::Class/
Package::FileName properties to set relative paths. See the definition of this property in the
Features window.

Limitations
Note the following restrictions and behavior of external elements:

� External elements are not animated; they behave like the system border.
� Changes in the source files of external elements are not roundtripped. If necessary, use

reverse engineering to update external elements.
� Only the following elements can be external: class, implicit object or file, package, and

type. Components, folders, variables, and functions cannot be external.
� You cannot use Add to Model to add an external element as a unit. However, you can add

the unit under another name, and then set that unit to be external.
612 User Guide

Implementation of the base classes
Implementation of the base classes
In Rational Rhapsody Developer for C++ and for Java, you can easily convey model elements
defined at the interface level to the implementing class level. Using this functionality, classes
automatically realize the implementing interfaces and help you synchronize the changes in the
interface to the realizing classes.

There are two ways to start this functionality: implicitly and explicitly.

Implicit invocation

When you connect two classes with a generalization realization, the base classes are implemented
implicitly. However, a generalization will not trigger base class implementation in the following
cases:

� Inheritance between two COM interfaces
� Inheritance between two CORBA interfaces
� Inheritance between two Java interfaces

If there are no operations or attributes to be overridden because of the current action, the
Implement Base Classes window is not displayed.
Rational Rhapsody 613

Object model diagrams
Explicit invocation

To access this functionality explicitly, in the browser or OMD, right-click a class and select
Implement Base Classes.

The Implement Base Classes window opens, as shown in this example.

Implement base classes window
This window provides a tree-like view of all the interfaces (including methods, attributes, and
stereotypes) that can be implemented by the class.

The window contains three filters to control the contents of the tree view:

� Required displays the operations that must be implemented.
� Optional displays the operations that can be implemented. By default, Rational Rhapsody

displays the required and optional operations.
� Implemented displays the operations that are already implemented.
614 User Guide

Implementation of the base classes
Base class tree view
Depending on the base class, Rational Rhapsody displays different items in the tree view. The
following table shows which items are displayed.

Rational Rhapsody uses the following colors to differentiate the different method types:

� Blue denotes a virtual method.
� Bold, blue denotes an abstract method.
� Gray denotes a method that has already been implemented.

If you try to open the Implement Base Classes functionality for a read-only class, Rational
Rhapsody displays a warning message informing you that the class cannot be modified. However,
the Implement Base Classes window opens in read-only mode so you can analyze the class. You
can view the code by selecting Edit Code, but the OK button will be disabled.

Base Class Items Displayed in the Tree View

C++ class All virtuals and pure virtuals. You must implement the pure
virtual methods.

Java class or Java interface All the methods. You must implement the interfaces. The
GUI takes into account the “final” option for Java methods
and classes.

COM interface All methods and attributes.

CORBA interface All methods.
Rational Rhapsody 615

Object model diagrams
Editing the implementation code
To change the implementation code for an operation:

1. Select the operation in the tree view.

2. Click the Edit Code button. Rational Rhapsody displays the code in the default text editor.

3. Type in the new implementation code in the text box.

4. Click OK.

Note that if you try to edit code for an operation that has already been implemented, the text editor
displays the implementation code in read-only mode.

When you edit the implementation code, Rational Rhapsody overlays a red icon in the upper, left
corner of the class icon in the tree view, as shown in this example.

For more information on the internal code editor and its properties, see The Internal code editor.

Controlling the display of the window
The Automatically show this window check box controls whether the window is displayed on
implicit requests. By default, this check box is unavailable, so the window is displayed only when
you explicitly open it.

If you select this check box, Rational Rhapsody writes the following line to the [General] section
of the rhapsody.ini file:

ImplementBaseClasses=TRUE

If wanted, you can add this line directly to the rhapsody.ini file to automatically display the
window.
616 User Guide

Implementation of the base classes
Realizing the elements
To realize an element, select it and click OK.

For example, suppose you want to implement the tune operation. In the window, select tune, then
click OK.

The PllTuner class implements the tune operation and displays it in the browser. If you select
Implement Base Classes for the PllTuner class again, the tune operation is no longer listed as a
required or optional element. Click Implemented to see that the tune operation was implemented
and is now displayed in gray, as shown in this example.
Rational Rhapsody 617

Object model diagrams
If an element has been implemented (it displays in gray in the tree and is checked), you cannot
uncheck (“unrealize”) it.

Note
If you choose Undo, Rational Rhapsody unimplements all the implemented classes, not just
the last one, because the implementation is viewed as a single, atomic operation. For
example, if you implement five elements during one operation, then select Undo, all five
are removed.

Namespace containment

Rational Rhapsody allows you to display namespace containment in object model diagrams. This
type of notation is also referred to as “alternative membership notation.” It depicts the hierarchical
relationship between elements and the element that contains them, for example:

� requirements that contain other requirements
� packages that contain classes
� classes that contain other classes

The following screen captures illustrate the use of this notation.
618 User Guide

Implementation of the base classes
Property that controls display of namespace containment
The display of namespace containment is controlled by the boolean property
ObjectModelGe:ClassDiagram:TreeContainmentStyle, which can be set at the diagram,
package, or project level. Namespace containment is displayed when the property is set to
Checked.

The default value of the property is Cleared. However, in the SysML profile the default value of
the property is Checked.

Displaying namespace containment
To display namespace containment in a diagram:

1. Drag the “container” element and the “contained” elements to the diagram.

2. From the menu, select Layout > Complete Relations > All

The hierarchical relationship between the elements will be depicted in the diagram.

Alternatively, you can select the Populate Diagram check box when creating a new diagram. If
you then select elements that have a hierarchical relationship, the diagram created will display the
namespace containment for the elements.

Note
There is no drawing tool to manually draw this type of relationship on the canvas.
Containment relationships between elements can only be displayed automatically based on
existing relationships, using one of the methods described above.
Rational Rhapsody 619

Object model diagrams
620 User Guide

Activity diagrams
Activity diagrams specify a workflow, or process, for classes, use cases, and operations. As
opposed to statecharts, activity diagrams are preferable when behavior is not event driven. A class
(use case/operation) can have either an activity diagram or a statechart, but not both. However, a
class, object, or use case might have more than one activity diagram with one of the diagrams
designated as the main behavior.

Note
It is possible to change the main behavior between different activities within the same
classifier.

Activity diagram features
One useful application of activity diagrams is in the definition of algorithms. Algorithms are
essentially decompositions of functions into smaller functions that specify the activities
encompassed within a given process.

Note
Sequence diagrams can show algorithms of execution within objects, but activity diagrams
are more useful for this purpose because they are better at showing concurrency.

Activity diagrams have several elements in common with statecharts, including start and end
activities, forks, joins, guards, and states (called actions). Unlike statecharts, activity diagrams
have the following elements:

� Decision points show branching points in the program flow based on guard conditions.
� Actions represent function invocations with a single exit activity flow taken when the

function completes. It is not necessary for all actions to be within the same object.
� Action blocks represent compound actions that can be decomposed into actions.
� Subactivities represent nested activity diagrams.
� Object nodes represents an object passed from the output of the action for one state to the

input of the actions for another state.
� Swimlanes visually organize responsibility for actions and subactions. They often

correspond to organizational units in a business model.
Rational Rhapsody 621

Activity diagrams
� Reference activities references an activity in another activity chart, or to the entire
activity chart itself.

Advanced features of activity diagrams
You might also use these advanced features of the activity diagrams:

� Naming and renaming activity diagrams
� Include an activity diagram, but not a statechart, with a package without creating a class
� Support multiple activities in a package
� Associate an object node with a class
� Create Adding call behaviors in the activity diagram or by dropping an operation from the

browser into the diagram
� Swimlane association (representing field population) to a class (only) can be created by

dragging the class from the browser to the Swimlane name compartment. For more
information, see Swimlanes.

� Reference an alternate activity diagram within the main behavior activity diagram

Actions
Activity diagrams are flowcharts that decompose a system into activities that correspond to states.
These diagrammatic elements, called actions, are member function calls within a given operation.
In contrast to normal states (as in statecharts), actions in activity diagrams terminate on completion
of the activity, rather than as a reaction to an externally generated event.

Each action can have an entry action, and must have at least one outgoing activity flow. The
implicit event trigger on the outgoing activity flow is the completion of the entry action. If the
action has several outgoing transitions, each must have its own guard condition.

Actions have the following constraints:

� Outgoing transitions from actions do not include an event signature. They can include
guard conditions and actions.

� Actions have non-empty entry actions.
� Actions do not have internal transitions or exit actions, nor do activities.
� Outgoing transitions on actions have no triggering events.
622 User Guide

Activity diagram elements
Activity diagram elements
The following sections describe how to use the activity diagram drawing tools to draw the parts of
an activity diagram. For basic information on diagrams, including how to create, open, and delete
them, see Graphic editors.

Activity diagram drawing tools

The Diagram Tools toolbar for an activity diagram contains the following tools.

Drawing
Tool Icon Name Description

Accept Event
Action

Adds this element to an activity diagram so that you can connect it to an action to
show the resulting action for an event. This element can specify the following
actions:

• Event to send
• Event target
• Values for event arguments

This button displays on Diagram Tools when you select the Analysis Only check
box when you define the General features of the activity diagram.

Accept Time
Event

Adds an element that denotes the time elapsed since the current state was entered.

Action Shows member function calls within a given operation.

Action Block Represents compound actions that can be decomposed into actions. Action blocks
can show more detail than is possible in a single, top-level action

Action Pin Adds an element to represent the inputs and outputs for the relevant action or action
block. An action pin can be used on a Call Operation (derived from the arguments).
This button displays in on Diagram Tools when you select the Analysis Only check
box when defining the general features of the activity diagram. For more information,
see Add action pins/activity parameters to diagrams.

Activity Final Signifies either local or global termination, depending on where they are placed in
the diagram.

Activity Flow
Label

Add or modify a text describing a transition.

Activity
Parameter

Defines a characteristic of an action block. This button displays on Diagram Tools
when you select the Analysis Only check box when defining the general features of
the activity diagram. For more information, see Add action pins/activity
parameters to diagrams.

Call Behavior Represents a call to an operation of a classifier. This is only used in modeling and
does not generate code for the call operation.

Call Operation Represents a call to an operation of a classifier.
Rational Rhapsody 623

Activity diagrams
ControlFlow Represents a message or event that causes an object to transition from one state to
another.

Decision Node Shows a branching condition. A decision node can have only one incoming transition
and two or more outgoing transitions.

Dependency Indicates a dependent relationship between two items in the diagram.

Diagram
Connector

Connects one part of an activity diagram to another part on the same diagram. They
represent another way to show looping behavior.

Fork Node Separates a single incoming activity flow into multiple outgoing activity flows.

Initial Flow Points to the state that the object, use case, or operation enters when the activity
starts.

Join Node Merges multiple incoming activity flows into a single outgoing activity flow.

Merge Node Joins multiple activity flows into a single, outgoing activity flow.

Object Node Represents an object passed from the output of the action for one state to the input
of the action for another state.

Send Action Represents sending actions to external entities. The Send Action is a language-
independent element, which is translated into the relevant implementation language
during code generation.

Subactivity Represents a nested activity diagram. Subactivities represent the execution of a
non-atomic sequence of steps of some duration nested within another activity.

Swimlane
Frame

Organizes activity diagrams into sections of responsibility for actions and
subactions.

Swinlane
Divider

Divides the swimlane frame using vertical, solid lines to separate each swimlane
(actions and subactions) from adjacent swimlanes.

Drawing
Tool Icon Name Description
624 User Guide

Activity diagram elements
Drawing an action

To draw an action for your activity diagram:

1. Click the Action button on Diagram Tools.

2. Click or click-and-drag in the activity diagram to place the action at the intended location.
An action appears on an activity diagram as a rectangle with curved edges.

3. Type a name for the action.

4. Press Ctrl+Enter or click the Select arrow in the toolbar to terminate editing.

By default, the action expression, which does not need to be unique within the diagram, is
displayed inside the action symbol. For information on modifying the display, see Displaying an
action.

Modify the features of an action

Use the Features window for an action to change its features, including its name and action. An
action has the following features:

� Name specifies the name of the action. The description of the action can be entered into
the text area on the Description tab. This description can include a hyperlink. For more
information, see Hyperlinks.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the folder with

binoculars button.

– To sort the order of the stereotypes, click the up and down arrows button.
Note: The COM stereotypes are constructive; that is, they affect code generation.

� Action specifies an action in an activity diagram. This is the text you typed into the
diagram when you created the action.
Rational Rhapsody 625

Activity diagrams
Displaying an action

You can show the name, action, or description of the action in the activity diagram.

To specify which attribute to display:

1. Right-click the action and select Display Options to open the Display Options window.

2. Select the appropriate values.

Activity frames

You might want to create an activity frame in the activity diagram to hold a group of elements and
then assign it activity parameters. The parameters indicate inputs and outputs of data to the frame.
The frame can also be synchronized with a call behavior.

Creating an activity frame manually
To create an activity frame manually:

1. In the Rhapsody project, add a class.

2. Right-click the class and select Add New > Diagrams > Activity.

3. Right-click in the diagram drawing area and select the Show/Hide Activity Frame
option. The activity frame displays in the diagram.

You may use the Features window to define the frame.

Creating an activity frame automatically
To create an activity frame automatically for each new activity diagram:

1. Open your Rhapsody project.

2. Right-click the project or a package in the browser and select Features to open the
Features window.

3. On the Properties tab, navigate to the General::Graphics::ShowActivityFrame
property and check the selection box.

4. Click OK.

5. Right-click a class and select Add New > Diagrams > Activity. The new diagram
contains an activity frame.
626 User Guide

Activity diagram elements
Synchronizing the pins
To synchronize the call behavior pin with the activity frame pin:

1. Right-click in the activity frame and select Features.

2. Select the General tab and check Analysis Only and click OK.

3. Add some activity parameters to the activity frame and set the name, type, and direction of
the pins.

4. Create another activity diagram and check Analysis Only in the General tab.

5. Drag and drop the first activity frame into the second activity diagram.

This action creates call behavior, that is referencing to the first activity, and small pins with the
same name, type and direction as in the referenced activity.

Updating activity pins
To update the activity pins in synchronized activity diagrams, right-click the call behavior and
select Update/Create Activity Pins.
Rational Rhapsody 627

Activity diagrams
Action blocks

Action blocks represent compound actions that can be decomposed into actions. Action blocks can
show more detail than is possible in a single, top-level action. You can also use pseudocode, text,
or mathematical formulas as alternative notations. Activity flows inside an action block cannot
cross the action block boundary.

Creating an action block
To define the activity, draw an action block:

1. Click the Action Block button on Diagram Tools.

2. Click or click-and-drag in the activity diagram to place the action block at the intended
location. An action block appears on an activity diagram as a rectangle.

3. Draw actions and activity flows inside the action block to express the activity being
modeled.

The Record_and_Send_Messages activity shown in the following sample action block shows
several activities.
628 User Guide

Activity diagram elements
Modify the features of an action block
Use the Features window for an action box to change its features, including its name and
description. An action block has the following features:

� Name specifies the name of the action block. The description of the action block can be
entered into the text area on the Description tab. This description can include a hyperlink.
For more information, see Hyperlinks.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the action block, if any. They are enclosed in
guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the folder with

binoculars button.

– To sort the order of the stereotypes, click the up and down arrows button.
Note: The COM stereotypes are constructive; that is, they affect code generation.

Creating a subactivity from an action block
You can convert an action block to a subactivity. This moves the contents of the block into a
separate subchart, and simplifies the diagram containing the action block.

To create a subactivity from an action block, right-click the action block and select Create Sub
Activity Diagram. Rational Rhapsody creates a new subchart containing the former contents of
the action block.

Consider the action block shown in the following figure. When you create a subactivity for the
action block, the parent state changes to that shown in the following figure.
Rational Rhapsody 629

Activity diagrams
The icon in the lower right corner indicates that the action block has a subchart.

Subactivities

Subactivities represent nested activity diagrams. Subactivities represent the execution of a non-
atomic sequence of steps of some duration nested within another activity. Internally, a subactivity
consists of a set of actions, and possibly a wait for events. In other words, a subactivity is a
hierarchical action during which an associated subactivity diagram is executed. Therefore, a
subactivity is a submachine state that executes an activity diagram.

The nested activity diagram must have an initial (default) state and a final activity (see Local
termination semantics). When an input activity flow to the subactivity is triggered, execution
begins with the initial state of the nested activity diagram. The outgoing activity flows from a
subactivity are enabled when the final activity of the nested activity diagram is reached (when the
activity completes) or when triggering events occur on the transitions. Because states in activity
diagrams normally do not have triggering events, subactivities are normally exited when their
nested graph is finished.

Many subactivities can start a single-nested activity diagram.

Creating a subactivity
To draw a subactivity:

1. Click the Subactivity button on Diagram Tools.

2. Click (or click-and-drag) in the activity diagram to place the subactivity at the intended
location.

A subactivity looks like an action.

Opening a subactivity diagram
To open a subactivity diagram, right-click the subactivity and select Open Sub Activity Diagram.
630 User Guide

Activity diagram elements
Creating a final activity

UML final state (“activity final” in Rational Rhapsody) can signify either local or global
termination, depending on where they are placed in the diagram. When the state is drawn inside a
composite (block) state, it is considered a final state. This terminates the activity represented by
the composite state, but not the instance performing the activity. For more information, see Local
termination semantics. When the state is drawn inside the top state, it is considered a final activity.
This terminates the state machine causing the instance to be destroyed.

Note
The behavior of “activity final” is controlled by the
CG::Statechart::LocalTerminationSemantics property.

To create a final activity:

1. Click the Activity Final button .

2. Click in the activity diagram to place the final activity at the intended location.

3. Draw a activity flow from any kind of state to the final activity.

4. If wanted, enter a guard condition to signal the end of the activity. A final activity appears
as a circle with a black dot in the middle:

As with the other connectors, final activities and their activity flows are included in the browser
view.
Rational Rhapsody 631

Activity diagrams
Object nodes

Actions operate on objects and are used by objects. These objects either initiate an action or are
used by an action. Normally, actions specify calls sent between the object owning the activity
diagram (which initiates actions) and the objects that are the targets of the actions. An object node
represents an object passed from the output of the action for one state to the input of the action for
another state.

Note
An object node can only be a leaf element; its meaning cannot contain other elements.

As with other states, only one object node can have the same name in the same parent state.

Creating an object node
To create an object node:

1. Click the Object Node button on Diagram Tools.

2. Click or click-and-drag in the activity diagram to place the node at the intended location.

Display options for an object node
After creating an object node, right-click the diagram and select Display Options. Make your
selections from these settings:

� Display name - Represents only, Name, or Label.
� Show Stereotype Label
� View Image - Enable Image View activates Use Associated Image or Select on Image

with Image Path
� Advanced view image features - Image Only, Structured, or Compartment
632 User Guide

Activity diagram elements
Object node features
The Features window enables you to change the features of an object node, including its name and
stereotype.

� Name specifies the name of the object node. The default name is state_n, where n is an
incremental integer starting with 0. The description of the action block can be entered into
the text area on the Description tab.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the object node, if any. They are enclosed in
guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the folder with

binoculars button.

– To sort the order of the stereotypes, click the up and down arrows button.
Note: The COM stereotypes are constructive; that is, they affect code generation.

� In State specifies the required states of the object node.
� Represents lets you select a class/type to associate with the node from a list of project

classes/types or enter the name of a new class. For more information, see Associate an
object node with a class.

Associate an object node with a class
In an activity diagram, you can associate an object node to a class/type to represent the class type
using one of the following methods:

� Right-click the object node in the diagram to display the Features window and select the
class/type from the list in the Represents field.

� Dragging a class/type from the browser into the activity diagram automatically associates
the class/type with the object node.

In the activity diagram, the associated node displays the name of its associated class/type in the
name compartment.
Rational Rhapsody 633

Activity diagrams
Adding call behaviors

A call behavior represents a call to an operation of a classifier. This is only used in modeling and
does not generate code for the call operation. However, code can be inserted manually into the
Action field in the Call Behavior Features window. To create a call operation node, use one of
these methods:

� Click the Call Behavior button on Diagram Tools and drawing the behavior operation
in the diagram.

� Click or click-and-drag an operation from the browser in the activity diagram and place
the behavior at the intended location.

Note
If the behavior operation dropped in the activity diagram has no association with the
classifier, an empty call is created.

Activity flows

Activity diagrams can have activity flows, default flows, and loop activity flows on action blocks
and join activity flows. These activity flows in activity diagrams are the same as the corresponding
activity flows in statecharts, with the following exceptions:

� Outgoing activity flows from states can have triggers, but those from actions, action
blocks, or subactivities cannot.

� Outgoing activity flows from actions, action blocks, and subactivities can have only
guards and actions.

Activity flows exiting or entering fork or join bars have the following constraints:

� They cannot have labels.
� They must originate in, or target, either states or actions (not connectors).

Creating an activity flow
To draw an activity flow from one state to another:

1. Click the Activity Flow button on Diagram Tools.

2. Click the edge of the source state.

3. Drag the cursor to the edge of the target state and release to anchor the activity flow.

4. If wanted, enter a trigger for the activity flow.

5. If wanted, enter a guard and action for the activity flow.
634 User Guide

Activity diagram elements
Completion activity flows
An activity flow to a final activity is called a completion activity flow. Neither final states nor a
final activity can have outgoing transitions. A completion activity flow does not have an explicit
trigger, although it can have a guard condition.

Drawing initial flows
The default flow points to the state that the object, use case, or operation enters when the activity
starts.

To draw a default flow:

1. Click the Initial Flow button on Diagram Tools.

2. Click in the activity diagram outside the default state.

3. Drag the cursor to the edge of the default state of the activity and release the mouse button.

For more information on default flows, see Statecharts.

Drawing loop activity flows
Loop activity flows (also known as self transitions) represent looping behavior in a program. Loop
activity flows are often used on action blocks to indicate that the block should loop until some exit
condition becomes true.

To draw a loop activity flow:

1. Click the Loop Activity Flow button on Diagram Tools.

2. Click the edge of any kind of state.

3. Label the loop activity flow.

For an example of an action block with a loop activity flow, see Creating a final activity. For more
information on loop (self) transitions, see Statecharts.
Rational Rhapsody 635

Activity diagrams
Adding or modifying activity flow labels
To add or modify a activity flow label:

1. Click the Activity Flow Label button on Diagram Tools.

2. Select the transition you want to label.

3. In the edit box, type the new label (or modify the existing one).

4. Press Ctrl+Enter or click outside the label to terminate editing.

Modify activity flows
As with all other elements, you can modify the features of a activity flow using the Features
window. For more information, see Features of transitions.

Connectors

Activity diagrams can have the following connectors:

� Merge nodes
� Condition
� Diagram

The following sections describe these connectors in detail.

Drawing merge nodes
To draw a merge node:

1. Click the Merge Node button .

2. Click in the activity diagram to place the junction at the intended location.

3. Draw activity flows going into, and one activity flow going out of the junction.

4. Label the activity flows as wanted.

For more information on merge nodes, see Statecharts.
636 User Guide

Activity diagram elements
Drawing decision nodes
Decision nodes show branching conditions. A decision node can have only one incoming activity
flow and two or more outgoing activity flows. The outgoing activity flows are labeled with a
distinct guard condition and no event trigger. A predefined guard, denoted [else], can be used
for no more than one outgoing activity flow.

To draw a decision node:

1. Click the Decision Node button .

2. Click, or click-and-drag, in the activity diagram to position the decision node at the
intended location. A decision node appears on an activity diagram as a diamond.

3. Draw at least two states that will become targets of the outgoing activity flows.

4. Draw an incoming activity flow from the source state to the decision node.

5. Draw and label the outgoing activity flows from the decision node to the target states.

This activity diagram shows the following behavior: When the phone rings, if someone picks up
on the other end, you can talk; otherwise, you must leave a message. The decision node represents
the decision point. In other words, after the PhoneRings() operation, if SomeonePicksUp
resolves to True, the Talk() operation is called. Otherwise, the LeaveMessage() operation is
called.

Use the Display Options window to determine whether to display the name, label, or nothing for
the decision node.
Rational Rhapsody 637

Activity diagrams
Drawing diagram connectors
Diagram connectors connect one part of an activity diagram to another part on the same diagram.
They represent another way to show looping behavior.

To draw a diagram connector:

1. Click the Diagram Connector button on Diagram Tools.

2. Click to place the source diagram connector at the intended location and label the
connector.

3. Repeat to place the target diagram connector at the intended location in the diagram, and
give it the same name as the source connector.

For more information on diagram connectors, see Statecharts.

Join or fork bars

Activity diagrams can include join or fork bars. A join or fork bar depicts either a join or a fork
operation. You can draw join or fork bars in activity diagrams for objects, use cases, and
operations.

Rational Rhapsody defines activity diagrams as meaningful only if join and fork bars are well-
structured in the same sense as well-structured parentheses. In other words, they must use proper
nesting. The only exception to this rule is that a join or fork connector with multiple ingoing/
outgoing activity flows can be used in place of a number of join or fork connectors with only two
ingoing or outgoing activity flows each.

Rational Rhapsody tolerates less-than-meaningful activity charts, provided that they can be
extended into meaningful ones by adding activity flows (for example, a fork with activity flows
that never merge back).

As you draw activity diagrams, Rational Rhapsody prevents you from drawing constructs that
violate the meaningfulness of the activity diagram by displaying a “no entry” symbol.
638 User Guide

Activity diagram elements
Creating join nodes
To draw a join nodes:

1. Draw at least two states that you want to synchronize.

2. Click the Join Node button on Diagram Tools.

3. Click or click-and-drag in the activity diagram to place the join node bar in the intended
location.

By default, the join bar is drawn horizontally. To flip it, see Rotating join or fork bars.

4. Draw incoming activity flows from each of the source states to the join node bar.

5. Draw a state that will be the target of the outgoing activity flow.

6. Draw an outgoing activity flow from the join node bar to the target state.

A join node is shown as a bar with two or more incoming activity flow arrows and one outgoing
activity flow arrow.

Creating fork nodes
To draw a fork nodes:

1. Click the Fork Node button on Diagram Tools.

2. Click, or click-and-drag, in the activity diagram to place the fork node bar at the intended
location. Fork node bars can be vertical or horizontal only.

By default, the join line is drawn horizontally. To flip it, see Rotating join or fork bars.

3. Draw a source state and an incoming activity flow coming into the fork node bar.

4. Draw the target states and the outgoing activity flows from the fork node bar.
Rational Rhapsody 639

Activity diagrams
A fork node is shown as a heavy bar with one incoming activity flow and two or more outgoing
activity flow arrows.

Rotating join or fork bars
You can rotate a join or fork bar to the right (clockwise) or left (counter-clockwise).

To rotate a join or fork bar, right-click the join or fork bar and select either Flip Right or Flip Left.

Stretching join or fork bars
To stretch a join or fork bar:

1. Select the join or fork bar.

2. Click-and-drag one of the highlighted selection handles until the join or fork bar is the
wanted length.

Moving join or fork bars
To move a join or fork bar to a new location:

1. Click in the middle of the join or fork bar, away from the selection handles, and drag the
bar to the intended location.

2. Release the mouse button to place the join or fork bar at the new location.
640 User Guide

Activity diagram elements
Modify join or fork bars
As with all other elements, you can modify the features of a join or fork bar using the Features
window. The fields and buttons are as follows:

� Name specifies the name of the element. The default name is <element>_n, where n is
an incremental integer starting with 0. Add any additional information using the
Description tab.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the folder with

binoculars button.

– To sort the order of the stereotypes, click the up and down arrows button.
Note: The COM stereotypes are constructive; that is, they affect code generation.
Rational Rhapsody 641

Activity diagrams
Swimlanes

Swimlanes divide activity diagrams into sections. Each swimlane is separated from adjacent
swimlanes by vertical, solid lines on both sides. These are the features of swimlanes:

� Each action is assigned to one swimlane.
� Activity flows can cross lanes.
� Swimlanes do not change ownership hierarchy.
� Swimlane association (representing field population) to a class (only) can be created by

dragging the class from the browser to the Swimlane name compartment.
� The relative ordering of swimlanes has no semantic significance.
� There is no significance to the routing of an activity flow path.

The following figure shows an activity diagram with swimlanes.
642 User Guide

Activity diagram elements
Creating swimlanes
To use swimlanes in an activity diagram, you first need to create a swimlane frame. If you do not,
Rational Rhapsody generates an error message.

Note
There can be only one swimlane frame in an activity diagram. Once you have created a
frame, the Swimlane Frame tool is unavailable.

To draw a swimlane:

1. Click the Swimlane Frame button on Diagram Tools.

2. The cursor turns into crosshairs. In the drawing area, click one corner to draw the
swimlane frame (a box).

3. Click the Swimlane Divider button on Diagram Tools.

4. The cursor turns into a vertical bar. When it is at the intended location, left-click to place
the divider. Rational Rhapsody creates two swimlanes, named swimlane_n and
swimlane_n+1, where n is an incremental integer starting at 0.

If you draw another divider, it divides the existing swimlane into two swimlanes, with the
new swimlane positioned to the left of the divider.

Note: You cannot draw a swimlane on an existing state.

5. If wanted, rename the swimlanes using the Features window.

Note the following information:

� Swimlanes have a minimum width. If you enlarge a swimlane, the extra space is added to
the right of the swimlane. To resize a swimlane, move the divider to the left or the right.

� If a swimlane contains activity diagram elements, you cannot reduce the size of that
swimlane so its divider is positioned to the left of any of those elements, because that
would force the elements into a different swimlane.

� A swimlane maps into a partition of states in the activity diagram. A state symbol in a
swimlane cases the corresponding state to belong to the corresponding partition.
Rational Rhapsody 643

Activity diagrams
Modify the features of a swimlane
The Features window enables you to change the features of a swimlane, including its name and
description. A swimlane has the following features:

� Name specifies the name of the element. The default name is swimlane_n, where n is an
incremental integer starting with 0. Add any additional information using the Description
tab.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the swimlane, if any. They are enclosed in
guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.

– To select from a list of current stereotypes in the project, click the folder with
binoculars button.

– To sort the order of the stereotypes, click the up and down arrows button.
Note: The COM stereotypes are constructive; that is, they affect code generation.

� Represents specifies the class to which the swimlane applies.

View swimlanes in the browser
Swimlanes are displayed in the browser under the activity diagram, as shown in the following
figure.

Note
Swimlane nodes cannot be deleted.

Deleting swimlane dividers
To delete a swimlane:

1. Select the divider you want to delete.

2. Click the Delete button on your keyboard.
644 User Guide

Activity diagram elements
Deleting the swimlane frame
To delete the swimlane frame and all its swimlanes:

1. Select the frame.

2. Click the Delete button on your keyboard.

Note that after the deletion, the frame and swimlanes are removed, but the elements they contained
still exist in the activity diagram.

Swimlane limitations
Note the following design and behavior limitations apply to swimlanes:

� You should not draw actions on swimlane divider lines. In other words, do not draw
actions that overlap into another swimlane.

� Swimlanes in subactivity diagrams are not supported.
� You cannot use the browser to create or drag-and-drop swimlanes.
Rational Rhapsody 645

Activity diagrams
Adding calls to behaviors

You can add a call to a behavior in another activity diagram or to the entire activity diagram. You
can add calls to both activity diagrams and subactivity diagrams.

To add a call, either click the Call Behavior button on Diagram Tools, or drag-and-drop the
activity (or activity diagram) from the browser into the activity diagram. Rational Rhapsody
creates the call in the activity diagram and in the browser.

The called behavior has the same name as the called object. The called behavior, PushButton, is
marked with an at-symbol icon, as shown in the following figure.

This is displayed in the project browser under the activity diagram containing the behavior.
646 User Guide

Activity diagram elements
Modifying a called behavior
To modify the features of a called behavior:

1. Highlight the called behavior in either the browser or diagram. Right-click and select
Features.

2. Click the right arrow button beside the Reference field in the General tab.

3. Use the ActivityGraph Tree window to navigate to the activity diagram that the called
behavior represents.

Display called behaviors
As with most elements, use the Display Options window to define the display of called behaviors
with one of these options:

� Show the name, label, or nothing for the activity
� Show the name, label, or icon for the stereotype

Called behavior limitations
Note the following behavior and restrictions:

� You cannot “undo” changes to called behaviors.
� A called behavior cannot be created in the browser.
� There is no code generation for called behaviors because the code generator ignores these

calls and the activity flows that go in and out of them.
Rational Rhapsody 647

Activity diagrams
Add action pins/activity parameters to diagrams

Action pins can be added to actions and activity parameters can be added to action blocks in an
activity diagram. These elements represent the inputs and outputs for the relevant action/action
block. Action pins can also be added to subactivities.

Action pins and activity parameters are diagram elements and appear in the browser. However,
there is no code generated for these elements.

Making the action pin tool available
To make the action pin tool available for use:

1. Highlight an element in the browser that needs an activity diagram for analysis purposes
only.

2. Right-click the element and select Add New > Diagrams > Activity Diagram.

3. Right-click the Activity Diagram now listed in the browser and select Features to open
the Features window.

4. Select the Analysis Only check box on the General tab.

5. Click OK. Rational Rhapsody displays a message asking if you intend to create an
analysis only activity diagram. If you click Yes, this diagram cannot be used for other
purposes than analysis.

6. The system then places the Action Pin and Activity Parameter buttons on Diagram
Tools.
648 User Guide

Activity diagram elements
Using the action pin
To use the action pin:

1. Click the small Action Pin button at the bottom of the available Diagram Tools.

2. Click the action to which the pin should be added.

The pin displays on the border of the action closest to the point that was clicked. The name
displays alongside the pin. The default name is pin_n.

Adding an activity parameter
To add an activity parameter:

1. Click the Activity Parameter button at the bottom of the Diagram Tools.

2. Click the action block to which the activity parameter should be added.

The activity parameter displays on the border of the action block closest to the point that was
clicked. The name displays inside the activity parameter node. The default name is parameter_n.

Modify features of action pins / activity parameters
The Features window enables you to change the following features of action pins / activity
parameters, in addition to the standard fields:

� Direction (in, out, inOut)
� Argument Type (for example, int)

Graphical characteristics of action pins / activity parameters
Action pins and activity parameter nodes have the following graphical characteristics:

� Pins/parameters always remain attached to their action/action block. However, they can be
moved around the perimeter of the action/action block.

� Action pins are a fixed size. Activity parameters, however, can be resized.
� Pins/parameters cannot be copied and pasted.
� All pin/parameter operations can be undone.
� In the browser, pins/parameters appear beneath the action/action block to which they

belong.
� When an action pin / activity parameter is deleted from a diagram, it is removed from both

the view and the model.
Rational Rhapsody 649

Activity diagrams
Other characteristics of action pins / activity parameters
� Appear in reports generated by the internal Rational Rhapsody reporter.
� Appear in reports generated by ReporterPLUS.
� Are exported to DOORS.
� Are exported to XMI files using the XMI toolkit.
� Supported in DiffMerge.
� Appear in the Search window.
� Supported in the Rational Rhapsody API. It returns the pins/parameters associated with an

action, as well as the type of each pin/parameter.

Local termination semantics

Local termination means that once an action block is entered, it can be exited by a null transition
only if its final state has been reached. A null transition is any transition without a trigger (event or
timeout). A null transition can have a guard.

Statechart mode
The following sections describe how local termination is implemented in statechart mode for
various kinds of states.

Or states

The following local termination rules apply to Or states:

� An Or state that has a final activity is completed when the final activity is reached.
� An Or state without a final activity is completed after finishing its entry action.
� An outgoing activity flow from an Or state can have a trigger (as with statecharts).
� An outgoing null transition (activity flow without a trigger) from an Or state can be taken

only if the Or state is completed.
� If an Or state with a final activity has a history connector, the last state of the history

connector is always the final activity, after it has been reached once.
� An Or state can be exited by any activity flow, including a null transition, from one of its

substates (as with statecharts).

Leaf states

A leaf state is completed after finishing its entry action.
650 User Guide

Activity diagram elements
Component states

The following local termination rules apply to component states:

� Because a component state is a kind of Or state, all the local termination rules for Or states
also apply to component states.

� A join transition (from several component states) is activated only if all the sources
(component states) are completed.

And states

An outgoing null transition from an And state is activated only if all of its components are
completed.

IS_COMPLETED() macro

You can use the IS_COMPLETED() macro in a statechart to test whether a state is completed.
Completion means that any of the conditions for local termination described in the previous
sections are true. The macro works the same for both flat and reusable implementations of
statecharts.

The CG::Class::IsCompletedForAllStates property specifies whether the IS_COMPLETED()
macro can be used for all kinds of states. The default value of Cleared means that the macro can
be used only for states that have a final activity. Checked means that it can be used for all states.

Activity diagram mode
All of the local termination rules for statechart mode also apply in activity diagram mode, with the
following exceptions:

� An Or state that has a final activity is completed when the final activity is reached.
� An Or state without a final activity is never completed.
Rational Rhapsody 651

Activity diagrams
Code generation
In previous releases, Rational Rhapsody supported code generation only from activity diagrams
associated with classes, not from activity diagrams associated with operations or use cases.

Rational Rhapsody Developer for C++ generates functor-based code for activity diagrams
associated with operations. Functor-based code reuses the code generation functionality for
activity diagrams of classes. Code is generated into a new class (called the functor class), which
implements an activity diagram on the class level. The task of executing the modeled operation (an
operation associated with an activity diagram) is delegated to the new class. The class that
delegates the task is known as the owner class.

You specify whether to generate code for an activity diagram by setting the property
CPP_CG::Operation::ImplementActivityDiagram to Checked. This property is set to Cleared
by default.

Functor classes

Consider the following class:

The following figure shows the activity diagram associated with the increaseSpeed modeled
operation.
652 User Guide

Code generation
In the example model, Motor is the owner class, and FunctorIncreaseSpeed_int executes
the modeled operation increaseSpeed.

This activity diagram increments the value of the class attribute speed by the value specified by
the amount argument, then returns the incremental value. Note the following information:

� An activity diagram should never contain code with the return keyword because the
current implementation executes the code fragments of the diagram (that appear in
actions, activity flows, and so on) in contexts of different operations. Returning from
those contexts (operations) does not have the same effect as returning from the body of a
regular operation.

Instead, you should set the return value to the rpyRetVal variable (shown in the
previous figure), which is always generated for operations that return values.

� There are two ways an operation can finish and return control to its caller:
– Once the diagram reaches a “stable” state (there are no more activity flows to

take), the operation is considered to have finished its job and it returns control
to its caller.

– The diagram reaches a termination connector at the top level.
� The actual execution of the code does not occur within the scope of the object that owns

the operation. Instead, the code is executed in another object whose sole purpose is to
execute the diagram. During the execution of the code in the diagram, the this pointer
references a special-purpose object (the functor object) that contains the code in the
diagram (in states, on activity flows, and so on). To refer to the owner object, you can use
the this_ variable, which always exists for this purpose.

To make coding more natural, direct access to the attributes of the class that owns the
operation (without the need for this_) is made possible by supplying references in the
functor object. The functor class contains references that correspond to each owner class
attribute and have the same name. The constructor of the functor class contains arguments
to initialize each attribute; initialization is done when the owner class creates an object of
the functor class.

You can control the code generation of the attribute references by setting the value of the
CPP_CG::Operation::ActivityReferenceToAttributes property to Checked (the
default value).
Rational Rhapsody 653

Activity diagrams
Limitations and specified behavior

Note the following restrictions and behavior:

� Activity diagrams do not require “And” states to represent concurrent behavior. Activity
diagrams cannot include “And” states.

� Forks can end in states that are not within two orthogonal states.
� Activity diagrams for operations cannot receive events, nor can they have state nodes.
� You cannot animate the activity diagrams associated with operations. However, an

animated sequence diagram for the model records the fact that a modeled operation was
called. In addition, the call and object stacks record the owner object (not the functor
object) as the object that receives the message.

� This feature supports only a subclass of diagrams that do not contain events (including
timeout events) or triggered operations.

� If a class attribute and an argument of the modeled operation have the same name, there
will be a name collision that results in a compiler error. To avoid this problem before
attempting to generate code, omit the class attribute that causes the collision. This should
not affect the semantics of the operation, because operation arguments hide class
attributes.

� The name of the functor class will contain the signature of the modeled operation, thereby
supporting overloaded operations. Complicated type names will be converted to strings
appropriate for building C++ identifiers. For example, “::” characters are replaced with
underscores.

� Because the code in the diagram does not execute within the scope of the modeled
operation, there is no direct access to the this variable. Instead, access this variable
using the this_ attribute of the functor class. This is also the preferred way to start
methods in the owner class.

� Operations with variable-length argument lists are not supported.
� Global operations with activity diagrams are not supported.
654 User Guide

Flow charts
A flow chart is a schematic representation of an algorithm or a process. In UML and Rational
Rhapsody, you can think of a flow chart as a subset of an activity diagram that is defined on
methods and functions.

You can model methods and functions using flow charts in all Rational Rhapsody programming
languages. Only in Rational Rhapsody in C and Rational Rhapsody in C++ can readable structured
code be generated from a flow chart. During code generation, for the actions defined in a flow
chart Rational Rhapsody can generate structured code for If/Then/Else, Do/While, and While/
Loops.

The code generator algorithm for a flow chart can identify Loops and Ifs, the expressions for these
constructs is on the guards of the action flows.

For more information about activity diagrams, see Activity diagrams.

Define algorithms with flow charts
One useful application of flow charts is in the definition of algorithms. Algorithms are essentially
decompositions of functions into smaller functions that specify the activities encompassed within a
given process.

This flow chart approach to code generation is to reduce the diagram to blocks of sequential code
and then search for If/Loop patterns in those blocks. The following structured programming
control structures are supported in flow charts:

� Simple If
� If/Then/Else
� While loops (where the test is at the start of the loop)
� Do/While loops (where the test is at the end of the loop)

If the algorithm does not succeed to impose the above structure, then it will need to use a GoTo.
Rational Rhapsody 655

Flow charts
Flow charts similarity to activity diagrams
Flow charts have the following elements in common with activity diagrams including start and end
activities and actions:

� Decision points that show branching points in the program flow based on guard
conditions.

� Actions that represent function invocations with a single exit action flow taken when the
function completes. It is not necessary for all actions to be within the same object.

� Action blocks that represent compound actions that can be decomposed into actions.
However, flow charts do not include And states, and flow charts for operations cannot receive
events.

Rational Rhapsody in C includes a Flowchart model located in the <Rational Rhapsody
installation>\Samples\CSamples\Flowchart folder. These sample flow charts show which
flow chart patterns are recognized in order to generate structured code. The following illustration
shows the main elements of a flow chart:

Decision Point
(Merge Node)

End Action
(Activity Final)

Guard

Action

Guard

Start Action
(Initial Flow)
656 User Guide

Create flow chart elements
Create flow chart elements
You use the flow chart drawing tools to draw the parts of a flow chart. For basic information on
diagrams, including how to create, open, and delete them, see Graphic editors.

Tools for drawing flow charts

The Diagram Tools for a flow chart contains the following tools.

Drawing
Buttons Button Name Description

Action Represents the member function call within a given operation. For more
information, see Actions.

Action Block Represents compound actions that can be decomposed into actions. For more
information, see Action blocks.

Activity Flow Defines the flow and its guards to supply the test for Ifs or Loops. Activity flows
without guards define the default sequential flow of the flow chart. For more
information, see Activity flows.

Initial Flow Shows the flow origination point from an element. For flow charts, this default
flow is the initial flow, and for code purposes, indicates the start of code. For
more information, see Drawing initial flows.

Loop Activity
Flow

Represents behavior repeating in a program. For more information, see
Drawing loop activity flows.

DecisionNode Shows branching conditions. For more information, see Drawing decision
nodes.

ActivityFinal Provides local termination semantics. The flow chart returns at this point to the
operation/function that started it. For more information, see Activity final.

MergeNode Combines different flows to a common target. For more information, see
Drawing merge nodes.

Send Action Represents the sending of events to external entities. For more information, see
Send action elements.
Rational Rhapsody 657

Flow charts
Actions

Flow charts decompose a system into actions that correspond to activities. These diagrammatic
elements, called actions, are member function calls within a given operation. In contrast to normal
states (as in statecharts), actions in flow charts terminate on completion of the activity, rather than
as a reaction to an externally generated event.

Each action can have an entry action, and must have at least one outgoing action flow. The implicit
event trigger on the outgoing action flow is the completion of the entry action. If the action has
several outgoing action flows, each must have its own guard condition.

During code generation, code is derived from the actions on a flow chart.

Actions have the following constraints:

� Outgoing activity flows can include only guard conditions.
� Actions have non-empty entry actions.
� Actions do not have internal action flows or exit actions, nor do activities.
� Outgoing action flows on actions have no triggering events.

Creating a flow chart
You can create a flow chart on any function or class method in the same way as you can an activity
diagram.

To create a flow chart:

1. In the browser, right-click the model element for which you want to create a flow chart,
such as a function.

2. Select Add New > Diagrams > Flowchart.

The flow chart displays in the Drawing area.
658 User Guide

Create flow chart elements
Drawing an action
To draw an action:

1. Create a flow chart and click the Action button on Diagram Tools.

2. Click or click-and-drag in the flow chart to place the action where you want it.
An action appears on a flow chart as a rectangle with curved edges.

3. Type a name for the action, then press Ctrl+Enter or click the Select arrow in the toolbar
to terminate typing mode.

By default, the action expression, which does not need to be unique within the flow chart, is
displayed inside the action symbol. For information on modifying the display, see Displaying an
action.

Modify the features of an action
The Features window enables you to add and change the features of an action, including its name
and action. An action has the following features:

� Name specifies the name of the action. The description of the action can be entered into
the text area on the Description tab. This description can include a hyperlink. For more
information, see Hyperlinks.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes. By default, flow charts have a new
term stereotype of “flowchart.”

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Action specifies an action in a flow chart. This is the text you typed into the flow chart
when you created the action.

The Overridden check box allows you to toggle the check box on and off to view the
inherited information in each of the window fields and decide whether to apply the
information or revert back to the currently overridden information.

For more information about the Features window, see The Features window.
Rational Rhapsody 659

Flow charts
Displaying an action
You can show the name, action, or description of the action in the flow chart.

To specify which attribute to display:

1. Right-click the action and select Display Options to open the Display Options window.

2. Select the appropriate values and click OK.

Action blocks

Action blocks represent compound actions that can be decomposed into actions. Action blocks can
show more detail than might be possible in a single, top-level action. You can also use pseudocode,
text, or mathematical formulas as alternative notations.

Note that for action blocks, there must be a default flow at the start and a final activity at the end,
and activity flows cannot cross the blocks boundaries to actions in the block (though they might
enter and leave the block itself). The code generator will put blocks code in curly braces and this
has language significance regarding variable scope and lifetime.

Creating an action block
To define the activity, draw an action block:

1. Click the Action Block button on Diagram Tools.

2. Click or click-and-drag in the flow chart to place the action block where you want it.
Action blocks appear as rectangles on a flow chart.

3. Draw actions and activity flows inside the action block to express the activity being
modeled.
660 User Guide

Create flow chart elements
The Record_and_Send_Messages activity shown in the following sample action block
encompasses several activities.

Modify the features of an action block
The Features window enables you to change the features of an action block, including its name and
description. An action block has the following features:

� Name specifies the name of the action block. The description of the action block can be
entered into the text area on the Description tab. This description can include a hyperlink.
For more information, see Hyperlinks.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the action block, if any. They are enclosed in
guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes. By default, flow charts have a
new term stereotype of “flowchart.”

Note: The COM stereotypes are constructive; that is, they affect code generation.
Rational Rhapsody 661

Flow charts
Activity final

An activity final provides local termination semantics. The flow chart returns at this point to
the operation/function that started it.

Note
The behavior of the “activity final” is controlled by the
CG::Statechart::LocalTerminationSemantics property. See the definition provided for
the property on the applicable Properties tab of the Features window.

Creating an activity final
To create a final activity:

1. Click the ActivityFinal button on Diagram Tools.

2. Click in the flow chart to place the final activity where you want it.
A final activity looks like a circle with a black dot in its center.

3. Draw an activity flow from an action to the final activity.

4. If you want, enter a guard condition to signal the end of the activity.

As with the other connectors, final activities and their flows are included in the Rational Rhapsody
browser.
662 User Guide

Create flow chart elements
Activity flows

Flow charts can have activity flows (such as activity flows, default flows, and loop activity flows)
on actions and action blocks. Activity flows define flow and their guards supply the test for Ifs or
Loops. Activity flows without guards define the default sequential flow of the flow chart.

In addition, note the following information:

� When an “If” flow is detected, then the activity flow with a guard defined on it is the body
of the “if.”

� For all multiple exit activity flows there should always be one without a guard to define
the sequential flow.

Activity flows in flow charts are the same as the corresponding transitions in activity diagrams,
with the following exceptions:

� Outgoing activity flows and action blocks cannot have triggers.
� Outgoing activity flows from actions and action blocks can only have guards.

Drawing activity flows
To draw an activity from one action to another:

1. Click the Activity Flow button on Diagram Tools.

2. Click the edge of the source action.

3. Drag the cursor to the edge of the target action and release to anchor the activity flow.

4. If you want, enter a guard for the activity flow.

Completion action flows
An action flow to a final activity is called a completion action flow. Final activities cannot have
outgoing action flows. A completion action flow can only have a guard condition.
Rational Rhapsody 663

Flow charts
Drawing initial flows
One of the action elements must be the default action flow. The flow chart flow originates from the
element pointed to by the default flow. For flow charts, this default flow is the initial flow, and for
code purposes, indicates the start of code.

To draw a default flow:

1. Click the Initial Flow button on Diagram Tools.

2. Click in the flow chart outside the default action.

3. Drag the cursor to the edge of the default action of the activity and release the mouse
button.

Drawing loop activity flows
Loop activity flows represent looping behavior in a program. Loop activity flows are often used on
action blocks to indicate that the block should loop until some exit condition becomes true. A loop
activity flow with a guard is in effect a Do-While statement.

To draw a loop activity flow:

1. Click the Loop Activity Flow button on Diagram Tools.

2. Click the edge of an action.

3. Label the loop activity flow and press Ctrl+Enter.

For an example of an action block with a loop activity flow, see Activity final.

Modify action flows
As with all other elements, you can modify the features of an action flow using the Features
window. For more information, see Features of transitions.

Connectors

Flow charts can have the following connectors:

� MergeNode
� DecisionNode
664 User Guide

Create flow chart elements
Drawing merge nodes
A merge node combines different flows to a common target.

To draw a merge node:

1. Click the MergeNode button on Diagram Tools.

2. Click in the flow chart to place the junction where you want it.

3. Draw flows going into, and one flow going out of the junction.

4. Label the flows if you want.

For more information on merge nodes, see Statecharts.

Drawing decision nodes
Decision Nodes show branching conditions. A decision node can have only one incoming activity
and two or more outgoing activity flows. The outgoing action flows are labeled with a distinct
guard condition. A predefined guard, denoted [else], can be used for no more than one outgoing
flow.

A decision node appears as a diamond shape on a flow chart.

To draw a decision node:

1. Click the DecisionNode button on Diagram Tools.

2. Click, or click-and-drag, in the flow chart to position the decision node where you want it.

3. Draw at least two actions that will become targets of the outgoing action flows.

4. Draw an incoming action flow from the source action to the decision node.

5. Draw and label the outgoing action flows from the decision node to the target actions.

This flow chart shows the following behavior: When the phone rings, if someone picks up on the
other end, you can talk; otherwise, you must leave a message. The decision node represents the
decision point. In other words, after the PhoneRings() operation, if SomeonePicksUp resolves
to True, the Talk() operation is called. Otherwise, the LeaveMessage() operation is called.

Use the Display Options window for the decision node to determine whether to display its name,
label, or nothing.
Rational Rhapsody 665

Flow charts
Code generation
You specify whether to generate code for a flow chart by setting the
C_CG::Operation::ImplementFlowchart property to Checked (which is the default).

Flow chart limitations and specified behavior

Note the following restrictions and behavior:

� You cannot animate or reverse engineer flow charts.
� Code generation from flow charts is not supported in Rational Rhapsody in Java and

Rational Rhapsody in Ada.
� Flow chart code generation will never write the same action twice.
� This feature supports only a subclass of diagrams that do not contain events (including

timeout events) or triggered operations.
� Rational Rhapsody makes the following checks:

– If a function already has a body.
– On guards that will be ignored because they are not part of an If/Then/Else or

Loop.
– That the flow chart and all its blocks have one and only one reachable final

activity. If there are no reachable states or more than one, a message will
display.

– That there are no elements with more than one flow between them in the same
direction. If there are more than one, a message will display.

– That all the elements in the flow chart are supported. If unsupported elements
are found, a message will display.

� If code generated will contain GoTos, Rational Rhapsody will display a warning message
with an indication as to which flows are causing the warning. Note the following
information:

– Flow charts will normally generate structured code using If, If/Then/Else, Do,
and While blocks. Rational Rhapsody in C provides you with a Flowchart
model located in the <Rational Rhapsody
installation>\Samples\CSamples\
Flowchart folder. The Flowchart model contains a number of sample flow
charts patterns that show you which ones are recognized in order to generate
structured code. For example, the Flowchart model includes flow charts that
show the DoWhileLoop, IfThenElse, and the WhileLoop.
666 User Guide

Code generation
– If the code is not structured, then the flow charts will generate GoTo code. To
avoid GoTo code, use the sample patterns for structured blocks as shown in
the flow charts that are illustrated and documented in the Flowchart model
provided with Rational Rhapsody in C, which is located in the path noted
above.
Rational Rhapsody 667

Flow charts
668 User Guide

Sequence diagrams
Sequence diagrams (SDs) describe message exchanges within your project. You can place
messages in a sequence diagram as part of developing the software system. You can also run an
animated sequence diagram to watch messages as they occur in an executing program.

Sequence diagram show scenarios of messages exchanges between roles played by objects. This
functionality can be used in numerous ways, including analysis and design scenarios, execution
traces, expected behavior in test cases, and so on.

Sequence diagrams help you understand the interactions and relationships between objects by
displaying the messages that they send to each other over time. In addition, they are the key tool
for viewing animated execution. When you run an animated program, its system dynamics are
shown as interactions between objects and the relative timing of events.

Sequence diagrams are the most common type of interaction diagrams.

Note
Rational Rhapsody message diagrams are based on sequence diagrams. Message diagrams,
available in the FunctionalC profile, show how the files functionality might interact through
messaging (through synchronous function calls or asynchronous communication). Message
diagrams can be used at different levels of abstraction. At higher levels of abstractions,
message diagrams show the interactions between actors, use cases, and objects. At lower
levels of abstraction and for implementation, message diagrams show the communication
between classes and objects.

Message diagrams have an executable aspect and are a key animation tool. When you
animate a model, Rational Rhapsody dynamically builds message diagrams that record the
object-to-object messaging.

For more information about the FunctionalC profile, see Profiles.
Rational Rhapsody 669

Sequence diagrams
Sequence diagram layout
A sequence diagram has two sections:

� Names pane, which is the top portion of the diagram. The Names pane is a control to
identify instance lines when the role names are not visible.

� Message pane shows the messages passed between instance lines in the diagram.
670 User Guide

Sequence diagram layout
Names pane

The names pane contains the name of each instance line or classifier role. In a sequence diagram, a
classifier role represents an instance of a classifier. It describes a specific role played by the
classifier instance to perform a particular task. A classifier role is shown as an instance line with a
text header (name) with a box drawn around it. A classifier role can realize a classifier (class or
actor) of the static model object.

Changing names
Names that are too long to fit in the pane continue past the divider, running down behind the lower
pane. To change the size of the names pane, click the dividing line and drag it up or down.

You can change the font and edit the names in the names pane using the menu for text items.

There are three ways to describe the name:

Classifier Role Name: Classifier Name

 : Classifier Name

Classifier Role Name

In the first two cases, if the classifier name does not exist in the metamodel, Rational Rhapsody
asks if you want to add a new classifier to the project. The third case tells Rational Rhapsody that
you want to use an <Unspecified> classifier role, which means that the classifier role is not a
realization of an existing classifier or actor.

Renaming classifier roles
If you change the name of a classifier role to a role name that already exists in the model, the
classifier role is automatically realized to that classifier. For example, if you change the role name
of classifier B to “Alarm” and there is a class Alarm in the model, this role becomes a realization of
class Alarm and its name changes to B::Alarm.

If you change the name to a class that does not yet exist in the model, Rational Rhapsody asks if
you want to create that class. For example, if you type x:X, Rational Rhapsody asks if you want to
create the class X.
Rational Rhapsody 671

Sequence diagrams
Message pane

The message pane contains the elements that make up the interaction. In the object pane, system
borders and instances are displayed as instance line, which are vertical lines with a box containing
the role name at the top. Messages, such as events, operations, and timeouts are generally shown as
horizontal and slanted arrows.

The messages appear in sequence as time advances down the diagram. The vertical distance
between points in time indicates only the sequence in time and not any time scale.

Analysis versus design mode
Three properties (under SequenceDiagram::General) to support the SD operation modes:

� ClassCentricMode specifies whether classes are realized when you draw instance lines.
The possible values are as follows:

– Checked means instance names of the form <xxx> are treated as class names,
not instance names. For example, if you create a new instance line named c,
Rational Rhapsody creates a class named c and displays it in the sequence
diagram as :c.

– Cleared means when you create an instance line, it is named role_n by
default, which represents an anonymous instance. This is the default value.

� RealizeMessages specifies whether messages are realized when you create them. The
possible values are as follows:

– Checked where in Design mode, when you type in a message name, Rational
Rhapsody asks if you want to realize the message. If you answer no, the
message is unspecified. For example, you could use an unrealized message to
describe a message that is part of the framework (such as takeEvent()),
without actually adding it to the model. (In analysis mode, the confirmation is
controlled by the property
SequenceDiagram::General::ConfirmCreation.)

– Cleared where you can draw message lines freely, without messages from
Rational Rhapsody about realization. This is the default value.

� CleanupRealized specifies whether to delete messages in the sequence diagram if the
corresponding operation is deleted. The possible values are as follows:

– Checked means to delete the messages when the operation is deleted.
– Cleared means to not delete the messages when the operation is deleted. This

is the default value.
For sequence diagrams produced in Rational Rhapsody 4.0 or earlier, all three of these properties
are Cleared.
672 User Guide

Analysis versus design mode
Showing unrealized messages

To show a message that has not been realized, select Edit > Select > Select Un-Realized. The
unrealized message is selected in the sequence diagram.

Realizing a selected element

To realize a selected element:

1. Select the element in the sequence diagram.

2. Select Edit > Auto Realize.

When you realize a message, Rational Rhapsody creates a new message in just the manner as if
you selected <New> in the Realization field in the Features window. If you realize a classifier role,
Rational Rhapsody creates a class with the same name as designated in the role name, with a
leading colon. For example, Dishwasher becomes :Dishwasher.
Rational Rhapsody 673

Sequence diagrams
Creating sequence diagram elements
The following sections describe how to use the sequence diagram tools to draw the parts of a
sequence diagram. For basic information on sequence diagrams, including how to create, open,
and delete them, see Graphic editors.

Sequence diagram drawing tools

The Diagram Tools for a sequence diagram includes the following tools.

Drawing
Tool Name Description

Instance line Shows how an actors participates in the scenario. For more information, see
Creating an instance line.

System border Represents the environment. Events or operations that do not come from instance
lines shown in the chart are drawn coming from the system border. For more
information, see Creating a system border.

Message Represents an interaction between parts, or between a part and the environment. A
message can be an event, a triggered operation, or a primitive operation. For more
information, see Creating a message.

Reply message Represents the response from a message sent to a part or the environment. For
more information, see Creating a reply message.

Create arrow Marks when an instance is created. It can originate from the system border or
another instance. It is a horizontal, dotted line from the creator object to the new
object. An object can have only one “create arrow.” You can label the create arrow
with construction parameters.

Destroy arrow Marks the destruction of an object. It is a dotted line from the destroying object to the
object being destroyed. It can be either a horizontal line or a message-to-self. For
more information, see Creating a destroy arrow.

Timeout Indicates when an event stops and might include a parameter indicating the length of
the time the event is stopped. This is a type of message that is always
communicating with itself. For more information, see Creating a timeout.

Cancelled
timeout

indicates the condition when an event that has timed out should restart. For more
information, see Creating a cancelled timeout.

Time interval Can be used to create a waiting state with an event stopping for this predefined
interval and then automatically restarting. For more information, see Specifying a
time interval.

DataFlow Indicates the flow of data between two objects. You can use the Features window to
select the flowport to which it is connected on the receiving object and change the
value being sent. This connection is also automatically added to the sequence
diagram during animation. For more information, see Creating a dataflow.

Partition line Separates phases of a scenario represented in the sequence diagram. For more
information, see Creating a partition line.
674 User Guide

Creating sequence diagram elements
Condition mark Indicates that the object is in a certain condition or state at this point in the sequence.
For more information, see Creating a condition mark.

Execution
Occurrence

Shows the beginning and end of the unit of behavior (the actions performed by an
operation or event) that is triggered by a specific message. For more information,
see Creating execution occurrences.

Interaction
Occurrence

Refers to another sequence from within a sequence diagram. This allows complex
scenarios to be divided into smaller, reusable scenarios. For more information, see
Creating an interaction occurrence.

Interaction
Operator

Groups related elements and define specific conditions under which each group of
elements occurs. For more information, see Creating interaction operators.

Interaction
Operand
Separator

Create two subgroups of elements within the sequence diagram. This might be used
to create two paths that are supposed to be carried out in parallel or to define two
possible paths and a condition that determines which is to be followed. For more
information, see Adding an interaction operand separator to an interaction
operator.

Lost Message Indicates a message sent from an instance that never arrives to its destination. This
item is not supported in code generation or animation.

Found
Message

Indicates a message that arrives at an instance, but its target is unknown. This item
is not supported in code generation or animation.

Destruction
Event

Indicates the destruction of the instance, such as the destroy arrow, has happened.
This item is not supported in code generation or animation.

Drawing
Tool Name Description
Rational Rhapsody 675

Sequence diagrams
Creating a system border

A system border represents the environment. Events or operations that do not come from instance
lines shown in the chart are drawn coming from the system border.

A system border is a column of diagonal lines, labeled ENV. You can place a system border anywhere an instance line can be placed, but the typical locations are the far left and right edges of the chart.

To create a system border:

1. Click the System border button .

2. Move the cursor into the drawing area, then click to place the system border. At this point,
the system border is anchored in place.

3. Because the system border represents the environment, it is named ENV by default. If
wanted, rename the system border.
676 User Guide

Creating sequence diagram elements
Creating an instance line

An instance line (or classifier role) is a vertical timeline labeled with the name of an instance. It
represents a typical instance or class in the scenario being described. It can receive messages from
or send messages to other instance lines.

In addition to creating, deleting, and modifying the name of an instance line, you can realize the
instance line to a class or actor in the static model.

1. Click the Instance line button .

2. Move the cursor over the diagram.

3. Move the line to a suitable location, then click to dock the line into place.

4. Type the name of a class or an instance to replace the default name.

5. If you specified design mode, Rational Rhapsody names the instance line :class_n by
default. If the specified class does not exist, Rational Rhapsody asks if you want to create
it. Click OK.

6. You can continue creating instance lines, or return to select mode by clicking the Select
tool.

If you prefer, you can place several lines and rename them later. Rational Rhapsody gives them
default names until you rename them. For information on renaming instance lines, see Message
line menu. Note that the sequence diagram automatically expands the diagram as necessary as you
add more instance lines.

Note
To shift one or more messages to different instance lines, select the relevant messages and
press Ctrl+Right arrow, or Ctrl+Left arrow. The messages “jump” to the new source and
destination instance lines. This replaces the cut and paste (or drag) functionality of
messages between instance lines in the same diagram.
Rational Rhapsody 677

Sequence diagrams
Modifying the features of a classifier role
The Features window enables you to change the features of a classifier role, including its
realization. A classifier role has the following features:

� Name specifies the name of the classifier role.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,

for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Realization specifies the class being realized by the instance line.
� Decomposed specifies the referenced sequence diagram for the instance line, if you are

using part decomposition. For more information, see Part decomposition.
� Description describes the classifier role. This field can include a hyperlink. For more

information, see Hyperlinks.

Names of classifier roles
A classifier role (instance line) with a class name is a view of the class in the model. An instance
line with an instance name (of the form instance:class) is also a view of the class in the model.

Instance lines reference classes in the model. If you rename an instance line to another class name
that exists in the model, the line acts as a view to the other class in the model. If the class does not
exist, Rational Rhapsody will create it.

Note
The names for instance lines are resizable text frames. Text wraps to match the contour of
the bounding box.
678 User Guide

Creating sequence diagram elements
If you specified analysis mode, Rational Rhapsody names the instance line role_n by default and
does not prompt you for class information. The following figure shows a new instance line in an
analysis SD.

If you specified design mode, Rational Rhapsody names the instance line :class_n by default. If
the specified class does not exist, Rational Rhapsody asks if you want to create it. The following
figure shows a new instance line in a design SD.

Note that Classifier role names are animated when their expression can be mapped to an existing
object.

Examples:

We have a class A and an object a:A who is the only object of A. All the following names will be
mapped to it:

� :A

� a:A

� A[0]:A

� A[#0]:A

Suppose that instead of a:A, we have a single instance of A as a part itsA of another object b:B.
Rational Rhapsody 679

Sequence diagrams
The instance line can be named as:

� :A

� b->itsA:A

� B[0]->itsA:A

� A[#0]:A

� B[#0]->itsA->a:A

The same instance mappings apply as described in Instance Names.

Instance line menu
� Class displays a submenu of commands for classes.
� Open Reference Sequence Diagram opens the reference sequence diagram associated

with the classifier role. This option is unavailable if a reference sequence diagram does
not exist for this classifier role. For more information, see Creating an interaction
occurrence.

� Display Options specifies how the element should be displayed.
680 User Guide

Creating sequence diagram elements
Creating a message

A message represents an interaction between objects, or between an object and the environment. A
message can be an event, a triggered operation, or a primitive operation. In the metamodel, a
message defines a specific kind of communication. The communication could be raising a signal,
invoking an operation, or creating or destroying an instance.

The recipient of a message is either a class or a reactive class. Reactive classes have statecharts,
whereas nonreactive classes do not. Reactive classes can receive events, triggered operations, and
primitive operations. Non-reactive classes can receive only messages that are calls to primitive
operations. Events are usually shown with slanted arrows to imply that they are asynchronous
(delivery takes time). Triggered operations are shown with straight arrows to imply that they are
synchronous (happen immediately).

To create a message:

1. Click the Message (event) button .

2. Move the cursor over the instance lines.

Note: A plus sign displays on each instance line as you move the cursor from one to
the next. This symbol indicates a potential origination point for the wanted
message.

3. Left-click to anchor the start of the message at the intended location, then move the cursor.
A dashed line displays as a guide for the message.

4. Move the cursor lower the start of the message to create a downward-slanted diagonal
line. Click to anchor the end of the message on the target object once the diagonal line has
extended itself to that point.

5. If you specified design mode and the specified message is not realized in the model,
Rational Rhapsody asks if you want to realize it. Click OK.

Rational Rhapsody creates a message with the default name message_n(), where n is an
incremental integer starting with 0. Sequence diagrams automatically expand in length to
accommodate new messages.

To specify the type of operation and its access level, select the Features option from the menu. By
default, Rational Rhapsody creates a primitive operation with public access. For more information,
see The Features window.
Rational Rhapsody 681

Sequence diagrams
Message names
The naming convention for messages is as follows:

message(arguments)

The names for messages can be event or operation names. They can include actual parameters in
parentheses, which would be expressions in the scope of the sender/caller. Message names are
resizable, movable text frames. Text wraps to match the contour of the bounding box.

Note: In Rational Rhapsody versions 4.0 and earlier, if you changed the message
name, Rational Rhapsody asked if you wanted to create a new operation with
the given name.

If you modify the name of an operation that exists in the model, the message is automatically
realized to that operation, and Rational Rhapsody changes its type to the type of that operation
(constructor, event, and so on).

If you change the message name to a message that does not belong to the classifier, it becomes
unspecified (in analysis mode).

Displaying message arguments
The SequenceDiagram::General::ShowArguments property displays or hides message
arguments. By default, the ShowArguments property is activated. It applies to all messages in a
sequence diagram, not to individual messages.

Note that any changes you make to property settings apply only to new elements you draw after
making the change, not to existing elements. For example, to have arguments displayed on one
message but not on another message of the same type, set the ShowArguments property before
drawing one message, then reset it before drawing the next message, as shown in this example.
682 User Guide

Creating sequence diagram elements
Slanted messages
A message drawn on a slant is interpreted as an event if the target is a reactive class, and as a
primitive operation if the target is a nonreactive class. A slanted message emphasizes that time
passes between the sending and receiving of the message. Slanted messages can cross each other.

Horizontal messages
A message drawn as a horizontal line is interpreted as a triggered operation, if the target is a
reactive class, and a primitive operation if the target is a nonreactive class. The horizontal line
indicates that operations are synchronous.

Message-to-self
A message-to-self is interpreted as an event if the instance is a reactive class. If the instance is a
nonreactive class, a message-to-self is interpreted as a primitive operation.

A message-to-self is shown by an arrow that bends back to the sending instance. The arrow can be
on either side of the instance line. If the message-to-self is a primitive operation, the arrow folds
back immediately. If the message-to-self is an event, the arrow might fold back sometime later.
Rational Rhapsody 683

Sequence diagrams
Message line menu
� Select Message enables you to select a message. For more information, see Selecting a

message or trigger.
� Add Execution Occurrences enables you to add execution occurrences.
� Display Options specifies how the element should be displayed.

Modifying the features of a message
The Features window enables you to change the features of a message, including its type or return
value. A message has the following features:

� Name specifies the name of the message. The default name is Message_n, where n is an
incremental integer starting with 0.

� L specifies the label for the element, if any. For information on creating labels, see
Descriptive labels for elements.

� Stereotype specifies the stereotype of the message, if any. They are enclosed in
guillemets, for example «s1» and enable you to tag classes for documentation purposes.
For information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Message Type specifies the type of message (event, primitive operation, and so on).

Note that you cannot change the message type once the message has been realized.
� Sequence specifies the order number of a message. Make sure any numbering sequence

you use, such as 1a., 1b., 1.2.1., 1.2.2., and so on ends with a period (.). Rational
Rhapsody needs the ending period to continue the numbering sequence automatically.

Note: In collaboration diagrams, you can modify both the format of the numbering
and the starting point for the numbering. In sequence diagrams, this field is
read-only. You cannot modify the numbering format or the starting point of the
numbering.

� Arguments specifies the arguments for the message.
� Return Value specifies the return value of the message.
� Realization specifies the class that will be realized. This list contains the following

options:
– Existing classes in project.
– <Unspecified> where if this is an analysis SD, this is the realization setting

for the instance line.
– <New> which opens the Class window so you can set up the new class. For

more information, see Class features.
Click the Features button to open the Features window for the class specified in the
list.
684 User Guide

Creating sequence diagram elements
In addition, this section lists the sender and receiver objects for the message.

� Description describes the message. This field can include a hyperlink. For more
information, see Hyperlinks.

Selecting a message or trigger
When you choose Select Message or Select Trigger, Rational Rhapsody displays a list of the
messages or triggers provided by the target object, as shown in the following figure for messages.
Notice that if there are more messages (or triggers) that can appear on the pop-up menu, a Browse
command displays. For triggers, see also Selecting a trigger transition.

For messages, if the target is an instance of a derived class, the list also includes those message
inherited from its superclass. The target class provides the message, whereas the source class
requires it. You can also think of provided messages as those to which the class responds. At the
implementation level, an event is generated into statechart code that checks for the existence of
that event.
Rational Rhapsody 685

Sequence diagrams
Browsing for messages
The following figure shows the Select Message window that opens when you choose Select
Message > Browse for messages. It shows you all the messages/events that are available.

Cutting, copying, and pasting messages
You can cut, copy, and paste messages in sequence diagrams using the standard Ctrl+X, Ctrl+C,
and Ctrl+V keyboard shortcuts, respectively.

Moving messages
To move a message line:

1. Select the message you want to move.

2. Press Ctrl+Left arrow to move the message to the left, or Ctrl+Right arrow to move it
to the right.
686 User Guide

Creating sequence diagram elements
Message types
If you open the Features window for the message, you can select the message type: primitive
operation, or triggered operation, or event. Once defined, these messages are displayed in the
browser, denoted by unique icons. In the browser, you can access modify a message by
right-clicking on it and selecting the appropriate option from the menu.

Note
Once a message has been realized, you cannot change its type.

Events

An event is an instantaneous occurrence that can trigger a state transition in the class that receives
it. Because events are objects, they can carry information about the occurrence, such as the time at
which it happened. The browser icon for an event is a lightning bolt.

The following figure shows the Features window for an event.

Note
If an event argument is of type *& (pointer reference), Rational Rhapsody does not generate
code for it.
Rational Rhapsody 687

Sequence diagrams
Triggered operations

A triggered operation can trigger a state transition in a statechart, just like an event. The body of
the triggered operation is executed as a result of the transition being taken. The browser icon for a
triggered operation is a green operation box overlaid with a lightning bolt.

Note
If an argument of a triggered operation is of type *& (pointer reference), Rational Rhapsody
will not generate code for that argument.

Operations

By default, operations are primitive operations. Primitive operations are those whose bodies you
define yourself instead of letting Rational Rhapsody generate them for you from a statechart.

The browser icon for operations is a three-compartment class box with the bottom compartment
filled in:

Deleting operations

You delete an operation like any other model element in Rational Rhapsody. However, if you
delete an operation that is realized by a message in a sequence diagram, the message becomes
unspecified (in both design and analysis modes).

If you delete an operation, class, or event, the corresponding message lines are not deleted
automatically from the diagram. To have Rational Rhapsody perform this cleanup
automatically, set the SequenceDiagram::General::CleanupRealized property to Checked.

The icon for the Operations category is black.

The icon for an individual operation is green.

The icon for a protected operation is overlaid with a key.

The icon for a private operation is overlaid with a padlock.
688 User Guide

Creating sequence diagram elements
Viewing sequence numbers
If wanted, you can display the sequence number with the message name. The following figure
shows a sequence diagram that includes the sequence number of each operation.

To display the sequence numbers, set the SequenceDiagram::General::ShowSequenceNumber
property to Checked. By default, this property is set to Cleared (sequence numbers are not
displayed).
Rational Rhapsody 689

Sequence diagrams
Creating a reply message

A reply message can realize an operation or event reception at the source (unlike other messages,
which realize operations at the target). By default, reply messages are drawn as unnamed, dashed
lines
690 User Guide

Creating sequence diagram elements
Animation of the return value for an operation

Note
This feature is not supported in Rational Rhapsody in J.

To show the return value of a function as a reply message in an animated sequence diagram, you
can use one of a number of predefined macros within the code of your function. This means that
the return value for your function visually displays as a reply message on your sequence diagram.
The same is true for a trace of a function.

The following figure shows an animated sequence diagram that draws a return value.

You can use any of the following macros depending on your situation:

� OM_RETURN. Use this macro in the body of an operation instead of the regular “return”
statement:

Examples:

– Int Test(int& x) {x = 5; OM_RETURN(10);}
– A* Test() {OM_RETURN(newA());}
Rational Rhapsody 691

Sequence diagrams
� CALL. Use this macro if you cannot change the operation code or if you want to animate
return values only on specific calls to the operation. Note that this macro can handle only
primitive types.

Example:

Int test(int n) {return n*5;}
void callingFunction()
{

int v;
CALL (v, f00(10));
// after the call v equals 50

}

� CALL_INST. Same as CALL, but use CALL_INST when the return value is of a complex type,
such as a class or a union.

Example:

A* test() {return new A();}
void callingFunction()
{

A *a;
CALL_INST(a, test());

// after the call a equals new A[0]
}

� CALL_SER. Use this macro when the type has a user-defined serialization function.
Examples:

– char* serializeMe(A*) {...}
– A* test() {return new A();}

void callingFunction()
{

A *a;
CALL_SER(a, test(), serializeME);}
// after the call v equals <string that serializeMe returns>

}

Note that even if you choose not to embed these macros in your application, you can still see
animated return values by explicitly calling an operation through the Operations window. To call
an operation, click the Call operations tool in the Animation toolbar.
692 User Guide

Creating sequence diagram elements
Drawing an arrow

An arrow marks when an instance is created. It can originate from the system border or another
instance. It is a horizontal, dotted line from the creator object to the new object. Every object can
have at most one create arrow. You can label the create arrow with construction parameters.

Creating a destroy arrow

A destroy arrow marks the destruction of an object. It is a dotted line from the destroying object to
the object being destroyed. The destroy arrow is red and is not labeled. It can be either a horizontal
line or a message-to-self.

Creating a condition mark

A condition mark (or state mark) is displayed on an instance line. A condition mark shows that the
object has reached a certain condition or is in a certain state. Often, the name corresponds to a state
name in the statechart for an object.

1. Select the condition mark using the Select arrow.

2. Click-and-drag a selection handle to resize the condition mark.

The condition mark remains centered over the instance line. If necessary, other elements on the
sequence diagram are adjusted to accommodate the new size.
Rational Rhapsody 693

Sequence diagrams
Creating a timeout

The notation for timeouts is similar to the notation for events sent by an object to itself. There are
two differences:

� A timeout starts with a small box.
� The name is a tm(x).

The label on a timeout arrow is a parameter specifying the length of the timeout. Timeouts are
always messages-to-self.

Creating a cancelled timeout

When designing a software system, you can establish waiting states, during which your program
waits for something to occur. If the event occurs, the timeout is canceled. The sequence diagram
shows this with a canceled timeout symbol. If it does not happen, the timeout wakes up the
instance and resumes with some sort of error recovery process. Canceled timeouts are always
messages-to-self.

For example, on a telephone, a dial tone waits for you to dial. The telephone has a timeout set so if
you do not dial, the dial tone changes to a repeating beep. If you do dial, the timeout is canceled.

A canceled timeout occurs automatically once the state on which the timeout is defined is exited.
As a designer, you do not need to do anything to cancel a timeout. The framework has a call to
cancel a timeout, but you do not need to use it because the code generator inserts it automatically.
694 User Guide

Creating sequence diagram elements
Creating an actor line

An actor line shows where actors affect the sequence diagram. To draw an actor line, drag-and-
drop an actor from the browser to the sequence diagram. An actor is represented as an instance line
with hatching.

When you want to realize a classifier, the list contains all the available classes and actors.

Specifying a time interval

A time interval is a vertical annotation that shows how much (real) time has passed between two
points in the scenario. The name is free text; it is not constrained to be a number or unit of any
kind. Time intervals can only be messages to self.
Rational Rhapsody 695

Sequence diagrams
Creating a dataflow

A dataflow in Rational Rhapsody indicates the flow of data between two instances on a sequence
diagram, as shown in the following figure. Rational Rhapsody animation uses this notation to
represent data flow between flow ports. For information on flow ports, see Flow ports.

Note
This feature is not supported in Rational Rhapsody in J.

The dataflow will be realized to the flow port on the receiving instance. The name of the dataflow
is the name of its realized flow port and the data that has been received. For example, for the
dataflow y = 1, flow port y has received the data 1.

Note that the dataflow arrow can be created through the following ways:

� Automatically during the animation of the sequence diagram
� Manually by drawing the dataflow on the sequence diagram (that is, click the DataFlow

button and then click the sender and receiver instances).
696 User Guide

Creating sequence diagram elements
You can double-click the dataflow arrow to open its Features window, as shown in the following
figure, from which you can, for example, choose which flow port to connect to and change the
value to send.
Rational Rhapsody 697

Sequence diagrams
Creating a partition line

Partition lines separate phases of a scenario. They are red lines drawn across the chart and are
usually used to keep parts of the scenario grouped together.

Each partition line includes a note positioned at its left end by default. You can move or resize the
note, but a note is always attached to its partition line. If you move the line, the note follows. Notes
contain the default text “note” until you enter text for them.

Creating an interaction occurrence

An interaction occurrence (or reference sequence diagram) enables you to refer to another
sequence diagram from within a sequence diagram. This functionality enables you to break down
complex scenarios into smaller scenarios that can be reused. Each scenario is an “interaction.”

To create an interaction occurrence:

1. Click the Interaction Occurrence button.

Alternatively, you can use the Add Interaction Occurrence option in the menu.
698 User Guide

Creating sequence diagram elements
2. Place the reference diagram on one or more instance lines to signify that those classes
interact with the referenced sequence diagram. The interaction occurrence displays as a
box with the “ref” label in the top corner, as shown in this example.

By default, when you first create the interaction occurrence (and have not yet
specified which diagram it refers to), Rational Rhapsody names it using the
convention interaction_n, where n is greater than or equal to 0.

3. Right-click the interaction occurrence and then select Features.

4. Use the Realization list to specify the sequence diagram being referenced. When you
select the referenced diagram, the name of the interaction occurrence is updated
automatically to reflect the name of the referenced SD.

5. Click OK.

You can move, rename, and delete reference sequence diagrams just like regular sequence
diagrams. However, if you delete a sequence diagram that references an interaction occurrence, the
interaction occurrence itself is not deleted, but becomes unassociated.

To change the default appearance of interaction occurrences, use the
SequenceDiagram::InteractionOccurrence properties. See the definition displayed in the
Properties tab for this property.

Navigating to a reference sequence diagram
To navigate to a reference sequence diagram from the current sequence diagram, right-click the
interaction occurrence and select Open Reference Sequence Diagram. The referenced SD is
displayed in the drawing area.

Interaction occurrence menu
� Create Reference Sequence Diagram enables you to specify the reference diagram for

the interaction occurrence, if you have not yet specified one
� Open Reference Sequence Diagram opens the sequence diagram referred to by the

interaction occurrence
� Display Options specifies whether labels are displayed
Rational Rhapsody 699

Sequence diagrams
Part decomposition
Instance line decomposition enables you to easily decompose a instance line on a sequence
diagram into a series of parts. For example, if you have a composite class view in one sequence
diagram and want to navigate to its parts, you can click the composite class and open a
collaboration, which shows how its internal parts communicate for a particular scenario.

Part decomposition is a specialization of an interaction occurrence.

To create a part decomposition:

1. Open the Features window for the instance line. The Classifier Role window opens.

2. Specify the reference sequence diagram using the Decomposed list.

3. Click OK.

In the sequence diagram, the name of the reference sequence diagram is added to the classifier role
label (after the word “ref”), as shown in this example.

As with other interaction occurrences, navigate to the reference SD by right-clicking the instance
line and selecting Open Reference Sequence Diagram.

Limitations
Note the following limitations for decomposition:

� UML gates are not supported: use instance lines instead.
� Animation is not supported.
700 User Guide

Creating sequence diagram elements
Creating interaction operators

Interaction operators, which are included in UML 2.0, are used to group related elements in a
sequence diagram. This includes the option of defining specific conditions under which each
group of elements will occur.

Characteristics of interaction operators
Each interaction operator has a type, which determines its behavior, for example Opt, Par, or Loop.

In addition, interaction operators can include a guard to specify specific conditions under which
the path will be taken.

Interaction operators can be nested where necessary.

Adding an interaction operator to a diagram
To add an interaction operator to a diagram:

1. Click the Interaction Operator button on the Diagram Tools.

2. Click the canvas for a default-size interaction operator, or click and drag to draw an
interaction operator of a specific size.

Setting the type of an interaction operator
To set the type of an interaction operator, you can do any of the following actions:

� With the interaction operator selected in the diagram, click the type text in the top left
corner and enter the appropriate type.

� With the interaction operator selected in the diagram, click the type text and then press
Ctrl+Space and select a type from the list that is displayed.

� Open the Features window for the interaction operator, and select a type from the Type
list.

Setting the guard of an interaction operator
To set the guard for an interaction operator, do one of the following actions:

� Click [condition] and enter the appropriate expression inside the brackets
� Open the Features window for the interaction operator, and type in the expression under

Constraints.

Note
Using Display Options from the context menu, the guards for an interaction operator can be
hidden or shown.
Rational Rhapsody 701

Sequence diagrams
Adding an interaction operand separator to an interaction operator
For certain types of interaction types, you might want to create two subgroups of elements, for
example, if you have two paths that are supposed to be carried out in parallel, or you want to
define two possible paths and a condition that determines which will be followed.

To create an interaction operand separator:

1. Select the Interaction Operand Separator button on the Diagram Tools.

2. Click inside the interaction operator where you would like the division to be.

If necessary, more than one separator can be added to a single interaction operator.

Note
Interaction operators (and interaction operand separators) only appear in the diagram itself.
They do not appear as independent model elements in the browser, nor do they influence
code generation. For this reason, when you display the context menu for an interaction
operator, there is an option to Delete From View but no option for removing from the
model.

Interaction operator types
These are some of the common types of interaction operators:

� Alt for (Alternative) multiple fragments; only the one whose condition is true will execute
� Opt for (Optional) fragment executes only if the specified condition is true
� Par for (Parallel) each of the contained fragments is run in parallel
� Loop for the fragment might execute multiple times; guard indicates the basis for iteration
702 User Guide

Creating sequence diagram elements
Creating execution occurrences

Execution occurrences show the beginning and end of the unit of behavior (the actions performed
by an operation or event) that is triggered by a specific message.

Note
To animate a sequence diagram automatically, set the
SequenceDiagram::General::AutoLaunchAnimation property to one of these options:

� Always launches the sequence diagram automatically.
� If In Scope launches animation only if the sequence diagram is in the active

component scope.
The Never option for this property prevents automatic animation and is the default.

There are two ways to draw interaction occurrences:

1. Select the message in the sequence diagram, right-click, and select Add Execution
Occurrences.

2. Click the Execution Occurrences button in the Diagram Tools, then select the appropriate
message in the sequence diagram.

You can have Rational Rhapsody create execution occurrences automatically when you create
messages by setting the property
SequenceDiagram::General::AutoCreateExecutionOccurrence to Checked. Execution
occurrences are drawn at the beginning and end of the message.

Note the following information:

� If you move a message, its execution occurrences move with it.
� You can resize execution occurrences (lengthwise), but cannot move them.
Rational Rhapsody 703

Sequence diagrams
� If you move a message with execution occurrences or resize them so they overlap other
execution occurrences, they are “merged,” as shown in this example.

Deleting execution occurrences
You can delete execution occurrences in two ways:

� Select the execution occurrence and then click Delete (or use the Delete from Model
option in the menu)

� Delete the start message (the message assigned to the execution occurrences). This
automatically deletes the execution occurrences “owned” by that message.
704 User Guide

Creating sequence diagram elements
Shifting diagram elements with the mouse

You can use the following mouse actions to shift all or some of the elements in a sequence
diagram.

To shift the entire diagram upward or downward:

1. Verify that an instance line is not currently selected.

2. Position the mouse in the area above the classifier role names.

3. Hold down the Shift key and drag the mouse up to shift the entire diagram upward, or drag
down to shift the entire diagram downward.

To shift groups of elements upward or downward.

1. Verify that an instance line is not currently selected.

2. Position the mouse above the highest element that you want to shift.

3. Hold down the Shift key and drag the mouse up to shift the element and all the elements
below it upward, or drag down to shift the element and all the elements below it
downward

To shift groups of instance lines to the left or right:

1. Select any of the instance lines in the diagram.

2. Position the mouse to the left of the instance lines that you want to shift.

3. Hold down the Shift key and drag the mouse to the right to move all the elements on the
right side of the mouse cursor to the right. Hold down the Shift key and drag the mouse to
the left to move all the elements on the right side of the mouse cursor to the left.

Note: If you place the mouse on an instance line and drag while the Shift key is held
down, Rational Rhapsody will shift the instance lines on the right of that
instance line but not that instance line itself. “On an instance line” includes the
entire width below the box that contains the name of the classifier role.
Rational Rhapsody 705

Sequence diagrams
Display options

Most of the elements that can be added to a sequence diagram have options that you can set to
affect how they are displayed in the diagram. While these options vary from element to element,
the following options are common to the System Border, Instance Line, Message, and Reply
Message elements:

� Select whether to display the name or the label of the element
� Show/hide any applied stereotypes

Sequence diagrams in the browser
The browser icon for sequence diagrams consists of two instance lines with messages passing
between them. If the diagram is a unit, the icon has a small gray file overlay.

To open the menu for a sequence diagram, right-click the name of the diagram. The menu contains
the following options:

� Open Sequence Diagram opens the selected sequence diagram in the drawing area.
� Features opens the Features window for the sequence diagram.
� Features in New Window opens the Features window for the sequence diagram in a

separate window.
� Add New enables you to add a new dependency (see Dependencies), annotation (see

Annotations for diagrams), hyperlink (see Hyperlinks), or tag (see Use tags to add element
information).

� References enables you to search for references to the diagram in the model (see Finding
element references).

� Unit enables you to either make the sequence diagram a unit that you can add to a CM
archive (Save) or modify an existing unit (Edit Unit).

� Configuration Management provides access to common CM operations for the sequence
diagram, including Add to archive, Check In, Check Out, Lock, and Unlock.

� Format changes the format used to draw the element (color, line style, and so on). For
more information, see Change the format of a single element.

� Delete from Model deletes the sequence diagram from the entire model.
706 User Guide

Animation for selected classes
Animation for selected classes
As part of the reverse engineering workflow, you might want to animate selected classes without
the defining configurations. To accomplish this, after reverse engineering create one or more
sequence diagrams, drag reverse engineered classes onto these diagrams, and select the ones to
animate. The resulting animation shows the communication between the selected classes.

Sequence diagram comparison
During the development process, sequence diagrams (SDs) are used for the following primary
purposes:

� In the early system requirements phase, they are used for use case description.
� In the implementation phase, they verify that all conditions are met in terms of

communication between classes.
� In the testing phase, they capture the actual system trace.

Therefore, there is a need to facilitate comparison between SDs because, in principle at least, they
should be identical. The execution message sequence should match the specification message
sequence. The Sequence Diagram Comparison tool enables you to perform comparisons, for
example between hypothetical and actual message sequences. You could also use this tool to
compare two runs for regression testing.

If all execution SDs are identical to their corresponding specification (nonanimated) SDs, the
system satisfies the requirements as captured in the use cases. However, if there are differences,
you need to determine whether the specification was inaccurate or an error exists in the
implementation. In both cases, you should correct the modeling error (either in the statechart or the
SD) and then repeat the testing cycle to determine whether you have fixed the problem.

Sequence comparison algorithm

When comparing sequences, the following message parameters are used to determine whether the
messages in the two SDs are identical:

� Departure time
� Arrival time
� Arguments

One simple approach involves comparing the exact position of every message and stopping at the
first difference. However, this is probably too naive a comparison. For example, if there is a time
offset in one SD, this kind of comparison would stop at the first message.
Rational Rhapsody 707

Sequence diagrams
A more useful approach, therefore, is to take all events (message departures and arrivals) in order,
and compare them without using the exact time. This kind of comparison, although simple, still
shows when two SDs are essentially identical.

Because some messages can be “noise,” the comparison algorithm should also be able to decide
whether a message is legitimate, and if not, mark it and continue with the comparison starting with
the next message.

The point in comparing two SDs is not to show when one sequence is identical to another, but
rather where and why they are different. Therefore, yes/no answers are not sufficient. Proper
results must detail precisely what is identical and what is different. This is the approach that
Rational Rhapsody takes when comparing message sequences.

Comparing sequence diagrams

Once you have saved two SDs illustrating the same scenario, for example, a specification and an
execution version or two subsequent runs to test for regression, you are ready to start the sequence
comparison.

To start the comparison:

1. Select Tools > Sequence Diagram Compare. The Sequence Diagrams Comparison
window opens, as shown in the following figure.

2. Using the SD1 and SD2 list controls, select two sequence diagrams to compare.

3. Set options for the sequence comparison as wanted. See Sequence comparison options.

4. When all options are set and you are ready to start the comparison, click OK.
708 User Guide

Sequence diagram comparison
The result of the comparison displays as a dual-pane window with the diagram selected for SD1 on
the left, and the diagram selected for SD2 on the right. Both panes are read-only. The following
figure shows sample results.

The messages displayed in both panes are color-coded based on the comparison results. The
following table lists the color conventions used in the comparison.

Arrow Color Name Color Description

Green Blue Message matches in both SDs

Pink Pink Message is missing in the other SD

Green Pink Message has different arguments in the other SD

Orange Orange Message arrives at a different time in the other SD

Gray Gray Message was excluded from comparison
Rational Rhapsody 709

Sequence diagrams
Sequence comparison options

Specification Sequence Diagrams show only one specific thread from the mind of the designer.
Therefore, certain instances and messages will be missing. On the other hand, execution
(animated) Sequence Diagrams reflect the full collaboration between objects. This is why the
simple comparison between specification and execution Sequence Diagrams always fails. Rational
Rhapsody provides various options that enable you to compensate for some of the necessary
differences between the two kinds of diagrams when doing a sequence comparison.

Select Options in the Sequence Diagrams Comparison window to open the Sequence Diagram
Comparison options window. This window contains the following tabs:

� The General tab for the sequence comparison

� The Message Selection tab

� The Instance Groups tab

� The Message Groups tab

The following sections describe how to use these tabs in detail.

The General tab for the sequence comparison
The General tab allows you to specify whether to use synchronization and to save or upload your
option settings. The tab contains the following fields:

� Synchronization specifies whether to ignore the arrival times of messages. For more
information, see Ignoring message arrival times.

� Save saves your option settings to a file that you can reuse. For more information, see
Saving and loading options settings.

� Load loads your option file. For more information, see Saving and loading options
settings.

Ignoring message arrival times

Sometimes the order of arriving messages is insignificant. The Synchronization option enables
you to ignore the arrival times of messages and consider only the order in which they are sent.

In the resulting comparison display, equivalent messages are vertically synchronized in the
adjacent window panes. This helps you to locate corresponding messages in both diagrams.

To enable or disable the synchronization option, select or clear the Synchronization box in the
General tab.
710 User Guide

Sequence diagram comparison
Saving and loading options settings

You can save your options settings to a file and then reload them for subsequent message
comparisons.

To save the settings:

1. Click the Save button on the General tab.

2. The Save As window opens. The default name for the options file is composed of the first
words of the titles of each of the diagrams being compared separated by an underscore:

<SD2>_<SD1>.sdo

The file extension .sdo stands for Sequence Diagram Options. If wanted, edit the
path and default name for the options file.

3. Click OK.

To reload your option settings:

1. In the General tab, click Load. The Open window is displayed.

2. Select the .sdo file that contains your option settings.

3. Click Open.

The sequence comparison options are restored to the settings last saved in the file.
Rational Rhapsody 711

Sequence diagrams
The Message Selection tab
The Message Selection tab, shown in the following figure, enables you to select which messages
to include and whether to include arguments in the comparison.

On this Message Selection tab, the word “Ignore” is the default setting for the Arguments column
for all messages. This means that, by default, argument comparison is ignored for messages.

Using this tab, you can:

� Exclude a message from the comparison (see Excluding a message in the comparison)
� Compare arguments (see Comparing arguments)
712 User Guide

Sequence diagram comparison
Excluding a message in the comparison
Specification SDs typically include information that is essential to a particular use case or
scenario. In many cases, they exclude the initialization phase messages, whereas execution SDs
include all messages. Therefore, it might be necessary ignore certain messages when doing a
comparison, such as constructors. Ignored messages are inaccessible in the resulting comparison
window.

To exclude a message from the comparison:

1. Select the message to exclude.

2. Click Edit. The Edit Message Compare Options window opens.

3. Click the Ignore box to exclude the message from the comparison.

4. The three radio buttons, allow you to specify the way to treat Arguments associated with
the selected message.

5. Click OK.

Comparing arguments
There are two options for determining whether messages are identical: the first is to compare the
message names and all arguments, the second is to compare only the message names. The latter
option is more useful because SDs show four different kinds of arguments:

� Unspecified arguments
� Actual values
� Formal names
� Both names and values

In specification SDs, you might not always provide complete information about message
arguments. Because execution SDs record what the system actually does, they always show both
Rational Rhapsody 713

Sequence diagrams
argument values and names. Therefore, the message comparison ideally should not use arguments
but rather focus primarily on message names.

When two messages are named identically, you can compare their arguments.

For example, consider messages called evDigitDialed(Digit). They would be equivalent if you
compared only their argument names (Digit). However, if you compared their values
(EvDigitDialed(Digit=0), EvDigitDialed(Digit=1), and so on), their argument values would
not be equivalent.

Argument comparison occurs in the following steps:

1. Find each argument.

2. Find the argument name and value.

3. Determine whether to use the name, the value, or both for the comparison.

To specify whether to use argument names or values:

1. In the Message Selection tab, select a message and click Edit. The Edit Message
Compare Options window opens.

2. Select one of the following options:

� Compare Names Only compares argument names, but ignore their values.
� Compare Names and Values compares both argument names and values.

These are commonly used settings:

3. Click OK.

Depending on your selections, the following labels are displayed in the Arguments
column on the Message Selection tab:

� Disable means messages for which arguments should be ignored
� Name means messages for which argument names should be compared, but not

the argument values
� Value means messages for which both argument names and values should be

compared

Specification SD Execution SD Value

Message() Message(Arg = 1) Ignore Arguments

Message(Arg) Message(Arg = 1) Compare Names Only

Message(1) Message(Arg = 1) Compare Names and Values
714 User Guide

Sequence diagram comparison
The Instance Groups tab

In specification SDs, all messages sent by the environment come from specific objects. In
execution SDs, however, these messages could potentially come from you interacting with the
animation. This difference can impair the comparison.

In general, requiring a complete object match between execution and specification SDs is too
rigorous a requirement. The solution is to associate objects in one SD with other objects in the
other SD. Messages can then match if their source and target objects are associated in both SDs.

To associate objects with each other you create object groups. Object groups are, in essence,
instance abstractions that bridge the gap between high-level use cases and actual implementation,
or between black-box and white-box scenarios. Using object groups, you can then compare objects
that do not have the same name, or compare one object to several other objects.
Rational Rhapsody 715

Sequence diagrams
To view object groups, select the Instance Groups tab in the Sequence Diagram Comparison
options window. The Instance Groups tab, shown in the following figure, displays a list of the
existing object groups in the model. There is one object group for each object, which is, by default,
the only member of its own group.

.

The objects that belong to the group are displayed in the Objects groups list at the bottom of the
window. This means that the objects listed for SD1 are considered logically the same as those
listed for SD2.

The Instance Groups tab enables you to perform the following operations:

� Add creates a new object group (see Creating object groups)
� Delete deletes an object group (see Deleting object groups)
� Edit modifies an existing object group (see Modifying object groups)
� Set to Default resets an object group (see Resetting object groups)
� Delete All deletes all object groups (see Deleting object groups)
716 User Guide

Sequence diagram comparison
Creating object groups
To create a new instance group:

1. On the Instance Groups tab, click Add. The Edit Object Group window opens. The
default name for new object groups is ClassBuffn, where n is an integer starting with 1.

2. If wanted, edit the name of the new object group.

3. To add objects to the group, move one or more unused objects from either of the boxes on
the right to the corresponding box on the left.

4. Click OK.

Deleting object groups
To delete an existing object group:

1. On the Instance Groups tab, select the object group you want to delete.

2. Click Delete.

3. Click OK.

Any objects that belonged to the deleted group are now unused and available to be assigned to
another object group.

To delete all instance groups:

1. On the Instance Groups tab, click Delete All.

2. Click OK.

All objects are now unused and available to be assigned to a new object group.
Rational Rhapsody 717

Sequence diagrams
Modifying object groups
If you want to associate different objects than the ones shown, either move one or more of the
objects to a different object group or create a new group. In either case, you first need to remove
the object you are moving from the group it is currently in, because an object can only belong to
one group at a time.

To remove an object from a group:

1. On the Instance Groups tab, select an object group.

2. Click Edit. The Edit Object group window opens.

The name of the selected object group is displayed at the top of the window. The
name box is unavailable because you cannot edit it here.

The Edit Object Group window contains four boxes. The two on the left show which
objects in SD1 will be associated with which objects in SD2. The two boxes on the
right show which objects in each diagram are currently not assigned to any group,
and are therefore available to be assigned to a group.

3. Select an object in one of the boxes on the left and click the right arrows button.
718 User Guide

Sequence diagram comparison
To add an object to the group:

1. Select an object in one of the boxes on the right, and move it with the left arrows button.

2. Click OK. The selected object in one diagram is now available to be added to another
group.

3. On the Instance Groups tab, select the new group for the object and click Edit.

4. Select the object in the Unused Objects in SD<number> box in the lower, right corner
and click the left arrows key to add it to the group.

5. Select the object in the To Objects in SD<number> box in the lower, right corner and
click the right arrows button to remove it from the group.

6. Click OK.

Resetting object groups
To set all object groups back to the default of one group per object, click Set to Default on the
Instance Groups tab. An object group is added for each object with the same object in SD1 and
SD2 belonging to the group.
Rational Rhapsody 719

Sequence diagrams
The Message Groups tab

In specification SDs, you often must assume how the message queue works to determine the
sequence of messages. It is highly likely that in specification SDs the order of messages will be
different than the actual one specified in the statechart. An incorrect ordering assumption can
result in large mismatch.

To avoid this problem, the comparison must be able to ignore the timing of messages. For
example, a message M1 sent by an instance A1 after a message M2 sent by an instance A2 could
match the same message sent before M2:

There can also be cases where two or more messages should be sent at the same time, but the order
is not important. Message groups enable you to specify groups of messages for which ordering is
not important. There is a match if any message in the group occurs in any order.

A1 A2 A3 A1 A2 A3

=
M1

M2

M2

M1
720 User Guide

Sequence diagram comparison
The Message Groups tab, shown in the following example, enables you to create, modify, and
delete message groups.
Rational Rhapsody 721

Sequence diagrams
Creating message groups
To create a message group:

1. On the Message Groups tab, click Add. The Edit Message Group window opens.

The default name for new message groups is MessageBuffn, where n is an integer
starting with 0.

2. If wanted, edit the name of the new message group.

The Edit Message Group window contains two list boxes: the left one shows the messages
that currently belong to message group, whereas the right one shows all messages in the
two SDs being compared. Messages can belong to more than one message group.

Adding a message to a message group

To add a message to the message group:

1. On the Message Groups tab, click Add.

2. Select a message from the All Messages list and click the left arrows button to move it to
the Messages in group list. For multiple selections, use Shift+Click or Ctrl+Click.

3. Click OK.
722 User Guide

Sequence diagram comparison
Removing a message from a message group

To remove a message from the message group:

1. On the Message Groups tab, click Add.

2. Select a message from the Messages in group list and click the right arrows button to
move it to the All Messages list. For multiple selections, use Shift+Click or Ctrl+Click.

3. Click OK.

Determining the message group members

To see which messages belong to a message group:

1. On the Message Groups tab, select a message group from the list.

The messages that belong to that group are listed at the bottom of the window, as shown in
this example.

2. Click OK.
Rational Rhapsody 723

Sequence diagrams
Modifying message groups
To modify an existing message group:

1. On the Message Groups tab, select a message group from the list and click Edit. The Edit
Message Group window opens.

2. Select a message in the Messages in group list and click the right arrows button to remove
it from the group.

Select a message in the All Messages list and click the left arrows button to add it to the
group.

3. Click OK.

Deleting message groups
To delete an existing message group:

1. In the Sequence Diagram Comparison options window, select the message group to delete.

2. Click Delete.

3. Answer OK to the confirmation prompt.
724 User Guide

Statecharts
Statecharts define the behavior of objects by specifying how they react to events or operations.
The reaction can be to perform a transition between states and possibly to execute some actions.
When running in animation mode, Rational Rhapsody highlights the transitions between states.

Statecharts define the run-time behavior of instances of a class. A state in a statechart is an
abstraction of the mode in which the object finds itself. A message triggers a transition from one
state to another. A message can be either an event or a triggered operation. An object can receive
both kinds of messages when sent from other objects. An object can always receive events it sends
to itself (self-messages). In Rational Rhapsody, statecharts are part of the object-oriented
paradigm. The more complicated classes can have statecharts; simpler classes do not require them.

You can use operations and attributes in classes with statecharts to define guards and actions, as in
the following example.
Rational Rhapsody 725

Statecharts
States
A state is a graphical representation of the status of an object. It typically reflects a certain set of its
internal data (attributes) and relations. In statecharts, states can be broken down hierarchically as
follows:

� Basic (leaf) state is a state that does not have any substates.
� Or state is a state that can be broken down into exclusive substates. This means that the

object is exclusively in one or the other of its substates.

In the following example, there are possible two states: On and Off.

� And state An object is in each of its substates concurrently. Each of the concurrent
substates is called an orthogonal component. You can convert an Or state to an And state
by dividing it with an And line. For more information, see And lines.

You set the statechart implementation in the Settings tab of the Configuration window in the
browser.
726 User Guide

Opening an existing statechart
Opening an existing statechart
To open an existing statechart in the drawing area:

1. Click the appropriate button in the Diagrams toolbar to the Open Statechart window
opens for you to select the diagram.

2. For statecharts, select the class that the diagram describes from the list of available
diagrams. For all other diagrams, select the diagram you want to open.

3. Click OK. The diagram opens in the drawing area.

As with other Rational Rhapsody elements, use the Features window for the diagram to edit its
features, including the name, stereotype, and description. For more information, see The Features
window.

Statechart drawing tools
The Diagram Tools for a statechart includes the following tools:

Drawing
Tool Name Description

State Indicates the current condition of an object, such as On or Off. For more information,
see States.

Transition Represents a message or event that cause an object to transition from one state to
another. For more information, see Transitions.

Initial connector Shows the default state of an object when first instantiated. For more information,
see Initial connectors.

Add line Separates the orthogonal components of an And state. There can be two or more
orthogonal components in a given And state and each behaves independently of the
others. For more information, see And lines.

Decision Node Shows the branches on transitions, based on Boolean conditions called guards. For
more information, see Decision nodes.

History
connector

Stores the most recent active configuration of a state. An transition to a history
connector restores this configuration. For more information, see History
connectors.

Termination
connector

Ends the life of the object. For more information, see Termination connectors.

Merge Node Joins multiple transitions into a single, outgoing transition. For more information, see
Merge nodes.
Rational Rhapsody 727

Statecharts
The following sections describe how to use these tools to draw the parts of a statechart. For basic
information on diagrams, including how to create, open, and delete them, see Graphic editors.

Drawing a state
To draw a state:

1. Click the State button in the Diagram Tools.

2. Click-and-drag or click in the drawing area to create a state with a default name of
state_n, where n is an incremental integer starting with 0.

3. If wanted, change the state name, then press Enter.

States include a standard name compartment.

State name guidelines

When naming states, follow these guidelines:

� Must be identifiers.

Diagram
connector

Joins physically distant transition segments. Matching names on the source and
target diagram connectors define the jump from one segment to the next. For more
information, see Diagram connectors.

EnterExit point Represents the entry to / exit from sub-statecharts. For more information, see
EnterExit points.

Join node Merges multiple incoming transitions into a single outgoing transition. For more
information, see Activity diagrams.

Fork Node Separates a single incoming transition into multiple outgoing transitions. For more
information, see Activity diagrams.

Transition Label Add or modify a text describing an transition.

Termination
State

Signifies either local or global termination, depending on where they are placed in
the diagram.

Dependency Indicates a dependent relationship between two items in the diagram. For more
information, see Activity diagrams.

Send Action Represents the sending of events to external entities. For more information, see
Send action elements.

Drawing
Tool Name Description
728 User Guide

Drawing a state
� Do not include spaces, “My House” is not valid. Use “MyHouse.”
� Must be unique among sibling states.
� Should not be the same as the names of any events or classes in the model.

Features of states

The Features window allows you to add and change the features for a state. A state has the
following General tab features:

� Name specifies the name of the state.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the state, if any. They are enclosed in guillemets, for

example «s1» and enable you to tag classes for documentation purposes. For information
on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

Action on entry
The Action on Entry specifies the action that should be executed whenever the system enters this
state, regardless of how the system arrived here.

If the action on entry value is overridden, the Overridden check box is checked. The Overridden
check box is available in the Features windows for textual information in statecharts (state entry
and exit actions, and guards and actions for transitions and static reactions). By enabling or
disabling this check box, you can easily override and unoverride statechart inheritance without
actually changing the model. As you toggle the check box on and off, you can view the inherited
information in each of the window fields, and can decide whether to apply the information or
revert back to the currently overridden information. For more information, see Overriding textual
information.

Action on exit
The Action on Exit specifies the action that should be executed whenever the system exits this
state, regardless of how the system exits.

If the action on entry value is overridden, the Overridden check box is checked.
Rational Rhapsody 729

Statecharts
Reactions in state
The Reaction in State specifies the trigger, guard, and actions identified in an transition label. If the
trigger occurs and the guard is true, the action is executed. For more information, see Adding or
modifying activity flow labels. Use the appropriate window button:

� New creates a new reaction in state. If you select this option, the Reaction Features
window opens so you can specify the Trigger, Guard, and Action for the new reaction.

� Edit modifies an existing reaction.
� Delete deletes a reaction.

Note: If you specify action on entry or exit behavior for a state, this icon is added to
the state display.
730 User Guide

Drawing a state
Display options for states

Using the Display Options option in the menu, you can specify whether:

� States are displayed with a name or label.
� Stereotypes are displayed with a name, label, or icon.
� The exit and entry actions are displayed.

The display for the quickMode state includes its entry and exit actions.
Rational Rhapsody 731

Statecharts
Termination states
A termination state provides local termination semantics. Local termination implies the
completion of a composite state without the destruction of the context instance.

There are two different modes for local termination:

� Statechart mode where local termination applies only to composite states with final
activities inside them.

� Activity diagram mode where local termination applies to every block and composite
state, even those that do not have internal final activities. (This is the UML statechart/
activity diagram-supported mode.)

The CG::Statechart::LocalTerminationSemantics property specifies whether activity
diagram mode of local termination is available. The default value of Cleared means that the
activity diagram mode of local termination is unavailable (statechart mode is active).

Local termination code with the reusable statechart implementation

The following sections describe how code is generated to support local termination when you use
the reusable statechart implementation.

Or states in reusable statechart
Code is generated for local termination of Or states with the reusable statechart implementation as
follows:

� For each final activity, a Concept class data member of type FinalState is generated. A
new class is not created as for other state types.

� The following local termination guard is added to each outgoing null transition from an Or
state that needs local termination semantics:

&& IS_COMPLETED(state)

� If an Or state has several final activities, an outgoing null transition is activated when any
one of them is reached. However, the specific connector is instrumented.

� The isCompleted() function is overridden for an Or state that has a final activity,
returning True when the final activity is reached. The function is also overridden for an
Or state without a final activity in activity diagram mode, always returning False.

� An instance of a FinalState is created by a line similar to the following example:
FinalA = new FinalState(this, OrState, rootState,

“ROOT.OrState.FinalA”);
732 User Guide

Termination states
And states in reusable statechart
Code is generated for local termination of And states with the reusable statechart implementation
as follows:

� The following local termination guard is added to each outgoing null transition from an
And state if one of the components has a final activity:

&& IS_COMPLETED(AndState)

In this case, the isCompleted() function of the AndState framework class is called.

� The following local termination guard is added to a join transition for each Or state that is
a source of the transition:

&& IS_COMPLETED(state)

� If a source state of a join transition is a simple state (leaf state), its guard is as follows:
(IS_IN(state))

The following example shows the code generated for a join transition with a real guard and local
termination guards, where C1 and C2 are Or states with final activities and C3 is a leaf state:

if(RealGuard() && IS_COMPLETED(C1) && IS_COMPLETED(C2) && IS_IN(C3))

Local termination code with flat statechart implementation

The following sections describe how code is generated to support local termination when the flat
statechart implementation is used.

Or states in flat statechart
Code is generated for local termination of Or states with the flat statechart implementation as
follows:

� For each final activity, the new state enumeration value is generated (as for a regular
state).

� For each Or state with a final activity, a <StateName>_isCompleted() operation is
generated. This operation returns an OMBoolean value of True when the state is
completed. If the CG::Class::IsCompletedForAllStates property is Checked, the
operation is generated for all states.

The following example shows the code generated for a <StateName>_isCompleted()
operation where FinalA and FinalB are final activities in the Or state:

inline OMBoolean
class_0::OrState_isCompleted() {

return (FinalA_IN() || FinalB_IN());
}

� The following local termination guard is added to each outgoing null transition from an Or
state that needs local termination semantics:
Rational Rhapsody 733

Statecharts
&& IS_COMPLETED(state)

� Instrumentation information for FinalState is generated in the transition code (as for
normal states).

And states in flat statechart
Code is generated for local termination of And states with the flat statechart implementation as
follows:

� The following local termination guard is added to each outgoing null transition from an
And state if one of the components has a final activity.

&& IS_COMPLETED(AndState)

In this case, the isCompleted() function of the AndState framework class is called:

� The isCompleted() operation of AndState calls the IS_COMPLETED() macro for all
components that have a final activity. This operation returns TRUE only when all
components are completed. If an And state does not have components with a final
activity, the operation returns TRUE in statechart mode and FALSE in activity diagram
mode.

The following example shows the <StateName>_isCompleted() function generated for
an And state named AndState, with two components, Component1 and Component2, each
of which has a final activity:

OMBoolean class_0::AndState_isCompleted()
{

if(IS_COMPLETED(Component1) == FALSE)
return FALSE;

if(IS_COMPLETED(Component2) == FALSE)
return FALSE;

return TRUE;
}

� Implementation of join transitions with the flat statechart implementation is the same as
for the reusable statechart implementation (see And states in reusable statechart).
734 User Guide

Transitions
Transitions
A basic transition is composed of a single arrow between a source and a destination. Transitions
represent the response to a message in a given state. They show what the next state will be, given a
certain trigger. A transition can have a trigger, guard, and actions.

The transition context is the scope in which the message data (parameters) are visible. Any guard
and action inherit the context of an transition determining the parameters that can be referenced
within it.

The source of an transition can be one of the following items:

� State
� Initial connector
� History connector

The destination of an transition can be one of the following items:

� State
� Final activity
� History connector

Creating a statechart transition

To draw a statechart transition:

1. Click the Transition button in Diagram Tools.

2. Click the bottom edge of the state to anchor the start of the transition.

3. Move the cursor to the top edge of the state and click to anchor the transition line.

4. In the label box, type the name of the event. Press Ctrl+Enter to terminate.

Note
Pressing Enter in an transition name, without simultaneously pressing Ctrl, simply adds a
new line.
Rational Rhapsody 735

Statecharts
Features of transitions

Use the Features window to add and change the features for a transition, as shown in this example.

An transition has the following General tab features:

� Name specifies the name of the transition.
� L specifies the label for the element, if any. For information on creating labels, see

Descriptive labels for elements.
� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,

for example «s1» and enable you to tag classes for documentation purposes. For
information on creating stereotypes, see Stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Target specifies the target of the transition. This field is read-only.
� Trigger specifies the trigger for the transition. See Triggers.
736 User Guide

Transitions
� Guard specifies the guard for an transition.

The Overridden check box is available in the Features windows for textual information
in statecharts (state entry and exit actions, and guards and actions for transitions and static
reactions). By enabling or disabling this check box, you can easily override and
unoverride statechart inheritance without actually changing the model. As you toggle the
check box on and off, you can view the inherited information in each of the window
fields, and can decide whether to apply the information or revert back to the currently
overridden information. For more information, see Overriding textual information.

� Action specifies the transition action.
Rational Rhapsody 737

Statecharts
Types of transitions

You can create the following types of transitions:

� Compound transitions
� Forks
� Joins

Compound flows
A compound flow is composed of several transition segments connected by intermediate nodes. A
transition segment is a subpart of a transition between any source, destination, or intermediate
nodes.

The intermediate nodes can be any of the following items:

� Forks
� Joins
� Merge nodes
� Decision nodes
� Diagram connectors

In semantic terms, forks and joins can both be nodes.
738 User Guide

Transitions
Forks
A fork is a compound transition that connects a transition to more than one orthogonal destination.
The destination of a fork segment can be a state, final activity, or connector. However, it cannot
have a label, as shown in the this example.

Joins
A join is a compound transition that merges segments originating from states, final activities, or
connectors in different orthogonal components. Rational Rhapsody automatically generates a join
when you combine source segments. The segments entering a join connector should not have
labels, as shown in the following figure.

Note
If the model contains joins from more than two concurrent states, this generates an error. This is a
Rational Rhapsody limitation in that the error is a violation of MISRA rule 33.
Rational Rhapsody 739

Statecharts
Selecting a trigger transition

For a list of transitions defined in the diagram, right-click a transition line in the diagram and select
Select Trigger. The pop-up menu that displays lets you select one of the available triggers,
including inherited triggers, that have already been defined for the class.

Notice that if there are more triggers that can appear on the pop-up menu, a Browse command
displays. Click Browse to open the Select Trigger window that shows you all the triggers that are
available.

See also Selecting a message or trigger.
740 User Guide

Transition labels
Transition labels
Transition labels can contain the following parts:

� Triggers
� Guards
� Actions

The syntax for transitions is as follows:

trigger [guard] /action

The following example shows a transition label consisting of a timeout trigger (see Timeouts), a
guard, and an action:

tm(500)[isOk()]/printf("a 0.5 second timeout occurred\n")

In this example, the trigger is the timeout tm(500) and the guard is [isOk()]. The action to be
performed if the trigger occurs and the guard is true is printf("a 0.5 second timeout
occurred\n").

All three parts of the transition are optional. For example, you can have a transition with only a
trigger and an action, or only a guard. The following example shows a transition label consisting of
only a trigger and an action:

clockw /itsEngine->GEN(start)

When typing a multiline transition label (for example, one that has several actions separated by
semicolons), you can press Ctrl+Enter to advance the cursor to the next line and continue the
label.

Triggers

Every transition is associated with a designated message, which is the trigger of the transition. In
other words, the trigger of the transition is waiting for its event. A transition cannot be associated
with more than one message. Triggers can be events, triggered operations, or timeouts.

Events are asynchronous; time can pass between the sending of the event and when it actually
affects the statechart of the destination. Triggered operations are synchronous; their effect on the
statechart of the destination is immediate.

This not a valid transition label:

e1 or e2

The trigger part of a transition label cannot use conditional expressions; however, guards can.
Rational Rhapsody 741

Statecharts
Events
Events originate in the analysis process as “happenings” within the system to which objects
respond. Their concrete realizations are information entities carrying data about the occurrence
they describe.

For designers, an event is a one-way, asynchronous communication between objects or between
some external interface and the system (see Events and operations).

The following figure shows an event.

You can specify an event using the following methods:

� An event name
� The name of a triggered operation
� tm(time expression)

For timeout events, the time expression must be an integer
expression, in milliseconds.

Event usage

Classes and their statecharts can receive events defined in any package in the model. Cross-
package inheritance of statecharts for reactive classes is not allowed.

Event class hierarchy

An event is an instance of a particular event-class. Events can be subclassed to add attributes
(event parameters). The base class for all events is OMEvent.

For example, windowing systems define several event classes: MouseEvent is a subclass of
InputEvent, and MouseClickEvent and MouseMotionEvent are subclasses of MouseEvent.

To make an event a subclass of another event:

1. Open the Features window for the event.

2. From the Inherits: list, select the event that is to serve as the base class.

3. Click Apply or OK.
742 User Guide

Transition labels
Generating events

You generate an event by applying a gen method on the destination object, as follows:

client->gen(new event(p1,p2,...,pn))

The generate method queues the event on the proper event queue.

The framework provides a GEN macro, which saves you from having to use the new operator to
generate an event. For example:

client->GEN(event(p1, p2, pN))

Event semantics

An event is created when it is sent by one object to another, then queued on the queue of the target
object thread (thread partitioning is not covered in this guide). An event that gets to the head of the
queue is dispatched to the target object. Once dispatched to an object, it is processed by the object
according to the semantics of event propagation in statecharts and the run-to-completion
semantics. After the event is processed, it no longer exists and the execution framework implicitly
deletes it.

Internal events

An internal event occurs when an object sends a message to itself. To create an internal event, omit
the destination object from the send operation, as follows:

GEN(warmEngine(95))

Private events

You can control which classes can generate events to which classes using friendship. In this way,
you can ensure that events come from trusted classes only. The event request and queueing
function is controlled by the gen() methods, which are public by default in the framework base
class OMReactive. If you want to control the generation of events using friendship, make the first
gen() method in Share\oxf\OMReactive.h protected. This is a one-time effort. Do not change
the second gen() method, which is used for instrumentation.

Inside each application class, grant friendship to the classes that need to generate events for it. If
you do not grant friendship, your program will no longer compile.
Rational Rhapsody 743

Statecharts
Adding operations to an event

Rational Rhapsody allows you can add operations to events you have defined. This allows you to
add additional behavior to your events.

To add an operation to an event, right-click the event in the browser and select Add New >
Operation.

The new operation displays below the event in the browser, and when code is generated, the
operation displays in the class that represents the event.

Note
Roundtripping does not bring into the model any new operations that you have added to
event classes in your code, nor does it bring into the model changes that were made directly
to the body of operations that were previously created for events.

Events as attribute types

Events can be used as types for attributes.
744 User Guide

Transition labels
Triggered operations
Triggered operations are services provided by a class to serve other classes. They provide
synchronous communication between a client and a server object. Because its activation is
synchronous, a triggered operation can return a value to the client object.

Unlike events, operations are not independent entities; they are part of a class definition. This
means that operations are not organized in hierarchies.

The usage of operations corresponds to invocation of class methods in C++. There are three
reasons why operations have been integrated with the statechart framework:

� They allow use of statecharts in architectures that are not event-driven to specify
behaviors of objects in the programming sense of operations and object state.

� They provide for late design decisions to optimize execution time and sequencing by
converting event communication into direct operation invocations.

� They allow the description of behaviors of (primitive) “passive” classes using statecharts.

Applying a triggered operation

A triggered operation is started in the same way as a primitive operation:

server->operation(p1, p2, ..., pn)

Or:

result = server->operation(p1, p2, ..., pn)

Operation replies

Operations can return a value. The return value for an operation m must be determined within the
transition whose context is the message m, using the reply operation:

m/reply(7);

Note
A triggered operation might not result in another triggered operation on the same instance.

Making sure a triggered operation is called

There might be a problem with the reply from triggered operations if the receiver object is not in a
state in which it is able to react to a triggered operation. If a triggered operation is called when not
expected, incorrect return values might result.

Rather than use the IS_IN macro to determine what state the receiver is in, you can design your
statechart so the triggered operation is never ignored. To do this, create a superstate encompassing
the substates in the object, and in the superstate create a static reaction with a trigger to return the
Rational Rhapsody 745

Statecharts
proper value. For example, to make sure that a sensor is always read regardless of what state an
object is in, create a static reaction in the superstate with the following transition:

opRead/reply(getStatus())

This way, no matter what substate the object is in, it will always return the proper value. Although
both the trigger to the superstate and that to a substate are active when in a substate, the trigger on
the transition to the superstate is taken because it is higher priority. See Transition selection.

Timeouts
Timeout triggers have the syntax tm(<expression>), where <expression> is the number of time
units. The default time unit is milliseconds. The time units are set based on the operating system
adapter implementation of the tick timer. A timeout is scheduled when the origin state (s1) is
entered. If the origin state has exited before the timeout was consumed, the timeout is canceled.

You can use the timeouts mechanism (tm()) when the quality of service (QOS) accuracy
requirement conforms with the following timeout accuracy. When a timeout occurs, it is inserted
to the event queue related to the reactive instance. The time on which the timeout is consumed
depends on the actual system state. The timeout occurrence depends on three factors:

1. The timeout request time (T)

2. The tick-timer resolution (R)

The resolution specifies how often the system checks if there are expired timeouts.

3. Timeout latency (L)

The tick timer implementation for some operating system adapters is synchronous
(using a call to sleep(interval)). This means that there is a built-in latency (the
time spent processing the expired timeouts). This latency can be significant when the
timeout is very long (involving many timer ticks).

The following formula determines when a timeout will expire:

[(T+L)-R,(T+L)+R]
746 User Guide

Transition labels
Note: If you use triggered operations and events (including timeouts) in the same
statechart and the triggered operation can be called from an object running in a
thread other than the event consumption thread, it might lead to a race
situation. To prevent the race, make the triggered operations guarded (which
will also prevent the race with timeouts).

Null transitions
In some cases, it is useful to use a transition to leave a state without using a trigger. These are
examples of such cases:

� When a state tries to allocate a resource that might not be available
� When you want to branch according to some entry action
� When you have a join transition

You can accomplish this with a null transition. A null transition is any transition without a trigger
(event or timeout). Null transitions can have guards (for example, [x == 5]). The run-to-
completion semantics of the Rational Rhapsody framework checks for an infinite (run-time) loop
of null transitions, which might otherwise be difficult to detect.

You can modify the maxNullSteps number and recompile the framework if you need to change
the number.

Guards

A guard is a conditional expression that is evaluated based on object attributes and event data.
Rational Rhapsody does not interpret guards. They are host-language expressions, or simply code
chunks, that must resolve to either a Boolean or an integer value that can be tested. Otherwise, the
statechart code generated for guards will not compile.

The following example shows a transition label that consists of a guard and an action that uses the
GEN macro to generate an event:

[x > 7]/controller->GEN(A7Failures)

A transition can consist of only a guard. The low-to-high transition of the condition (or Boolean
value) is considered to be the triggering event. For example, the following guard is a valid
transition label:

[x > 7]
Rational Rhapsody 747

Statecharts
During animation, all guards without triggers are tested every time an event happens. The
following statechart uses several guards without transitions.

This statechart is for the keypad of a home alarm system. When the keypad of the alarm system is
in the idle state, you can enter a code to arm the alarm before leaving the house. After entering the
code, you press the On button to turn the alarm on. Pressing the On button issues an evKeyOn
event. Each time this event occurs, the state machine evaluates the two guards that come after the
decision node, [IS_IN(correct)] or [IS_IN(notEntered)], and follows the path of the one that
evaluates to true.

By using an animated sequence diagram, you can see when a guard is tested. If you want to test a
condition more frequently or at a more regular interval than whenever an event occurs, you can
create a polling mechanism. To do this, create a short timeout transition from the state to itself so
the guard is evaluated on at least these occasions. Alternatively, you can poll using another object
and replace the guard in the current statechart with an event signaled from the polling object.

Note
Using guards that cause side-effects is not typical, because it might cause problems in the
application.
748 User Guide

Transition labels
Actions

An action expression is a sequence of statements. Like guards, actions are uninterpreted code
chunks based on object attributes and event data.

There is no need to add a semicolon to the last statement; Rational Rhapsody adds one for you.
Therefore, there is no need for any semicolon if there is only one statement.

The following example shows a transition label consisting of a trigger and an action sequence with
more than one step:

e1/x=1;y=2 // comments are allowed

Action expressions must be syntactically legal in the programming language. This means they
must be written within the context of the owner class (the one that owns the statechart being
described). Therefore, all identifiers must be one of the following items:

� Class (or superclass) attributes or operations
� Role names
� Global variables known to the class

Any other identifier will cause failures at compile time.

Actions can reference the parameters of an event or operation as defined by the transition context,
using the pseudo-variable params->. See also Message parameters.
Rational Rhapsody 749

Statecharts
Initial connectors
An initial connector leads into the state (or substate of an Or state, or component of an And state)
that should be entered by default. Each Or state must designate one of its substates as the default
for that state. The default state is indicated using an initial connector, of which there can be only
one per Or state. The initial connector target should be a substate of the Or state to which it
belongs.

The initial connector cannot have a trigger or a guard, although it can have an action. It might
connect to a decision node following which there might be guards.

Each state can have the following properties:

� Entry action where an expression executed upon entrance to the state (uninterpreted by
Rational Rhapsody). Note that an uninterpreted expression is resolved by the compiler,
not by the tool.

� Exit action where an expression executed upon exit from the state (uninterpreted by
Rational Rhapsody).

� Static reactions where actions performed inside a state in response to a triggering event/
operation. The reaction can be guarded by a condition. A static reaction does not change
the active state configuration.

The state executes static reactions if:
– The state is part of the active configuration.
– The trigger and guard are satisfied.
– A lower-level state has not already responded to the trigger.
– There is no active transition that causes the state to be exited.

� Default entry
� History

Note

When a state contains an entry action, exit action, or static reaction, an icon displays in
the top-right corner of the state. This icon can be used to toggle the display of these actions
in the state.
750 User Guide

Events and operations
Events and operations
Events inherit from the OMEvent abstract class defined in the Rational Rhapsody framework. They
are abstract entities that do not exist in C++ or other object-oriented programming languages. They
are framework-based, and you can implement them in various ways.

In Rational Rhapsody, both events and messages create operations for a class. You can edit the
operations created as a result of messages, but you cannot modify any event handlers.

Events and operations relate statecharts to the rest of the model by triggering transitions.
Operations specified by a statechart are called triggered operations (as opposed to operations
specified in OMDs, called primitive operations).

Events facilitate asynchronous collaborations and operations facilitate synchronous collaborations.
Triggered operations have a return type and reply. Triggered operations have a higher priority than
events.

In the rest of this guide, the term message means either an event or an operation.

Statecharts can react to operations and events that are part of the interface of a reactive class.
Using a message as a trigger in a statechart to transition from state S1 to state S2 means that if the
object is in S1 when it receives the message, it transitions to S2.

Events that do not trigger an active transition are ignored and discarded. If the object happens to be
in state S3 when it receives the message and S3 does not reference the message, it ignores the
message.

See Events for more information.
Rational Rhapsody 751

Statecharts
Sending events across address spaces
Rational Rhapsody allows you to send events to reactive instances in different address spaces.

This feature applies to multiple address spaces on the same computer. It is not possible to send
events to reactive instances on a different computer.

This feature can be used with the following target environments:

� INTEGRITY5
� VxWorks6.2diab_RTP
� VxWorks6.2gnu_RTP

Note
Currently, the multiple address space feature applies only to Rational Rhapsody in C.

Use of this feature requires:

� Setting a number of properties
� Calling a different function than that used for sending events within the same address

space

Properties for sending events across address spaces

To allow use of the multiple address space feature, different code generation settings are required.
These settings are controlled by the following property:

� C_CG::Configuration::MultipleAddressSpaces
When this boolean property is set to Checked, Rational Rhapsody uses the code
generation settings required for use of the multiple address space feature. The default
value of this property is Cleared, so you must change the value to enable this feature.

In order to be able to receive events from other address spaces, the reactive object must publish the
name by which it will be identified. The following two properties, set at the class level, are used
for this purpose:

� C_CG::Class::PublishedName
This is the name that will be used to identify the reactive object in order to send a
distributed event to it.
If there is only one reactive instance of the class, the value of this property is used to
identify the object.
If there is more than one reactive instance of the class, each named explicitly, the name
used to identify the reactive object will be the name that you have given to the object, and
not the property value.
In the case of multiplicity, where the objects are not named explicitly, the name used to
752 User Guide

Sending events across address spaces
identify the reactive object will be the published name + the index of the object, for
example, if the value of the property PublishedName is truck, then the objects would be
identified by truck[0], truck[1]...

� C_CG::Class::PublishInstance
This boolean property indicates whether or not the object should be published as a
reactive instance that is capable of receiving distributed events.

In addition, the following property, which is set at the configuration level, allows you to specify a
specific target address space when sending events, as described in API for sending events across
address spaces:

� C_CG::Configuration::AddressSpaceName
When you want to send an event to a reactive object in a specific address space, you
specify the address space by using the value of this property as a prefix, using the format
addressSpaceName::publishedNameOfReactiveObject. The default value of this
property is the name of the relevant component.

If the events to be sent across address spaces have no arguments or only primitive types as
arguments, such as integers or chars, it is sufficient to just set the above properties. However, if the
events to be sent include objects as arguments, you must also set the following properties at the
event level:

� C_CG::Event::SerializationFunction
Name of user-provided serialization function to use

� C_CG::Event::UnserializationFunction
Name of user-provided unserialization function to use

For details regarding the required structure for these two user-provided functions, see Functions for
serialization/unserialization.

API for sending events across address spaces

When sending events to reactive objects in different address spaces, the function
RidSendRemoteEvent must be used (and not the standard event generation macro RiCGEN):

RiCBoolean RidSendRemoteEvent (const RhpString strReactiveName, struct
RiCEvent* const ev, const RhpPositive eventSize);

strReactiveName - the published name of the destination reactive object

ev - pointer to the event to send

eventSize - the size of the event to send

Note
When providing the strReactiveName parameter for the function
RidSendRemoteEvent, you can indicate which address space contains the target object,
Rational Rhapsody 753

Statecharts
using the format addressSpaceName::publishedNameOfReactiveObject. This allows
you to have objects with the same name in multiple address spaces and still have the event
sent to the appropriate object.

When using this option, the name you use for the address space is the value of the property
C_CG::Configuration::AddressSpaceName, described in Properties for sending events
across address spaces.

For convenience, Rational Rhapsody includes a macro named RiCGENREMOTE, which calls the
function RidSendRemoteEvent:

RiCGENREMOTE ([string - the published name of the destination reactive object], [type of event
with parameters in parentheses])

For example:

RiCGENREMOTE(“destinationObject”, Fstarted());

Functions for serialization/unserialization

If the events to be sent across address spaces have no arguments or only primitive types as
arguments, such as integers or chars, you just have to call the function RiDSendRemoteEvent.
However, if the events to be sent include objects as arguments, you must also provide two
functions - one for serializing and one for unserializing the event arguments:

Serialization function
RhpAddress evStartSerialize(struct RiCEvent_t* const ev, const RhpAddress
buffer, RhpPositive bufferSize, RhpPositive* resultBufferSize);

return value - pointer to the serialized event

ev - pointer of the event to be serialized

buffer - a local buffer that can be used for storing the serialized event (the user can allocate
their own buffer instead)

bufferSize - the size in bytes of the parameter buffer

resultBufferSize - pointer for storing the size of the returned serialized event

Unserialization function
RiCEvent_t* evStartUnserialize(RhpAddress const serializedBuffer, RhpPositive
serializedBufferSize);

return value - pointer to the unserialized event

serializedBuffer - pointer to the serialized buffer
754 User Guide

Sending events across address spaces
serializedBufferSize - the size of the parameter serializedBuffer

Example of serialization/unserialization functions
The example refers to the event evStart, which is defined as follows:

struct evStart {

RiCEvent ric_event;

/*** User explicit entries ***/

char* msg;

};

RhpAddress evStartSerialize(struct RiCEvent* const ev, const RhpAddress
buffer, RhpPositive bufferSize, RhpPositive* resultBufferSize)

{

 evStart* castedEv = (evStart*)ev;

 RhpPositive msgLength = strlen(castedEv->msg);

 /* Testing the size of the message parameter against the size of local
buffer */

 if (bufferSize <= msgLength)

 {

 /* buffer too small - serialization is aborted */

 return NULL;

 }

 /* copy the message string + the null terminating */

 memcpy(buffer, castedEv->msg, msgLength + 1);

 *resultBufferSize = msgLength + 1;

 return buffer;

}

The function below uses a local buffer called receivedBuffer to store the string of the event
evStart which was passed as a parameter.

RiCEvent* evStartUnserialize(RhpAddress const serializedBuffer,
RhpPositive serializedBufferSize) {

 /* copy the message to a local buffer */

 memcpy(receivedBuffer, serializedBuffer, serializedBufferSize);

 return (RiCEvent*)RiC_Create_evStart(receivedBuffer);

}

Rational Rhapsody 755

Statecharts
Send action elements

The Send Action button can be used in statecharts, activity diagrams, and flow charts to
represent the sending events to external entities.

The Send Action element can be used to specify the following actions:

� Event to send
� Event target
� Values for event arguments

This is a language-independent element, which is translated into the relevant implementation
language during code generation.

Note
Code can be generated for Send Action elements in C, C++, and Java.

Defining send action elements

To define the element, provide the following information in the Features window:

� Using the Target list, select the object that is to receive the event.
� Using the Event list, select the event that should be sent.
� Provide values for the event arguments by selecting the argument in the argument list and

clicking the Value column.

Note
In cases where there are a number of objects based on the same class, you need to provide
additional information after selecting the target from the list. For cases of simple
multiplicity, you must provide the array index to specify the object that receives the event.
In the case of qualified associations, you need to provide the qualifier value for the object
that is to receive the event.

The Preview text box displays the text that is displayed on the element if you select full notation as
the display option to use.

The target list includes all objects known to the class for the statechart. You can choose the name
of the target object, or the name of a port on the target object.

You can click the button next to the Target list to open the Features window of the relationship
with the target object. Similarly, you can click the button next to the Event list to open the Features
window for the selected event.
756 User Guide

Send action elements
Display options for send actions

The display options for the Send Action element allow you to display a full notation, such as
“Reset (false) to p1” or a short notation, such as “Reset.” Full notation includes the event name,
the values for the event arguments, and the name of the target. Short notation includes only the
event name.

Graphical behavior of send actions

In terms of its behavior in the graphic editors, Send Action elements are connected to states in the
statechart with transitions.

While the graphical behavior of Send Action elements is similar to that of states, it should be
remembered that semantically these elements are not states. For example, you cannot put a
condition on the transition out of a Send Action element (it is an automatic transition).

Code generation for send actions

Code can be generated for Send Action elements in C, C++, and Java.

For each language, code generation for this element is determined by the following properties

� CG::Framework::EventGenerationPattern - general format
� CG::Framework::EventToPortGenerationPattern - used when sending event to a port

Note
Rational Rhapsody does not support roundtripping for Send Action elements.
Rational Rhapsody 757

Statecharts
And lines

An And line is a dotted line that separates the orthogonal components of an And state. There can
be two or more orthogonal components in a given And state and each behaves independently of the
others. If the system is in an And state, it is also simultaneously in a substate of each orthogonal
component.

The following figure shows an And line.

Drawing And lines

To draw an And line to divide a state into substates:

1. Click the And line button in the Diagram Tools.

2. Click in the middle of the upper edge of the state to anchor the start of the And line.

3. Move the cursor down to the bottom edge of the state and click to anchor the end of the
And line. Rational Rhapsody draws a dotted line that divides the state into two halves
(orthogonal states), as shown in the following figure.

Note that the state label, which used to be inside the state, has moved outside into a tab-like
rectangle.
758 User Guide

Connectors
Connectors
Rational Rhapsody supports the following connectors:

� Decision nodes

� History connectors

� Merge nodes
� Diagram connectors
� Termination connectors
� EnterExit points

Rational Rhapsody includes connector information for diagram, condition, and EnterExit points in
its repository (core). This means that:

� Semantic checks are done by the standard core functions.
� Statechart inheritance is core-oriented, not graphics-oriented.
� Code is generated for these connectors.
� The Undo operation supports all connector actions.
� Rational Rhapsody EnterExit points are now UML-compliant.
� Reports include information on diagram connectors, decision nodes, and EnterExit points.
� Diagram connectors, decision nodes, and EnterExit points are displayed in the browser, as

shown in the following figure.
Rational Rhapsody 759

Statecharts
Decision nodes

Decision Nodes split a single segment into several branches. Branches are labeled with guards that
determine which branch is active.

The following figure shows a decision node.

The following rules apply to decision nodes and branches:

� Branches cannot contain triggers.
� You can nest branching segments. This means that a branching segment can enter another

decision node.
� A decision node can have only one entering transition.
� The branching tree should not have cycles.

Else branches
A guard called [else] is active if all the guards on the other branches are false. Each decision
node can have only one else branch.

The semantics of an else branch are similar to a structured if-then-else statement.
760 User Guide

Connectors
History connectors

History connectors store the most recent active configuration of a state and its substates. Once an
object is created, it is associated with a configuration for an active state, starting in the initial
configuration, and evolving as the statechart responds to messages.

The following figure shows a history connector.

When a transition is attached to a history connector and that transition is triggered, the state
containing the history connector recalls its last active configuration. A state can have a single
history connector.

Transitions from a history connector are constrained to a destination on the same level as the
history connector.

Note
Do not put more than one history connector in a state. Rational Rhapsody allows you to
draw more than one history connector in a state; however, the code generator does not
support this.

A state might have a history property used for recalling the recent active configuration of the state
and its substates. Transitioning into a history connector associated with the state recalls the last
active configuration.

A transition originating from the history connector designates the history default state. The default
history state is taken if no history existed prior to the history enter.
Rational Rhapsody 761

Statecharts
Merge nodes

A merge node combines several segments into one outgoing segment, as shown in the following
figure.

This means that segments share the same line and a common transition suffix. The segments end
up sharing the same transition line.

Diagram connectors

A diagram connector functions similarly to a merge node in that it joins several segments in the
same statechart. Diagram connectors enable you to jump to different parts of a diagram without
drawing spaghetti transitions. This helps avoid cluttering the statechart. The jump is defined by
matching names on the source and target diagram connectors.

Note
You can rename diagram connectors, and the checks are performed during code generation.

Diagram connectors should either have input transitions or a single outgoing transition. A
statechart can have at most one target diagram connector of each label, but it can have several
source diagram connectors with the same label.

During code generation, Rational Rhapsody flattens all junctions and diagram connectors by
merging the common suffix to each segment entering the connector.

In both diagram and merge nodes, a label that belongs to an incoming segment is shared and
duplicated during code generation among outgoing segments of that connector. Rational Rhapsody
merges the guards (conjunction), then concatenates the actions.
762 User Guide

Connectors
Note
Both incoming and outgoing transitions cannot have labels. If you label the incoming
transitions, do not label the outgoing transition because its label will override the label of
the incoming transition and negate any action or trigger associated with the incoming
transition.

Diagram connectors connect different sections of the same statechart, whereas EnterExit points
connect different statecharts. See EnterExit points.

Termination connectors

The termination connector is the suicide or self-destruct connector. If a transition to a termination
connector is taken, the instance deletes itself. A termination connector cannot have an outgoing
transition.

EnterExit points

EnterExit points are used to represent the entry to / exit from sub-statecharts.

At the level of the parent state, these points represent entry to / exit from the various contained
substates without revealing any information about the specific substate that the transition connects
to.

At the level of the sub-statechart, these points represent the entries to / exits from the parent state
vis-a-vis the other elements in the statechart.

When you create a sub-statechart from a parent that contains deep transitions (that is, transitions
entering one of the substates), EnterExit points are automatically created on the borders of the
parent state in both the sub-statechart and the original statechart.

Once the sub-statechart has been created, you can add additional deep transitions as follows:

1. Add an EnterExit point to the parent state.

2. Add a corresponding EnterExit point in the sub-statechart (manually or using the Update
feature - see Updating EnterExit points).

3. Draw a transition from the EnterExit point to the relevant substate.
Rational Rhapsody 763

Statecharts
Updating EnterExit points
If you would like to add additional EnterExit points after creating a sub-statechart, you can add
them manually to both the parent state in the original statechart and the parent state in the
sub-statechart.

Alternatively, you can have Rational Rhapsody automatically update the EnterExit points:

1. Add one or more EnterExit points to the parent state in either the original statechart or the
sub-statechart.

2. Go to the second statechart, right-click and select Update EnterExit Points.
764 User Guide

Submachines
Submachines
Submachines enable you to manage the complexity of large statecharts by decomposition. The
original statechart is called the parent, whereas the decomposed part is called the submachine.

Creating a submachine

You can create a submachine from a complex state using either the Edit menu or the menu for the
state.

To create a submachine. on a statechart, right-click a state and then select Create Sub-Statechart.
Rational Rhapsody creates a submachine called <class>.<state>, which is a new statechart
consisting of the submachine state and its contents.

If you decompose the doorClosed state into a submachine, Rational Rhapsody creates a new
submachine.

Actions and reactions move into the top state of the submachine if the transition goes to the
submachine state, and inside the submachine if the transition goes into the nested part.

Note
You cannot create submachines of inherited states. The workaround is to add a dummy state
as a child of the inherited state and make that the submachine state.

Opening a submachine or parent statechart

To open a submachine, right-click the submachine state in the parent statechart and select Open
Sub-Statechart.

Similarly, to open a parent statechart from a submachine, right-click the top state and select Open
Parent Statechart.

Deep transitions

A deep transition is a cross-chart transition, for example, from a parent statechart into a
submachine, or vice versa. When you create a submachine, deep transitions are automatically split
via substates.

Consider the following example:
Rational Rhapsody 765

Statecharts
This statechart has a deep transition that crosses the edge of a parent state (running) and leads into
a nested state (on).

If you make a submachine of the running state, the deep transition is automatically split via
matching EnterExit points created in the parent statechart and submachine, as shown in this
example.

Merging a sub-statechart into its parent statechart

To merge the contents of a sub-statechart into its parent statechart:

1. Select the parent state in the original statechart.

2. Right-click the state and select Merge Back Sub-Statechart.
766 User Guide

Statechart semantics
Statechart semantics
The following sections describe the object-oriented interpretation of statecharts.

Single message run-to-completion processing

Rational Rhapsody assumes that statecharts react to a single message applied by some external
actor to the statechart. The external actor can be either the system event queue or another object.

Message processing by a statechart is partitioned into steps. In each step, a message is dispatched
to the statechart for processing.

Once a message is dispatched, it might enable transitions triggered by the message. Each
orthogonal component can fire one transition at most as a result of the message dispatch.
Conflicting transitions will not fire in the same step.

The order in which selected transitions fire is not defined. It is based on an arbitrary traversal that
is not explicitly defined by the statechart.

Each component can execute one transition as a result of the message. Once all components
complete executing the transition, the message is said to be consumed, and the step terminates.

After reacting to a message, the statechart might reach a state configuration in which some of the
states have outgoing, active null transitions (transient configurations). In this case, further steps
need to be taken until the statechart reaches a stable state configuration (no more transitions are
active). Null transitions are triggered by null events, which are dispatched to the statechart
whenever a transient-configuration is encountered. Null events are dispatched in a series of steps
until a stable configuration is reached. Once a stable configuration is reached, the reaction to the
message is completed, control returns to the dispatcher, and new messages can be dispatched.

Note
Theoretically, it is possible that the statechart will never reach a stable configuration. The
practical solution is to set a limit to the maximum number of steps allowed for a statechart
to reach a stable configuration. In the current implementation, reaching the maximum
number of steps is treated as if the message processing has been completed.
Rational Rhapsody 767

Statecharts
Active transitions

A transition is active if:

� The trigger matches the message posted to the statechart. (Null triggers match the null
event.)

� There is a path from the source to the target states where all the guards are satisfied
(evaluate to true).

Note
Guards are evaluated before invoking any action related to the transition.

Because guards are not interpreted, their evaluation might include expressions that cause side
effects. Avoid creating guards that might cause side effects. Guard evaluation strategy is
intentionally undefined as to when guards are evaluated and in which order.

Transition selection

Transition selection specifies which subset of active transitions should fire. Two factors are
considered:

� Conflicts
� Priorities

Conflicts
Two transitions are said to conflict if both cause the same state to exit. Only orthogonal or
independent transitions fire simultaneously. This means that interleaved execution causes
equivalent results. Disjoint exit states are a satisfactory condition for equivalent results.

Note: With regard to conflicts, static reactions are treated as transitions that exit and
enter the state on which they are defined.

Priorities
Priorities resolve some, but not all, transition conflicts. Rational Rhapsody uses state hierarchies
to define priorities among conflicting transitions. However, lower-level (nested) states can
override behaviors, thus implying higher priority.

The priority for a transition is based on its source state. Priorities are assigned to join transitions
based on their lower source state.

For example, if transition t1 has a source state of s1 and transition t2 has a source state of s2,:

� If state s1 is a descendant of state s2, t1 has a higher priority than t2.
768 User Guide

Statechart semantics
� If states s1 and s2 are not hierarchically related, relative priorities between t1 and t2 are
undefined.

Rational Rhapsody does not define a priority with regard to events and transitions other than
arrival order. If two transitions within the same orthogonal component are both active (ready to
fire), as can happen with non-orthogonal guards, only one of them will actually fire, but statecharts
do not specify which one it will be.

Transition selection algorithm
The set of transitions to fire satisfies the following conditions:

� All transitions must be active.
� Any transition without conflicts will fire.
� If a priority is defined between transitions, the transitions with lower priority will not fire.
� In any set of conflicting transitions, one transition is selected to fire. In cases where

conflicts are not resolved by priorities, the selected transition is arbitrary.
The above definition of the selection set is not imperative, but implementing a selection algorithm
is done by a straightforward traversal of the active state configuration.

Active states are traversed bottom-up where transitions related to each are evaluated. This
traversal guarantees that the priority principle is not violated. The only issue is resolving transition
conflicts across orthogonal states. This is solved by “locking” each And state once a transition is
fired inside one of its components. The bottom-up traversal and the And state locking together
guarantee a proper selection set.
Rational Rhapsody 769

Statecharts
Transition execution

Once a transition is active and selected to fire, there is an implied action sequencing:

� States are exited and their exit actions are executed, where deeper states are exited before
their parent states. In case of orthogonal components, the order among orthogonal siblings
is undetermined.

� Actions sequencing follow the direction of the transition. The closer the action to the
source state, the earlier it is evaluated.

� Target states are entered and their entry actions are executed, where parent states are
entered before substates. In the case of orthogonal components, the entry order is
undetermined.

Active classes without statecharts

Normally, active classes (threads) must also be reactive (have statecharts). However, you might
have tasks that have no state memory. The workaround of defining a dummy (empty) statechart is
not entirely acceptable because such an active object uses statechart behavior to process events. It
is, however, possible to achieve the same effect by setting the class to active, defining an empty
statechart, then overriding the default behavior by defining an operation named takeEvent() for
the class and adding the wanted behavior to this operation. This method allows you to benefit from
visual debugging, using the event queue, and so on.

Single-action statecharts

Rational Rhapsody cannot interpret simple statecharts that execute a single action and then
terminate. For example, if you represent a task as an active class with a simple statechart that
essentially executes a single action and terminates, you might be tempted to draw your statechart,
as shown in this example.

In this diagram, doIt() represents the action that needs to be spawned.
770 User Guide

Inherited statecharts
This statechart has two problems:

� The Rational Rhapsody framework does not allow an active instance to terminate on the
initial run-to-completion (RTC) step. In other words, the startBehavior() call cannot
end with a destroyed object.

� The startBehavior() call executes the initial step on the creator thread, not as part of the
instance thread. The instance thread processes events following the initial step. In this
statechart, the doIt() operation is executed on the creator thread, which is probably not
what was expected.

The workaround is to create a dummy action on the initial connector that leads into a transition.
This action can run on the instance thread and thus terminate normally.

For example, the following statechart postpones the execution of the action until the thread is
ready to process it.

Inherited statecharts
Statechart inheritance begins when a class derives from a superclass that has a statechart. The
statechart of the subclass, the inherited statechart, is initially a clone of that of the superclass. With
the exception of the items listed below, you can add things to an inherited statechart to override
behavior in the inherited class.

You cannot make the following changes to items in the statechart of a subclass:

� Change the source of a transition.
� Change the triggers (events or triggered operations).
� Delete or rename a state.
� Draw a state around an existing state.

You can make the following changes to items in the statechart of a subclass:
Rational Rhapsody 771

Statecharts
� Change anything that does not affect the model, such as moving things in the diagram
without actually editing.

� Add objects to a state.
� Add more states, but not re-parent states.
� Attach a transition to a different target.

An inherited statechart consists of all the items inherited from the superclass, as well as modified
and added elements.

Note
It is possible to inherit statecharts across packages.

If you edit a base statechart, the derived statechart is redrawn only on demand at checks, code
generation, report generation, or the opening of a derived statechart.

Types of inheritance

Each item in the derived statechart can be:

� Inherited where any modifications to an item in the superclass is applied to the item in the
subclass.

� Overridden where any modifications to an item in the superclass do not apply to the
subclass. However, deleting an item from the superclass also deletes the item from the
subclass. This is different from C++, for example, where deleting an overridden behavior
in the superclass causes the overridden behavior to become a regular item.

� Regular where regular items are owned by the subclass. The item is not related to the
superclass and is not affected by the superclass.

Noting the status of items as inherited, overridden, or regular is crucial both for Rational Rhapsody
and the user.

Note
The current implementation of statechart inheritance is restricted to single inheritance. A
reactive class can have at most one reactive superclass.

Inheritance color coding

Inheritance status is indicated by the following color coding:

� Inherited items are gray.
� Regular and overridden items are colored in the usual drawing colors.
772 User Guide

Inherited statecharts
Inheritance rules

Classes with inherited statecharts can reside in different packages. A class with a statechart
(reactive class) can inherit from a class without a statechart. Multiple inheritance of reactive
classes (with statecharts) is not supported. Derived classes can inherit from multiple primitive
classes. Rearranging inheritance hierarchies of reactive classes is not supported.

There are different inheritance rules for states, transitions, triggers, guards, and actions.

Rules for states
The structure of a state in a subclass should be a refinement of the same state of the superclass.
Because of this, state inheritance is strict. All states and their hierarchy are inherited by the
statechart of the subclass.

You can add states to the derived statechart, as long as they do not violate the hierarchy in the
statechart of the superclass. In practice, this means that a regular state cannot contain inherited
substates.

In the following example, the leaf state s2 was refined and became an Or state. The states s1 and
s2 on the right are the inherited states.

You can add And lines to inherited states (adding components). If you convert an inherited Or state
into an And state, the Or state becomes an And state, and one of the components contains its
substates. This is an exception to the previous rule, where the state hierarchy is modified by
introducing an orthogonal component. The component that re-parents the substates is designated
as “main.” In the following example, s2 becomes an And state. The component containing s3 and
s4 is the main component. The name of a component is the same as the name for the And state.
Rational Rhapsody 773

Statecharts
Note the following actions:

� You cannot rename inherited states in the derived statechart.

� You cannot delete inherited states from a derived statechart.
� A state is either inherited or regular. It cannot be overridden.
� You cannot change state topology by re-parenting.

Rules for transition labels
You can modify the labels of derived segments according to the following rules:

� You cannot modify triggers. They are inherited from the superclass.
� You can modify actions and guards.
� You can override a guard, but still get changes on the action.

Modifications to the label of the corresponding segment in the superclass no longer affect the
subclass.

Note
The inheritance color coding of the label and the segment are independent. The label can be
overridden while the segment is still inherited, and vice versa.

Rules for entry and exit actions
Both entry and exit actions can be overridden by an inherited state. Once they have been modified
(modifying the text of the action) by a derived state, they reach an overridden state.

Rules for static reactions
Static reactions can be overridden by a derived statechart. Static reactions are designated by their
triggers, which cannot be modified in a derived statechart. Therefore, only the guard and action
can be modified. A static reaction cannot be deleted by a subclass.

Currently, there is no inheritance color coding for static reactions. In addition, tracing inherited
actions between the superclass and the derived statechart is done implicitly by Rational Rhapsody
and is not visible.
774 User Guide

Inherited statecharts
Rules for connectors
Connectors are always inherited. You cannot modify them or delete them. The following example
illustrates statechart inheritance.

As shown, a basic blower has only On and Off modes.

In a dual-speed blower, the On state is refined to include Fast and Slow modes, as shown in the
following figure.
Rational Rhapsody 775

Statecharts
If you make the On state into an And state, you can add a heat mode, as shown.

Overriding inheritance rules

To override the inheritance rules of statecharts, right-click in the statechart and select Override
Inheritance.

Once you have overridden inheritance, the derived statechart becomes independent from its parent
and you can modify it without constraint. In addition, colors are no longer gray. They are the usual
statechart colors.

To undo the inheritance override, right-click in the statechart and select Unoverride Inheritance.
776 User Guide

Inherited statecharts
Overriding textual information

The Features window for textual information in statecharts (state entry and exit actions, and guards
and actions for transitions and static reactions) include the Overridden check box. By enabling or
disabling this check box, you can easily override and unoverride statechart inheritance without
actually changing the model. As you toggle the check box on and off, you can view the inherited
information in each of the window fields, and can decide whether to apply the information or
revert back to the currently overridden information.

To apply the change, click OK. The transition changes to
doServe(params->rounds) and it is displayed in blue text instead of gray because it is no
longer overridden.

Note that if you override the textual information, the display colors and statechart change as
follows:

� If you unoverride the textual information of a transition or state, the label color reverts to
gray.

� If you unoverride a transition target, the transition color reverts to gray and the graphics
are synchronized to the new target.
Rational Rhapsody 777

Statecharts
Refining the hierarchy of reactive classes

You can refine the hierarchy of reactive classes without using overrides and unoverrides (without
losing any information).

For example, suppose you have class C inheriting from class A, as shown in the following OMD.

Suppose you want to change the hierarchy so C inherits from B, which in turn inherits from A.
Therefore:

� The statechart that C inherited from A will now be inherited from B; B will inherit its
statechart from A.

� The inheritance between A and C will be deleted.
� C will not lose any information, because its inherited elements will reference new GUIds.

To make these changes:

1. Using either the browser or the Diagram Tools, create inheritance between B and A.

2. Create inheritance between C and B.

3. Rational Rhapsody displays a window that informs you that you are adding a level of
inheritance, and asks you to confirm the deletion of the inheritance between C and A. Click
Yes.
778 User Guide

Inherited statecharts
The following figure shows the revised OMD.
Rational Rhapsody 779

Statecharts
Removing a level of inheritance
Suppose you now want C to inherit from A instead of B, thereby removing a level of inheritance.
When you draw the inheritance between C and A, Rational Rhapsody notifies you that a level of
inheritance will be removed and asks for confirmation.

Click Yes. The following figure shows the revised OMD.

Inheritance between two reactive classes
If you try to establish inheritance between two distinct reactive classes (for example, B inherits
from A), Rational Rhapsody displays a message stating that the action will result in overriding
statechart inheritance. Click Yes to override the statechart inheritance.
780 User Guide

IS_IN Query
IS_IN Query
The Rational Rhapsody framework provides the query function IS_IN(state), which returns a
true value if the state is in the current active configuration.

Note the following information:

� IS_IN(state) returns true if the state is in the active configuration at the beginning of the
step. For states entered in a step, IS_IN(state) returns false, unless the states are being
re-entered.

� The state name passed to IS_IN() is the implementation name, which might be different
from the state name if it is not unique.

For example, the following state names are generated for the statechart shown in the
figure:

State* B; State* B_A2; State* B_A1;
State* A; State* A2; State* A1;

The implementation name of A1 in state A is simply A1 because it was drawn first. The
implementation name of A1 in state B is B_A1, because it is a duplicate.
Rational Rhapsody 781

Statecharts
In the following statechart, the transition to substate A4 in state A is taken only if the object is still
in substate A1 in A after one second. The transition to substate A4 in state B is taken only if the
object is still in substate A1 in B after two seconds.

In these two cases, the IS_IN() query requires the use of the implementation names A1 and B_A1
to differentiate between like-named substates of two different states.

The IS_IN macro is called as if it were a member operation of a class. If you want to test the state
of another class (for example, a relation), you must use the relation name. For example, if you have
a relation to a class A called itsA and you want to see if A is in the idle state, you would use itsA-
>IS_IN(idle) rather than A->IS_IN(idle).
782 User Guide

Message parameters
Message parameters
Message data are formal parameters used within the transition context. By default, if the message
is an event, the names of message parameters are the same as the arguments (data members) of the
event class.

You reference event arguments in a statechart using the pseudo-variable params-> with the
following syntax:

event/params->event_arg1, params->event_arg2

Consider a class Firecracker that processes an event discharge, which has an argument color.
The argument color is of an enumerated type Colors, with the possible values red (0), green (1),
or blue (2). In the statechart, you would indicate that you want to pass a color to the event when it
occurs using the following label on the transition:

discharge/params->color

When you run the application with animation, you can generate a discharge event and pass it the
value red by typing the following command in the animation command field:

Firecracker[0]->GEN(discharge(red))

The application understands red as a value being passed to the argument color of event
discharge because of the notation params->color. The color red is translated to its integer value
(0), and the event is entered on the event queue of the main thread as follows:

Firecracker[0]->discharge((int)color = 0)

Finally, the event queue processes the event discharge with the value red passed via params->.
The Firecracker explodes in red and transitions from the ready to the discharged state.

The way the params-> mechanism works is as follows: When you create an event and give it
arguments, Rational Rhapsody generates an event class (derived from OMEvent) with the
arguments as its attributes. Code for events is generated in the package file.
Rational Rhapsody 783

Statecharts
The following sample code shows the event discharge, which has one argument called color.
The code was generated in the header file for the Default package:

//---
// Default.h
//---
class discharge;
class Firecracker;
enum Colors {red, green, blue};
class discharge : public OMEvent {
 DECLARE_META_EVENT
//// User explicit entries ////
public :
 Colors color;
//// User implicit entries ////
public :
 // Constructors and destructors:
 discharge();
//// Framework entries ////
public :
 discharge(Colors p_color);
 // This constructor is need in code instrumentation
 discharge(int p_color);
};

When the Firecracker event queue is ready to take the event discharge, it calls
SETPARAMS(discharge). SETPARAMS is a macro defined in oxf\state.h as follows:

#define SETPARAMS(type) type *params; params=(type*)event

Calling SETPARAMS(discharge) allocates a variable params of type pointer to an event of type
discharge. This enables you to use params->color in the action part of the transition as a short-
hand notation for discharge->color.
784 User Guide

Modeling of continuous time behavior
Modeling of continuous time behavior
There are three types of behaviors typical of embedded systems:

� Simple means implemented in functions and operations
� Continuous means expressed by items such as PID control loops or digital filters
� Reactive means state-based behavior

Although the Rational Rhapsody GUI directly supports only simple and reactive behaviors, you
can implement all three types. To address the continuous time aspects, you can reference or
include any code you are currently using to express continuous behavior in any of the operations
defined within Rational Rhapsody.

This means that if you are defining your continuous behavior elements manually, you can continue
to do so. If you are using another tool to define your continuous behavior and that tool generates
code, you can include that code.

Interrupt handlers
The ability to add an interrupt handler depends on operating system support. Typically, a static
function without parameters is added by passing its address to an operating system operation like
InstallIntHdlr (operating system-dependent). The static function can be either a special
singleton object or a function defined within a package. This operation must use compiler-specific
utilities to get to the registers. Eventually, it must return and execute a return from the interrupt
instruction.

You can pass the data from the interrupt handler to the CPU (assuming that the interrupt handler
needs to), in the following ways:

� Generate an event (using the GEN() macro), which then goes via the operating system to
the reactive object (which should be in a different thread).

� Use a rendezvous object with a read/write toggle lock. The interrupt handler checks
whether the lock is in the write state, then updates the data and puts the lock in the read
state. The reader (in another thread) periodically checks the lock and only reads when it is
in the read state. If it is in that state, the reader reads the data and updates the lock to its
write state. This can easily be extended to a queue structure.

� Write the interrupt handler manually outside Rational Rhapsody and send it to the
operating system message queue for the target thread. Typically, if the operating system
does not support interrupt handlers directly, you store the current handler in your function
and write the address of the function in the appropriate place in the interrupt vector table.
When the interrupt goes off, either the new function replaces the old interrupt handler
(meaning when it is done it simply returns) or it chains to it (calls the original). In any
Rational Rhapsody 785

Statecharts
event, when the interrupt handler is decommissioned, you replace the vector in the vector
table with the original address.

Inlining of statechart code
Consider the following statechart:

When you implement this statechart using the flat scheme, you should expect the following
methods to be added to the class and called through a series of a few function calls from
rootState_dispatchEvent():

int MyClass::s2TakeNull() {
 int res = eventNotConsumed;
 s2_exit();
 //#[transition 2
 f2();
 f2();
 //#]
 s3_entDef();
 res = eventConsumed;
 return res;
};

int MyClass::s1TakeNull() {
 int res = eventNotConsumed;
 s1_exit();
 //#[transition 1
 f1();
 f1();
 //#]
 s2_entDef();
 res = eventConsumed;
 return res;
};

In fact, what happens is that the transition code (between the //#[and //#] brackets) is
immediately inlined (embedded) inside rootState_dispatchEvent(), as follows:

int MyClass::rootState_dispatchEvent(short id) {
 int res = eventNotConsumed;
 switch(rootState_active) {
 case s1:
 {
 if(id == Null_id)
 {
 popNullConfig();
786 User Guide

Tabular statecharts
 //#[transition 1
 f1();
 f1();
 //#]
 pushNullConfig();
 rootState_subState = s2;
 rootState_active = s2;
 res = eventConsumed;
 }
 break;
 };
 case s2:
 {
 if(id == Null_id)
 {
 popNullConfig();
 //#[transition 2
 f2();
 f2();
 //#]
 rootState_subState = s3;
 rootState_active = s3;
 res = eventConsumed;
 }
 break;
 };

 };
 return res;
};

This code is more efficient because it saves a few function calls via inlining of code. Inlining is
available using the CG::Class::ComplexityForInlining property of the class, which is set to 3
by default. This means that if the user code (the action part of the transition) is shorter than three
lines, it is inlined (or embedded) where the function call used to be instead of the function call. To
get the “expected” result (not inlined), set this property to 0.

Tabular statecharts
In addition to viewing statecharts as diagrams, it is possible to view statecharts in a tabular format.
You can also make certain types of changes to your statechart when using the tabular view.

The property StatechartDiagram::StateDiagram::DefaultView can be used to determine the
default view for statecharts - diagram view or tabular view. This property can be set at the level of
individual statecharts or higher.

Format of statechart tables

When Rational Rhapsody displays a statechart as a table:

� The rows of the table represent the various states.
� The columns of the table represent the triggers that lead to transitions between states.
Rational Rhapsody 787

Statecharts
� Table cells display the new state the application will enter when the relevant trigger
occurs.

� The table contains a column named Null which is used for transitions not associated with a
specific trigger.

� For an And state, each of the substates is listed in its own row, nested below the And state.
� Diagram connectors do not appear in the table. Rather, the resulting transition between

states is shown.
� The following statechart elements appear as rows in the table: condition connectors,

history connectors, junction connectors, join bars and fork bars.
� Enter/Exit points appear as rows in the table, nested under their owner state.
� Default connectors (transitions) are depicted as outgoing transitions from a state called

ROOT.

Modifying statecharts from tabular view

You can make the following types of changes to statecharts when using the tabular view:

� Add transitions
� Add events
� Delete transitions
� Delete events
� Delete states

Adding a transition
To add a new transition to the table:

Select the name of the target state and drag it to the table cell where the row of the source state
intersects the column of the relevant trigger.

To add a transition not associated with a specific trigger:

Select the name of the target state and drag it to the table cell where the row of the source state
intersects the NULL column.

To add a default connector (transition) for the statechart:

Select the name of the target state and drag it to the table cell where the ROOT row intersects the
Initial column.
788 User Guide

Tabular statecharts
Adding an event
To add an event when in tabular view, click the Add model element button on the toolbar. The
Add new element window will be displayed, allowing you to create one or more new events.

Deleting a transition, event, or state
To delete a transition, event, or state:

1. Select the relevant transition cell, event header, or row name in the table.

2. Open the context menu and select Delete from Model.

Note
You cannot delete the ROOT state.

Menu for tabular view

When in tabular view, the menu includes an option of switching to diagram view (and vise versa).

Refreshing the contents of the statechart table

If you use the browser to add/remove elements, click the Refresh button in the toolbar to refresh
the contents of the statechart table

Locating model elements

If the tabular view is set as the default view for a statechart, then when you try locating a model
element included in the statechart, Rational Rhapsody will highlight the relevant cell in the
statechart table.
Rational Rhapsody 789

Statecharts
790 User Guide

Panel diagrams
A panel diagram provides you with a number of graphical control elements that you can use to
create a graphical user interface (GUI) to monitor and regulate an application. Each control
element can be bound to a model element (attribute/event/state). During animation, you can use the
animated panel diagram to monitor (read) and regulate (change values/send events) your user
application. For more information about animation, see Animation.

This feature provides a convenient way to demonstrate the design and, additionally, provides you
with an easy way to create a debug interface for the design.

Note
The panel diagram feature is only available for Rational Rhapsody in C and Rational
Rhapsody in C++.

You can use a panel diagram to create the following types of panels for design and testing
purposes:

� Hardware control panel designed for operating and monitoring machinery or instruments.
� Software graphical user interface (GUI) for display on a computer screen allowing the

computer application user easier access to the application function than would be required
if the user entered commands or other direct operational techniques.
Rational Rhapsody 791

Panel diagrams
Panel diagram features
You can create a panel diagram to design a graphical interface in Rational Rhapsody in C and
Rational Rhapsody C++ projects. Developers can use the diagrams to:

� Simulate and prototype a panel
� Imitate hardware devices for users
� Activate and monitor a user application
� Test applications by triggering events and change attributes values

Note
Panel diagrams are intended only for simulating and prototyping, and not for use as a
production interface for the user application. In addition, panel diagrams can only be “used”
on the host and can be “used” only from within Rational Rhapsody.
792 User Guide

Panel diagram features
The following illustration shows an animated panel diagram for a hypothetical coffee maker
application. During animation, the developer of the application can test it by doing such things as,
for example:

� Turn on the coffee maker application by clicking the power On/Off Switch control.
� Use the coffeeContainer and milkContainer Bubble Knob controls to increase/decrease

the amount of coffee and milk that is available.
� Order a coffee by clicking the evCoin Push Button control. The following could happen:

– Messages appear on the Matrix Display control, such as Filling Coffee or
Filling Cup.

– The coffeeContainer and milkContainer Level Indicator controls go down
as these items are dispensed.

– The cup Level Indicator control rises as coffee fills a cup, until the Please
Take Your Cup message displays on the Matrix Display control.

– The Take cup LED control turns red.
– The cupCounter Digital Display control keeps a count of each cup of coffee

made.
� Indicate that a cup of coffee has been taken by clicking the evTakeCup Push Button

control, which could reset the coffee machine.
Rational Rhapsody 793

Panel diagrams
Creating a panel diagram
The following procedure lists the general steps to create and use a panel diagram. References to
more specific procedures are noted when necessary.

1. Open your Rational Rhapsody model with model elements ready for use.

2. Create a panel diagram. Choose Tools > Diagrams > Panel Diagram.
For basic information on diagrams, including how to create, open, and delete them, see
Graphic editors.

3. Create a control element in your panel diagram; click any of the tools on the panel
diagram Diagram Tools. See Panel diagram drawing tools.

4. Bind the control to a model element; right-click a control and select Features. Use the
Element Binding tab on the Control Properties tab. See Bind a control element to a model
element.

5. Make whatever changes you might want for the control; see:

� Change the settings for a control element

� Change the properties for a control element, when applicable
� Setting the value bindings for a button array control, when applicable
� Changing the display name for a control element

6. Set your model for animation. See Animation.

7. Generate and make your model. Run your application and the animation for the panel
diagram. When animation starts, the control on your panel diagram is initiated with its
bound model element value. See Basic code generation concepts.

8. Use your control elements on the animated panel diagram. Note that when animation is
running, the Control Properties window and the Display Options window are unavailable.

9. Terminate animation to terminate the use of the control element and exit animation.

10. Use ReporterPLUS to produce a panel diagram report. For more information, see
ReporterPLUS.
794 User Guide

Create panel diagram elements
Create panel diagram elements
The following sections describe the drawing tools available for a panel diagram. For basic
information on diagrams, including how to create, open, and delete them, see Graphic editors.

Panel diagram drawing tools

The Diagram Tools for a panel diagram contains the following tools.

Drawing
Icon Description

Select Lets you select a control on a panel diagram.

Knob Represents a Bubble Knob control. See Drawing a bubble knob control.

Gauge Represents a Gauge control. See Drawing a gauge control.

Meter Represents a Meter control. See Drawing a meter control.

Level Indicator Represents a Level Indicator control. See Drawing a level indicator control.

Matrix Display Represents Matrix Display control that shows a text string. See Drawing a matrix
display control.

Digital Display Represents a Digital Display control that shows numbers. See Drawing a digital
display control.

LED Represents a light-emitting diode control. See Drawing an LED control.

On/Off Represents an On/Off Switch control. See Drawing an on/off switch control.

Push Button Represents a Push Button control. See Drawing a push button control.

Button Array Represents a Button Array control. See Drawing a button array control.

Text Box Represents an editable Text Box control. See Drawing a text box control.

Slider Represents a Slider control. See Drawing a slider control.
Rational Rhapsody 795

Panel diagrams
Drawing a bubble knob control

The Bubble Knob control is an input/output control, as shown in the following figure in its default
non-animated appearance:

Note the following information:

� You can bind (map) it to an attribute.
� Its attribute type is a Number.
� By default its control direction is set to In/Out, though you can change it to In or Out.

To draw a Bubble Knob control on a panel diagram:

1. Click the Knob button in the Diagram Tools.

2. Click the drawing area to create a Bubble Knob control, or click and drag so that you can
create the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a bubble knob control

� To change the display name for the control, see Changing the display name for a
control element
796 User Guide

Create panel diagram elements
Drawing a gauge control

The Gauge control is an output control that displays as an analog round dial, as shown in the
following figure in its default non-animated appearance:

Note the following information:

� You can bind it to an attribute.
� Its attribute type is a Number.

To draw a Gauge control on a panel diagram:

1. Click the Gauge button in the Diagram Tools.

2. Click the drawing area to create a Gauge control, or click and drag so that you can create
the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a gauge control

� To change the display name for the control, see Changing the display name for a
control element
Rational Rhapsody 797

Panel diagrams
Drawing a meter control

The Meter control is an output control that displays as an analog meter, as shown in the following
figure in its default non-animated appearance:

Note the following information:

� You can bind it to an attribute.
� Its attribute type is a Number.

To draw a Meter control on a panel diagram:

1. Click the Meter button in the Diagram Tools.

2. Click the drawing area to create a Meter control, or click and drag so that you can create
the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a meter control

� To change the display name for the control, see Changing the display name for a
control element
798 User Guide

Create panel diagram elements
Drawing a level indicator control

The Level Indicator control is an output control. By default it displays as a vertical 3-dimensional
cylindrical level indicator, as shown in the following figure in its default non-animated
appearance. However, you can change its appearance (for example to a 3-dimensional square
shape) through the Properties tab of the Control Properties window.

Note the following information:

� You can bind it to an attribute.
� Its attribute type is a Number.

To draw a Level Indicator control on a panel diagram:

1. Click the Level Indicator button in the Diagram Tools.

2. Click the drawing area to create a Level Indicator control, or click and drag so that you can
create the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a level indicator control

� To change the display name for the control, see Changing the display name for a
control element
Rational Rhapsody 799

Panel diagrams
Drawing a matrix display control

The Matrix Display control is an output control, as shown in the following figure in an example of
an animated appearance:

Note the following information:

� You can bind it to an attribute.
� Its attribute types are Number and String.

To draw a Matrix Display control on a panel diagram:

1. Click the Matrix Display button in the Diagram Tools.

2. Click the drawing area to create a Matrix Display control, or click and drag so that you can
create the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a matrix display control

� To change the display name for the control, see Changing the display name for a
control element
800 User Guide

Create panel diagram elements
Drawing a digital display control

The Digital Display control is an output control, as shown in the following figure in an example of
an animated appearance:

Note the following information:

� You can bind it to an attribute.
� Its attribute types are a Number and a String.

To draw a Digital Display control on a panel diagram:

1. Click the Digital Display button in the Diagram Tools.

2. Click the drawing area to create a Digital Display control, or click and drag so that you can
create the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a digital display control

� To change the display name for the control, see Changing the display name for a
control element
Rational Rhapsody 801

Panel diagrams
Drawing an LED control

The LED control is an output control, as shown in the following figure in an example of an
animated appearance:

Note the following information:

� You can bind it to a state or an attribute.
� Its attribute type is a Boolean.

To draw an LED control:

1. Click the LED button in the Diagram Tools.

2. Click the drawing area to create a LED control.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a LED control

� To change the display name for the control, see Changing the display name for a
control element
802 User Guide

Create panel diagram elements
Drawing an on/off switch control

The On/Off Switch control is an input/output control, as shown in the following figure in one of it
many possible shape styles in an example of an animated appearance:

Note the following information:

� You can bind it to a state or an attribute.
� Its attribute type is a Boolean.
� By default its control direction is set to In/Out, though you can change it to In or Out.

To draw an On/Off Switch control on a panel diagram:

1. Click the On/Off Switch button in the Diagram Tools.

2. Click the drawing area to create a On/Off Switch control.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a on/off switch control

� To change the display name for the control, see Changing the display name for a
control element
Rational Rhapsody 803

Panel diagrams
Drawing a push button control

The Push Button control is an input control, as shown in the following figure in its default
non-animated appearance:

Note the following information:

� You can bind it to an event.
� By default, this control injects a none parameter event.
� You can set a fix parameter for the event.

To draw a Push Button control on a panel diagram:

1. Click the Push Button button in the Diagram Tools.

2. Click the drawing area to create a Push Button control, or click and drag so that you can
create the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the display name for the control, see Changing the display name for a
control element
804 User Guide

Create panel diagram elements
Drawing a button array control

The Button Array control is an input/output control, as shown in the following figure in its default
non-animated appearance:

Note the following information:

� You can bind it to an attribute. In addition, you can set a value for each switch to be set on
the attribute.

� Its attribute types are a Number and a String.
� By default its control direction In/Out, though you can change it to In or Out.

To draw a Button Array control on a panel diagram:

1. Click the Button Array button in the Diagram Tools.

2. Click the drawing area to create a Button Array control, or click and drag so that you can
create the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the value binding for the control; see Setting the value bindings for a
button array control.

� To change the display name for the control, see Changing the display name for a
control element
Rational Rhapsody 805

Panel diagrams
Drawing a text box control

The editable Text Box control is an input/output control, as shown in the following figure in its
default non-animated appearance:

Note the following information:

� You can bind it to an attribute.
� Its attributes types are a Number and a String.
� By default its control direction In/Out, though you can change it to In or Out.

To draw a Text Box control on a panel diagram:

1. Click the Text Box button in the Diagram Tools.

2. Click the drawing area to create a Text Box control, or click and drag so that you can
create the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the display name for the control and/or its data flow direction, see
Changing the display name for a control element.

� To change the format settings (for example, line, fill, and font) for a Text Box
control, see Change the format of a single element.
806 User Guide

Create panel diagram elements
Drawing a slider control

The Slider control is an input/output control, as shown in the following figure in its default
non-animated appearance:

Note the following information:

� You can bind it to an attribute.
� Its attribute type is a Number.
� By default its control direction In/Out, though you can change it to In or Out.

To draw a Slider control on a panel diagram:

1. Click the Slider button in the Diagram Tools.

2. Click the drawing area to create a Slider control, or click and drag so that you can create
the control to a certain size.

3. To bind the control element to the model element that the control is to regulate or monitor,
see Bind a control element to a model element.

4. Make whatever changes you might want for the control:

� To change the settings for the control, see Change the settings for a control element

� To change the properties for the control, see Change the properties for a control
element and Properties for a slider control

� To change the display name for the control, see Changing the display name for a
control element
Rational Rhapsody 807

Panel diagrams
Bind a control element to a model element
In a panel diagram, the control element is a GUI that has to be connected to some “real” source/
target element. In Rational Rhapsody, binding (mapping) ties the operation between the control
element to the model element it is to regulate or monitor.

A binding definition for a control element defines the following binding settings of each control
element.

� Element type:
– Control element - input sets data to bound element
– Monitor element - output gets data from bound element

� Valid model elements for binding (attribute, event, and state)
� Value attribute types that can be set/get by the control element (Number, String, or

Boolean)
A binding definition for a control element is predefined in Rational Rhapsody. It cannot be
changed. For example, the Bubble Knob has the following binding definition:

� Element role: input, output, or both
� Valid model elements: attributes
� Value types: numbers

Be sure that the bounded element type (for example, an int) is being supported by the control.

In the binding operation, you have to set the model element for binding. You can also set the
instance path.
808 User Guide

Bind a control element to a model element
Binding a control element

To bind a control element to a model element in a panel diagram:

1. Right-click the control and select Features to open the Control Properties window.

2. On the Element Binding tab, depending on your situation:

� If the control has no binding, the Control Binding Browser opens with the project
container as the selected item. Use the browser to navigate to and select the
elements for which you want to bind to the control element, or you can enter the
element path in the Instance Path box.

Note that the browser root is the project and the end nodes are the meta classes
that can be bound for the particular control element. If no relevant end node is
found, the system notifies you that no relevant item was found and the Control
Properties window does not open.

� If the control has a bound element, the browser opens with the bound model
element selected.

� If no relevant element for binding is found in the model, the Element Binding tab
displays blank with a note to that effect.

For more information about binding, see More about binding a control element.
3. Click OK.

More about binding a control element

Note the following about binding a control element:

� Binding an item of a modeled root Instance

In the case where the element for binding is owned by a modeled root Instance, the object
is displayed by the browser on the Element Binding tab on the Control Properties
window containing all relevant items for binding. You can select the element from the
browser or alternatively type in the element path (stating at modeled root object) in the
Instance Path box.

� Binding an item of a dynamic root Instance

In the case where the element for binding is owned by a dynamic root Instance (modeled
class that will be instantiated at run time), the element root class is displayed by the
browser on the Element Binding tab containing all relevant items for binding. You can
select the element from the browser or alternatively type in the element path (stating at
modeled root class) in the Instance Path box.
Rational Rhapsody 809

Panel diagrams
In both ways, if the dynamic Instance name is different from the default class instance
name, the name should be entered following item selection.

� Binding an item with multiplicity on its root object and parts

In the case where bound element owner parts has multiplicity: Selecting the element
through the browser on the Element Binding tab creates the path in the Instance Path
box with “0” multiplicity on the relevant parts. You can then set the multiplicity as
needed. If you enter a path, it is your responsibility to add multiplicity where needed.

The following table summarizes the binding (mapping) characteristics for each panel diagram
control element:

Attribute types
Only attributes that hold predefined primitive (or enumeration) types could be bound. The
supported predefined types are:

� Number: int, unsigned int, short, unsigned short, long, double, float,
RhpInteger, RhpPositive, RhpReal

� String: char, char*, RhpString, OMString, CString
� Boolean: Bool, OMBoolean, RhpBoolean, RiCBoolean
810 User Guide

Change the settings for a control element
Change the settings for a control element
You can change the settings for the control elements available for a panel diagram. For example,
when applicable, its:

� Minimum and maximum values
� Shape style (in the case of a On/Off switch)
� Caption (in the case of the Push Button control)
� Color scheme (in the case of the Matrix Display and Digital Display controls

You do this through the Settings tab on the Control Properties window for a control element.

Where possible (for example, for the Bubble Knob control), you can also change their control
direction (to input, output, or both). By default, they are set to InOut. You can use the Control
Direction area of the Settings tab on the Control Properties window to change the control
direction when possible.

Changing the settings for a control

To change the settings for a control:

1. Right-click a control and select Features to open the Control Properties window.

2. Make your changes on the Settings tab. Note that the settings that are available depend on
the type of control element you have selected.

3. If applicable for a control, select an radio button in the Control Direction area:

� In for input flow
� Out for output flow
� InOut for input/output flow

4. Click OK.
Rational Rhapsody 811

Panel diagrams
Change the properties for a control element
You can change the properties for many of the control elements available for a panel diagram (for
example, its background color, range values, caption, and so on). You can make changes through
the Properties tab of the Control Properties window for a control. These properties are ActiveX
controls.

Note: The Properties tab displays only when appropriate for the selected control
element. In addition, the tab shows only those settings that are applicable to
that control element.

Properties for a bubble knob control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for a Bubble Knob control. You can change the properties as follows:

Device Settings Explanation

BackgroundColor To change the background color for the control, click the drop-down arrow
in the right column and select a color from the Palette tab that displays.

DivisionLIneThickness To change the thickness of the major division lines (also referred to tick
markers), change the value in the right column. The default value is 2.

DotColor To change the color for the dot (indicator mark) on the Bubble Knob control,
click the drop-down arrow in the right column and select a color from the
Palette tab that displays.

EndAngle To change the distance around the dial (between the minimum and
maximum values), change the value in the right column. The default value
is -45.

Font To change the font for the text (for example, the numbers) on the control,
click the Ellipses button in the right column and select a font from the Font
window that displays. The default value is Arial.

GradientFactor To change the gradient factor for the control, change the value in the right
column. The higher the number the more pronounced the gradient for the
appearance of the knob, which displays as light to dark. The default value
is 0.7.

LineColor To change the color of all the tick markers, click the drop-down arrow in the
right column and select a color from the Palette tab that displays.

MaximumValue To change the maximum value for the control, change the value in the right
column. The default value is 100.

MinimumValue To change the minimum value for the control, change the value in the right
column. The default value is 0.
812 User Guide

Change the properties for a control element
NumberOfDivisions To change the number of major division lines (tick markers) for the control,
change the value in the right column. The default value is 10.
For example, with the maximum value set at 100, minimum value at 0, and
division value at 5, your Bubble Knob control would show major tick
markers at 0, 20, 40, 60, 80, and 100.

NumberOfSubdivisions To change the number of minor division lines (tick markers) between two
major ones, change the value in the right column. The default value is 1,
which means no minor tick marker displays between two major tick
markers. For example, to make three subdivision areas appear between
two major markers, enter a value of 3.

RelativeBubbleRadius To change the relative bubble radius for the control, change the value in the
right column. This regulates the relative size of the Bubble Knob control,
which includes its number scale. The default value is 0.6.

RelativeDotPositionRadius To change the placement (closer or farther away) of the dot indicator
relative to the 0 value marker, change the value in the right column. The
default value is 0.75.

RelativeDotRadius To change the size of the dot indicator, change the value in the right
column. The default value is 0.11.

RelativeExternalRadius To change the relative external radius for the control, change the value in
the right column. This setting changes the length of the major and minor
tick markers while still touching the control. The default value is 1.1.

RelativeInternalRadius To change the relative internal radius for the control, change the value in
the right column. This setting changes the length of the major and minor
tick markers and how far away they are from the the bubble. The default
value is 1.

RelativeTextRadius To change the relative text radius for the control, change the value in the
right column. This setting changes the distance between the scale numbers
and their associate tick makers. The default value is 0.98.

StartAngle To change the position of the minimum value marker and the dot indicator,
change the value in the right column. The default value is 225.

SubdivisionLineThickness To change the thickness of the minor division lines (tick markers), change
the value in the right column. The default value is 1.

TextColor To change the color for the text (scale numbers) on the control, click the
drop-down arrow in the right column and select a color from the Palette tab
that displays.

Value To change the default placement of the dot indicator, change the value in
the right column. The default value is 0.

ValueFormatString To change the value format of the numbers on the control, change the
value in the right column. The default value is %.0f, which shows
numbers, for example, as 0, 10, 20, and so on. For the value %.1f, the
control would show number as 0.0, 10.0, 20.0, and so on.

Device Settings Explanation
Rational Rhapsody 813

Panel diagrams
Properties for a gauge control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for a Gauge control. You can change the properties as follows:

Device Settings Explanation

BackColor To change the back color for the control, click the drop-down arrow in
the right column and select a color from the Palette tab that displays.

BackgroundPicture To add/change an image that displays as the background for the
control, click the Ellipses button in the right column and open a bitmap
file.

Caption To insert a caption to show in the center of the Gauge control, type
your text in the right column.
You can use RelativeCaptionY, RelativeCaptionX,
RelativeCenterY, and RelativeCenterX to position the caption
somewhere on the gauge other than its center.

CaptionColor To change the color for your caption text, click the drop-down arrow in
the right column and select a color from the Palette tab that displays.

CaptionFont To change the font for your caption text, click the Ellipses button in the
right column and select a font from the Font window that displays. The
default value is Arial.

DivisionLineThickness To change the thickness of the major division lines (also known as tick
markers), change the value in the right column. The default value is 2.

EnclosingCircleColor To change the background color for the control, click the drop-down
arrow in the right column and select a color from the Palette tab that
displays.

EndAngle To change the angle of the scale on the high end of the control, change
the value in the right column. The value widens (lower value) or shrinks
(higher value) the empty space between the low and high ends of the
control. The default is -45.

ExternalCircleThickness To change the thickness of the external circle of the control, change
the value in the right column. The default value is 3.

ForeColor To change the foreground color, click the drop-down arrow in the right
column and select a color from the Palette tab that displays.

GreenColor To change the color (typically green) of the OK area of the control, click
the drop-down arrow in the right column and select a color from the
Palette tab that displays.

GreenStartValue To change the beginning value for the OK area on the control, change
the value in the right column. The default value is 60.

IndexColor To change the color of the needle indicator for the control, click the
drop-down arrow in the right column and select a color from the Palette
tab that displays.

IndexLineThickness To change the thickness of the needle indicator for the control, change
the value in the right column. The default value is 0.
814 User Guide

Change the properties for a control element
InternalCircleThickness To change the thickness of the internal circle of the control, change the
value in the right column. The default value is 2.

MaximumValue To change the maximum value for the control, change the value in the
right column. The default value is 100.

MinimumValue To change the minimum value for the control, change the value in the
right column. The default value is 0.

NumberColor To change the color of the numbers on the control, click the drop-down
arrow in the right column and select a color from the Palette tab that
displays.

NumberFont To change the font for the numbers on the control, click the Ellipses
button in the right column and select a font from the Font window that
displays. The default value is Arial.

NumberOfDivisions To change the number of major division lines (tick markers) for the
control, change the value in the right column. The default value is 10.
For example, with the maximum value set at 100, minimum value at 0,
and division at 5, your control would show major tick markers at 0, 20,
40, 60, 80, and 100.

NumberOfSubdivisions To change the number of minor division lines (tick markers) between
two major ones, change the value in the right column. The default
value is 2, which means one minor tick marker displays between two
major tick markers. For example, to make three subdivision areas
appear between two major markers, enter a value of 3.

RedColor To change the color (typically red) of the Warning area of the control,
click the drop-down arrow in the right column and select a color from
the Palette tab that displays.

RedStartValue To change the beginning value for the Warning area on the gauge,
change the value in the right column. The default value is 90.

RelativeCaptionX To change the relative X coordinate (east/west) of the text entered for
Caption, change the value in the right column. The default value
is 0.5.

RelativeCaptionY To change the relative Y (north/south) coordinate of the text entered for
Caption, change the value in the right column. The default value
is 0.5.

RelativeCenterX To change the relative center Y coordinate of the control, change the
value in the right column. The default value is 0.5.

RelativeCenterY To change the relative center X coordinate of the control, change the
value in the right column. The default value is 0.55.

RelativeEnclosingCircleRadius To change the relative enclosing circle radius of the control, change the
value in the right column. The default value is .98.

RelativeExternalRadius To change the relative external radius of the control, change the value
in the right column. The default value is 1.1.

Device Settings Explanation
Rational Rhapsody 815

Panel diagrams
RelativeIndexBackLength To change the relative length the needle indicator from the back (not
pointy) end, change the value in the right column. The default value
is 0.3.

RelativeIndexLength To change the relative length of the needle indicator from the front
(pointy) end, change the value in the right column. This lengthens the
needle indicator at its back (wider) end. The default value is 1.2.

RelativeInternalRadius To change the relative internal radius of the control, change the value
in the right column. The default value is 0.35.

RelativeTextRadius To change the relative position of the text (scale numbers), change the
value in the right column. The default value is 1.1.

ScaleCircleColor To change the color of the scale circle, click the drop-down arrow in the
right column and select a color from the Palette tab that displays.

StartAngle To change the position of the minimum value marker and the needle
indicator, change the value in the right column. The default value
is 225.

StepValue To change the step value, change the value in the right column. The
default is 1.

SubdivisionLineThickness To change the thickness of the minor division lines (tick markers),
change the value in the right column. The default value is 1.

TailAngle To change the thickness of the needle indicator, change the value in
the right column. The default is 165.

Value To change the default value for the needle indicator, change the value
in the right column. The default value is 0.

ValueFormatString To change the value format of the scale number, change the value in
the right column. The default value is %.0f, which shows numbers, for
example, as 0, 10, 20, and so on. For the value %.1f, the control
would show number as 0.0, 10.0, 20.0, and so on.

YellowColor To change the color (typically yellow) of the Caution area of the control,
click the drop-down arrow in the right column and select a color from
the Palette tab that displays.

YellowStartValue To change the beginning value for the Caution area on the gauge,
change the value in the right column. The default value is 75.

Device Settings Explanation
816 User Guide

Change the properties for a control element
Properties for a meter control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for a Meter control. You can change the properties as follows:

Device Settings Explanation

BackgroundImage To add an image so that it displays as the background for the control,
click the Ellipses button in the right column and open a bitmap file.

BottomCoverColor To change the color of the bottom cover for the control, click the
drop-down arrow in the right column and select a color from the Palette
tab that displays.
You can use this setting in conjunction with
BottomCoverRelativeHeight.

BottomCoverLabelFront To change the font for the text on the bottom cover for the control, click
the Ellipses button in the right column and select a font from the Font
window that displays. The default value is Arial.
You use this setting in conjunction with Caption and
BottomCoverTextColor.

BottomCoverRelativeHeight To change the height of the bottom cover area for the control, change
the value in the right column. The default is 0.2.
You can use this setting in conjunction with BottomCoverColor.

BottomCoverTextColor To change the color for the text that displays in the bottom cover area,
click the drop-down arrow in the right column and select a color from
the Palette tab that displays.
You use this setting in conjunction with Caption and
BottomCoverLabelFront.

Caption To insert a caption to appear in the bottom cover area of the control,
type your text in the right column.
You can use this setting in conjunction with
BottomCoverLabelFront and BottomCoverTextColor.

GreenColor To change the color (typically green) of the OK area of the control, click
the drop-down arrow in the right column and select a color from the
Palette tab that displays.

GreenStartValue To change the beginning value for the OK area on the control, change
the value in the right column. The default value is 60.

IndexColor To change the color of the needle indicator for the control, click the
drop-down arrow in the right column and select a color from the Palette
tab that displays.

IndexThickness To change the thickness of the needle indicator, change the value in
the right column. The default value is 2.

InstrumentBackgroundColor To change the background color for the control, click the drop-down
arrow in the right column and select a color from the Palette tab that
displays.

MaximumValue To change the maximum value for the control, change the value in the
right column. The default value is 100.
Rational Rhapsody 817

Panel diagrams
MinimumValue To change the minimum value for the control, change the value in the
right column. The default value is 0.

NumberOfDivisions To change the number of major division lines (tick markers) for the
control, change the value in the right column. The default value is 5.
For example, with the maximum value set at 100, minimum value at 0,
and division at 5, your control would show major tick markers at 0, 20,
40, 60, 80, and 100.

NumberOfSubdivisions To change the number of minor division lines (tick markers) between
two major ones, change the value in the right column. The default
value is 1, which means no minor tick marker displays between two
major tick markers. For example, to make three subdivision areas
appear between two major markers, enter a value of 3.

RedColor To change the color (typically red) of the Warning area of the control,
click the drop-down arrow in the right column and select a color from
the Palette tab that displays.

RedStartValue To change the beginning value for the Warning area on the control,
change the value in the right column. The default value is 90.

RelativeIndexLength To change the relative length of the needle indicator, change the value
in the right column. The default value is 1.1.

RelativeTextRadius To change the relative position of the text (scale numbers), change the
value in the right column. The default value is 0.9.

ScaleColor To change the color of the scale outline and numbers, click the
drop-down arrow in the right column and select a color from the Palette
tab that displays.

ScaledCircleRelativeDiameter To change the relative diameter of the control, change the value in the
right column. The default is 1.75.

ScaledCircleRelativeShifting To change the relative height of the control, change the value in the
right column. The default is 0.3.

ScaleRelativeWidth To change the relative wide of the scale, change the value in the right
column. The default is 0.1.

ScaleThickLineWidth To change the top and bottom lines of the scale, change the value in
the right column. The default is 2.

ScaleThinLineWidth To change the thickness of the vertical lines of the scale, change the
value in the right column. The default is 1.

ShadedAreaRelativeSize The default is 0.

SmallScaleFont To change the font for the scale numbers, click the Ellipses button in
the right column and select a font from the Font window that displays.
The default value is Arial.

StepValue To change the step value, change the value in the right column. The
default is 1.

Value To change the default value for the needle indicator, change the value
in the right column. The default value is 0.

Device Settings Explanation
818 User Guide

Change the properties for a control element
ValueFormatString To change the value format of the scale number, change the value in
the right column. The default value is %.1f, which shows numbers, for
example, as 0.0, 10.0, 20.0, and so on. For the value %.0f, the control
would show number as 0, 10, 20, and so on.

VisibleScaleRelativeSize To change the relative size of the visible scale, change the value in the
right column. The default value is 1.2.

YellowColor To change the color (typically yellow) of the Caution area of the control,
click the drop-down arrow in the right column and select a color from
the Palette tab that displays.

YellowStartValue To change the beginning value for the Caution area on the control,
change the value in the right column. The default value is 75.

Device Settings Explanation
Rational Rhapsody 819

Panel diagrams
Properties for a level indicator control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for a Level Indicator control. You can change the properties as follows:

Device Settings Explanation

BackColor To change the background color for the control, click the drop-down arrow
in the right column and select a color from the Palette tab that displays.

CurrentValue To change the current (default) value for the control, change the value in
the right column. The default is 20.

DrawTextLabels The default is True.

EnableThreshold1 To enable/disable the appearance of the top middle threshold level line,
change the value in the right column. True enables the appearance;
False disables it.
The default is True.

EnableThreshold2 To enable/disable the appearance of the bottom middle threshold level line,
change the value in the right column. True enables the appearance;
False disables it.
The default is True.

Font To change the font for the numbers on the control, click the Ellipses button
in the right column and select a font from the Font window that displays.
The default value is Arial.

FormatString To change the value format of the scale numbers, change the value in the
right column. The default value is %.0f, which shows numbers, for
example, as 0, 10, 20, and so on. For the value %.1f, the control would
show number as 0.0, 10.0, 20.0, and so on.

GradientFactor To change the gradient factor for the control, change the value in the right
column. The higher the number the more pronounced the gradient for the
appearance of the knob, which displays as light to dark. The default value
is 0.7.

HorizontalLayout To change the layout of the level indicator to be horizontal, change the
value in the right column to True. The default is False.

LiquidColor To change the color of the level indicator, click the drop-down arrow in the
right column and select a color from the Palette tab that displays.

MaximumValue To change the maximum value for the control, change the value in the right
column. The default value is 100.

MinimumValue To change the minimum value for the control, change the value in the right
column. The default value is 0.

NumberOfDivisions To change the number of major division lines (tick markers) for the control,
change the value in the right column. The default value is 5.
For example, with the maximum value set at 100, minimum value at 0, and
division at 5, your control would show major tick markers at 0, 20, 40, 60,
80, and 100.
820 User Guide

Change the properties for a control element
NumberOfSubdivisions To change the number of minor division lines (tick markers) between two
major ones, change the value in the right column. The default value is 1,
which means no minor tick marker displays between two major tick
markers. For example, to make three subdivision areas appear between
two major markers, enter a value of 3.

RelativeDepth To change the appearance of the relative depth of the control, change the
value in the right column. The default is 0.2.
For example, a value of 0 gives the control a flat tall rectangular
appearance. While a value of 0.2 gives it a 3-dimensional cylindrical
appearance.
Note that the appearance of the level indicator control is also affected by
SquareShape, RelativeHeight and RelativeWidth.
Note also that the appearance of the orientation of the level indicator is
affected by HorizontalLayout.

RelativeHeight To change the relative height of the control, change the value in the right
column. The default is 0.9.

RelativeWidth To change the relative width of the control, change the value in the right
column. The default is 0.9.

ShadedAreaRelativeSize The default is 0.

SquareShape To change the appearance of the Level Indicator control to look like a 3-
dimensional square, change the value in the right column to True. The
default is False.

Threshold1Color To change the color of the top middle threshold level line, click the
drop-down arrow in the right column and select a color from the Palette tab
that displays.

Threshold1Thickness To change the thickness of the top middle threshold level line, change the
value in the right column. The default is 1.

Threshold1Value To change the position of the bottom middle threshold level line, change the
value in the right column. The default is 75.

Threshold2Color To change the color of the bottom middle threshold level line, click the
drop-down arrow in the right column and select a color from the Palette tab
that displays.

Threshold2Thickness To change the thickness of the bottom middle threshold level line, change
the value in the right column. The default is 1.

Threshold2Value To change the position of the bottom threshold level line, change the value
in the right column. The default is 35.

UseColorGradients The default is True.

Device Settings Explanation
Rational Rhapsody 821

Panel diagrams
Properties for a matrix display control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for a Matrix Display control. You can change the properties as follows:

Properties for a digital display control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for a Digital Display control. You can change the properties as follows:

Device Settings Explanation

BackColor To change the background color for the control, click the drop-down arrow
in the right column and select a color from the Palette tab that displays.

Caption To insert a caption to appear on the control, type your text in the right
column.

Style To change the appearance of the background of the control, change the
value in the right column. The default is 0.

Device Settings Explanation

BackColor To change the background color for the control, click the drop-down arrow
in the right column and select a color from the Palette tab that displays.

DisplayedString To insert text to display on the control, type your text in the right column.

Style To change the appearance of the background for the control, change the
value in the right column. The default is 4.
822 User Guide

Change the properties for a control element
Properties for a LED control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for an LED control. You can change the properties as follows:

Device Settings Explanation

BackColor To change the background color for the control, click the drop-down arrow
in the right column and select a color from the Palette tab that displays

BlackWhenOff To change the appearance of the control to black when the application is
off, change the value in the right column to True. The default is False.

Blinking To change it so that the LED is blinking, change the value in the right
column to True. The default is False.

BlinkingTimeMillesec To change the blinking rate, change the value in the right column. The
default is 300.

Color To change the color for the LED, change the value in the right column. The
default is 2.

State To change the state for the LED, change the value in the right column to
True. The default is False.

Style To change the appearance of the background of the control, change the
value in the right column. The default is 0.
Rational Rhapsody 823

Panel diagrams
Properties for a on/off switch control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for an On/Off Switch control. You can change the properties as follows:

Device Settings Explanation

BackColor To change the background color for the control, click the drop-down arrow
in the right column and select a color from the Palette tab that displays.

IconSet To change the appearance of the On/Off switch icon, change the value in
the right column.

0 =

1 =

2 =

3 =

4 =

5 =

6 =

7 =

8 =

9 = (default)

State To change the state of the control, change the value in the right column.
The default is True.

UserInteractionEnabled To change is user interaction is enable, change the value in the right
column. The default is True.
824 User Guide

Change the properties for a control element
Properties for a slider control

The following table lists the properties that appear on the Properties tab of the Control Properties
window for a Slider control. You can change the properties as follows:

Device Settings Explanation

BackgroundColor To change the background color for the control, click the drop-down arrow
in the right column and select a color from the Palette tab that displays.

DivisionLIneThickness To change the thickness of the major division lines (also referred to tick
markers), change the value in the right column. The default value is 2.

DotColor To change the color for the indicator mark on the Slider control, click the
drop-down arrow in the right column and select a color from the Palette tab
that displays.

EndAngle To change the distance on the Slider rule (between the minimum and
maximum values), change the value in the right column. The default value
is -45.

Font To change the font for the text (for example, the numbers) on the control,
click the Ellipses button in the right column and select a font from the Font
window that displays. The default value is Arial.

GradientFactor To change the gradient factor for the control, change the value in the right
column. The higher the number the more pronounced the gradient for the
appearance of the Slider control, which displays as light to dark. The
default value is 0.7.

LineColor To change the color of all the tick markers, click the drop-down arrow in the
right column and select a color from the Palette tab that displays.

MaximumValue To change the maximum value for the control, change the value in the right
column. The default value is 100.

MinimumValue To change the minimum value for the control, change the value in the right
column. The default value is 0.

NumberOfDivisions To change the number of major division lines (tick markers) for the control,
change the value in the right column. The default value is 10.
For example, with the maximum value set at 100, minimum value at 0, and
division value at 5, your Slider control would show major tick markers at 0,
20, 40, 60, 80, and 100.

NumberOfSubdivisions To change the number of minor division lines (tick markers) between two
major ones, change the value in the right column. The default value is 1,
which means no minor tick marker displays between two major tick
markers. For example, to make three subdivision areas appear between
two major markers, enter a value of 3.

RelativeBubbleRadius To change the relative bubble radius for the control, change the value in the
right column. This regulates the relative size of the Bubble Knob control,
which includes its number scale. The default value is 0.1.

RelativeDotPositionRadius To change the placement (closer or farther away) of the dot indicator
relative to the 0 value marker, change the value in the right column. The
default value is 0.75.
Rational Rhapsody 825

Panel diagrams
RelativeDotRadius To change the size of the indicator mark, change the value in the right
column. The default value is 2.

RelativeExternalRadius To change the relative external radius for the control, change the value in
the right column. This setting changes the length of the major and minor
tick markers and how far away they are from the indicator mark line. The
default value is 6.25.

RelativeInternalRadius To change the relative internal radius for the control, change the value in
the right column. This setting changes the length of the major and minor
tick markers and how far away they are from the the indicator mark line.
The default value is 4.75.

RelativeTextRadius To change the relative text radius for the control, change the value in the
right column. This setting changes the distance between the scale numbers
and their associate tick makers. The default value is 7.5.

StartAngle To change the position of the minimum value marker and the indicator
mark, change the value in the right column. The default value is 225.

SubdivisionLineThickness To change the thickness of the minor division lines (tick markers), change
the value in the right column. The default value is 1.

TextColor To change the color for the text (scale numbers) on the control, click the
drop-down arrow in the right column and select a color from the Palette tab
that displays.

Value To change the default placement of the indicator mark, change the value in
the right column. The default value is 0.

ValueFormatString To change the value format of the numbers on the control, change the
value in the right column. The default value is %.0f, which shows
numbers, for example, as 0, 10, 20, and so on. For the value %.1f, the
control would show number as 0.0, 10.0, 20.0, and so on.

Device Settings Explanation
826 User Guide

Setting the value bindings for a button array control
Setting the value bindings for a button array control
To set the value bindings for a Button Array control for a panel diagram:

1. Right-click a Button Array control and select Features.

2. On the Value Binding tab, change the name of a button and its value.

3. Optionally, you can click <New> to create another button in your array.

4. Click OK.

Changing the display name for a control element
You can change the display option for the name for any of the control elements available for a
panel diagram. When you create a control, by default the system displays the name of the element
(for example, Gauge_1 and Meter_5). You can use the Control Display Options window to change
the display option for the name of your control element.

To change the display name and/or data flow options for a control element:

1. Right-click a control on the panel diagram and select Display Options to open the Control
Display Options window.

2. In the Control Name area, select an radio button:

� Bound element full path displays the full path of the bound element (for
example, Default.itsClass_0.speed).

� Bound element displays the name of the bound element (for example, speed).
� Name displays the name of the control (for example, Gauge_1). This is the

default.
� None does not display any name.

3. Click OK.
Rational Rhapsody 827

Panel diagrams
Panel diagram limitations
The panel diagram feature has the following limitations:

� Does not support composition made by relations (supports composition made by part
only)

� Cannot launch an event with arguments
� Does not have support for graphical DiffMerge
� RiCString typed attribute (Rational Rhapsody Developer for C) cannot be bound
828 User Guide

Structure diagrams
Structure diagrams model the structure of a composite class; any class or object that has an OMD
can have a structure diagram. In addition, a structure diagram supports some the features supported
by an OMD and uses the properties defined in the ObjectModelGE subject.

Object model diagrams focus more on the specification of classes, whereas structure diagrams
focus on the instances used in the model. Although you can put classes in structure diagrams and
objects in the OMD, the toolbars for the diagrams are different to allow a distinction between the
specification of the system and its structure.

The following figure shows a structure diagram.
Rational Rhapsody 829

Structure diagrams
Structure diagram drawing Tools
The Diagram Tools for a structure diagram includes the following tools:

The following sections describe how to use these tools to draw the parts of a structure diagram.
See Graphic editorsfor basic information on diagrams, including how to create, open, and delete
them.

Composite classes
For detailed information about composite classes, see Creating composite classes in Object model
diagrams.

Drawing
Tool Name Description

Composite
class

A container class. You can create objects and relations inside a composite class.
See Composite classes for more information.

Object The structural building block of a system. Objects form a cohesive unit of state (data)
and services (behavior). Every object has a public part and an private part. See
Objects for more information.

File Only available for Rational Rhapsody in C. It allows you to create file model
elements. A file is a graphical representation of a specification (.h) or implementation
(.c) source file. See External files in C for more information.

Port Draws connection points among objects and their environments. See Structure
diagram ports for more information.

Link Creates an association between the base classes of two different objects. See Links
and associations for more information.

Dependency Creates a relationship in which the proper functioning of one element requires
information provided by another element. See Dependency uses for more
information.

Flow Specifies the flow of data and commands within a system. See Flows mechanism
for more information.
830 User Guide

Objects
Objects
Objects are the structural building blocks of a system. They form a cohesive unit of state (data) and
services (behavior). Every object has a specification part (public) and an implementation part
(private). See Objects for detailed information about objects.

Creating an object

To create an object:

1. Click the Object icon in the Diagram Tools.

2. Double-click, or click-and-drag, in the drawing area.

3. Edit the default name, then press Enter.

If you specify the name in the format <ObjectName:ClassName> (for an object with
explicit type) and the class <ClassName> exists in the model, the new object will
reference it. If it does not exist, Rational Rhapsody prompts you to create it.

Alternatively, you can select Edit > Add New > Object. If you want to add a object to an OMD,
you must use this method because the Diagram Tools do not include a Object tool.

In the OMD, an object is shown like a class box, with the following differences:

� The name of the object is underlined.
� The multiplicity is displayed in the upper, left-hand corner.

As with classes, you can display the attributes and operations in the object. See Display option
settings for detailed information.
Rational Rhapsody 831

Structure diagrams
Features of objects

The Features window enables you to change the features of an object, including its concurrency
and multiplicity.

An object has the following features:

� Name specifies the name of the element. The default name is object_n, where n is an
incremental integer starting with 0.

� L specifies the label for the element, if any. See Descriptive labels for elements for
information on creating labels.

� Stereotype specifies the stereotype of the object, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. See
Stereotypes for information on creating stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Main Diagram specifies the main diagram for the object. This field is available only for
objects with implicit type.

� Concurrency specifies the concurrency of the object. This field is available only for
objects with implicit type. The possible values are as follows:

– Sequential where the element will run with other classes on a single system
thread. This means you can access this element only from one active class.

– Active where the element will start its own thread and run concurrently with
other active classes.

� Type specifies the class of which the object is an instance. To view that class features,
click the Invoke Feature Dialog button next to the Type field.

In addition to the names of all the instantiated classes in the model, this list includes the
following choices:

– <Implicit> specifies an implicit object
– <Explicit> specifies an explicit object
– <New> enables you to specify a new class
– <Select> enables you to browse for a class using the selection tree

� Multiplicity specifies the number of occurrences of this instance in the project. Common
values are one (1), zero or one (0,1), or one or more (1..*).

� Initialization specifies the constructor being called when the object is created. See the
Actual Call window for objects.

� Relation to whole enables you to name the relation for a part. If the object is part of a
composite class, enable the Knows its whole as check box and type a name for the
relation in the text box. This relation is displayed in the browser under the Association
Ends category under the instantiated class or implicit object.
832 User Guide

Objects
If the Relation to whole field is specified on the General tab, the Features window
includes tabs to define that relation and its properties. However, on the tab that specifies
the features of its whole (in the illustration of the itsController tab), only the fields Name,
Label, Stereotype, and Description can be modified. See Association features for more
information on relation features.

Actual Call window for objects

If you click the Ellipsis button beside the Features window Initialization field, the Actual Call
window opens so you can see the details of the call. If the part does not have a constructor with
parameters, this field is dimmed and the button is unavailable.

Changing the order of objects

To change the order of objects:

1. In the browser, right-click the Object category icon and, then select Edit Objects Order.

2. Clear the Use default order check box.

3. Select the object you want to move.

4. Click Up to generate the object earlier or Down to generate it later.

5. Click OK.
Rational Rhapsody 833

Structure diagrams
Supported Rational Rhapsody functionality in objects

The following table lists the Rational Rhapsody functionality supported by objects.

Functionality Description

Roundtrip Full support.

Diff/Merge Full support.

ReporterPLUS ReporterPLUS shows objects separately
from objects.

Internal reporter Objects are printed in the group
“Objects.”

Search and replace You can search for objects in the model
and select their type from the list of
possible types. See Searching in the
model for more information.

Check Model The same checks for objects are used
for objects. See Checksfor more
information.

XMI Controls export of objects.

DOORS Objects can be exported to and checked
by Rational DOORS.
834 User Guide

Structure diagram ports
Structure diagram ports
A port is a distinct interaction point between a class and its environment, or between (the behavior
of) a class and its internal parts. A port enables you to specify classes independently of the
environment in which they will be embedded; the internal parts of the class can be completely
isolated from the environment, and vice versa. See Ports for detailed information about ports.

Links and associations
Rational Rhapsody separates links from associations so you can have unambiguous model
elements for links with a distinct notation in the diagrams. This allows specification of the
following items:

� Links without having to specify the association being instantiated by the link.
� Features of links that are not mapped to an association.

See Links for detailed information about links.

Dependency uses
A dependency exists when the implementation or functioning of one element (class or package)
requires the presence of another element. For example, if class C has an attribute a that is of class
D, there is a dependency from C to D. See Dependencies for detailed information about
dependencies.

Flows mechanism
Flows and flowitems provide a mechanism for specifying exchange of information between
system elements at a high level of abstraction. This functionality enables you to describe the flow
of data and commands within a system at a very early stage, before committing to a specific
design. As the system specification evolves, you can refine the abstraction to relate to the concrete
implementation.

See Flows and flowitems for detailed information about flows and flowitems.
Rational Rhapsody 835

Structure diagrams
External files in C
Rational Rhapsody in C enables you to create model elements that represent external files. An
external file (or simply file) is a graphical representation of a specification (.h) or implementation
(.c) source file. This new model element enables you to use functional modeling and take
advantage of the capabilities of Rational Rhapsody (modeling, execution, code generation, and
reverse engineering) without radically changing the existing external files.

See Files for more information.
836 User Guide

Collaboration diagrams
Collaboration diagrams, like sequence diagrams, display objects, their messages, and their
relationships in a particular scenario or use case. Sequence diagrams emphasize message flow and
can indicate the time sequence of messages sent or received, whereas collaboration diagrams
emphasize relationships between objects.

Collaboration diagrams overview
Collaboration diagrams depict classifier roles and their interactions, or messages, via their
association roles. A classifier role is an instance of a class (or classifier), that is defined only in the
context of the collaboration. A classifier can be an object, a multi-object, or an actor. Similarly, an
association role can be an instance of an association between the two classes and is the link that
carries messages between the two classifier roles. This link is also limited to its purpose in the
collaboration. In other words, the classifier and association roles are relevant only for that
collaboration. An object can have different classifier roles in different collaborations; classifiers
can exchange different sets of messages across different association roles.

In addition, collaboration diagrams display the messages passed across association roles. Messages
are generally instances of class operations. They are numbered to indicate sequence order; they can
be subnumbered (for example, 1a., 1b., 1.1.2, 1.1.3, 2.3a.1., 2.3a.2., and so on) either to indicate
tasks that occur simultaneously or that are subtasks that achieve a larger task.
Rational Rhapsody 837

Collaboration diagrams
A numbering system that indicates parallelism might look like the following example:

1. Make sandwich.

1a. Get jam.

1b. Cut bread.

A numbering system that indicates subtasking might look like the following example:

1. Make sandwich.

1.1 Get jam.

1.2 Cut bread.

1.3 Spread jam on bread slices.

Classifier roles, association roles, and messages are not displayed in the browser; however, the
underlying classes and operations that they realize are displayed. The following figure shows a
collaboration diagram.
838 User Guide

Collaboration diagram tools
Collaboration diagram tools
The Diagram Tools for a collaboration diagram contains the following tools:

The following sections describe how to use these tools to draw the parts of a collaboration
diagram. See Graphic editors for basic information on diagrams, including how to create, open,
and delete them.

Drawing
Tool Name Description

Object Creates a new classifier role. A classifier role can be an instance of an existing class,
a new class that you create in the collaboration diagram, or <Unspecified>, meaning
that it is not a realization of a class. This could be useful if you create collaboration
diagrams at the high-level analysis stage of system design. For more information,
see Classifier roles.

Multi Object Creates a classifier role for a set of objects, which means that the classifier role has
a set of operations and signals that addresses the entire set of objects, and not just a
single object. In other words, the classifier role represents a set of objects that share
a common purpose in the scenario or use case described by the collaboration
diagram. For more information, see Multiple objects.

Actor Creates an actor, which represents an element that is external to the system. A
classifier role based on an actor represents a coherent set of operations and
messages of an external element when it interacts with system elements during a
scenario. For more information, see Actors.

Link Draws a message link, or association role, between two classifier roles. Optionally,
you can give the association role a name, perhaps to indicate the type of
communication that occurs over this link. The association role can be an instance of
an existing association between the two classes (from which the classifier roles are
realized). For more information, see Link messages and reverse link messages.

Link Message Adds a message to the link between two classifier roles. The Message tool creates a
message pointing toward the second classifier role in the link. For more information,
see Link messages and reverse link messages.

Reverse Link
Message

Adds a reverse message to the link between two classifier roles. The Reverse Link
Message tool creates a message pointing toward the first classifier role in the link.
For more information, see Link messages and reverse link messages.

Dependency Creates a dependency between classifier roles.
Rational Rhapsody 839

Collaboration diagrams
Classifier roles
A classifier role can be an instance of an existing class, a new class that you create in the
collaboration diagram, meaning that it is not a realization of a class. This could be useful if you
create collaboration diagrams at the high-level analysis stage of system design.

To create a classifier role:

1. Click the Object button .

2. Click-and-drag to create the new classifier role.

3. You can type the classifier role name in the drawing or right-click the object to display the
Features window and type the name and additional information.

4. Click OK.

By default, a new classifier role has an <Unspecified> Realization value. To make it an
instance of a <New > or existing package, use the pull-down menu in the Features window. See
Modifying the features of a classifier role more information.

Multiple objects
A multiple object signifies that the classifier role has a set of operations and signals that addresses
the entire set of objects, not just a single object. In other words, the classifier role represents a set
of objects that share a common purpose in the scenario or use case described by the collaboration
diagram. A multiple object can represent multiple instances of one or more classes or object types
that share a common purpose in the scenario. As with an object, a multiple object can be
<Unspecified> in this representation.

Creating a classifier role for a multiple object involves the same steps as creating a classifier role
for a single object.

To create multiple objects:

1. Click the Multiple Object button in the Diagram Tools for the collaboration
diagrams.

2. In the drawing area, click (or click-and-drag) to create the multiple object.

3. Use the Features window or edit the default name in the drawing.

4. Press Enter to save the name change in the drawing.
840 User Guide

Actors
Actors
An actor represents an element that is external to the system. A classifier role based on an actor
represents a coherent set of operations and messages of an external element when it interacts with
system elements during a scenario. You can choose an existing actor, create a new one, or set the
classifier role to <Unspecified>, meaning that the actor is not a realization of an existing actor.
This could be useful in diagrams created at the high-level analysis stage of system design. Actors
are a stereotype of a class and are defined through a Features window that is, for the most part, the
same as that for classes.

If you create a new actor, the Features window opens so you can define the actor.

Creating an actor

To create an actor:

1. Click the Actor button .

2. In the drawing area, click (or click-and-drag) to create the actor.

3. Use the Features window or edit the default name in the drawing.

4. Press Enter to save the name change in the drawing.

By default, a new actor is an <Unspecified> Realization value. To make it an instance of a
<New > or existing package, use the pull-down menu in the Features window. See Modify the
features of an actor for more information.

Links
The Link tool draws a message link, or association role, between two classifier roles. Optionally,
you can give the association role a name, perhaps to indicate the type of communication that
occurs over this link. The association role can be an instance of an existing association between the
two classes (from which the classifier roles are realized).

The association role of a link can be <Unspecified>, meaning that it is an unspecified
association. This could be useful in design- and even detailed design-phase collaboration
diagrams, because you can portray messages that are not passed through relations, such as
communication with local or global variables (objects) or communication with variables passed as
parameters of a method.

Association roles are themselves not directional, even if they are assigned a directional
association. This is in keeping with the emphasis on message traffic, regardless of which class
Rational Rhapsody 841

Collaboration diagrams
initiated the flow. Once you have created an association role, you can draw the messages that go
across it.

Note
You can physically move an association role from one set of classifier roles to another, but
this is not typical because the connection of the association role to the association is lost.
The association of an association role must be between the classes matched to the end
classifier roles.

Creating a link

To create a link:

1. Click the Link button .

2. Click in a classifier role.

3. Click in another classifier role. The link is drawn between the two classifier roles, and the
cursor automatically opens the association role name text box.

4. If wanted, type a name for the association role, then press Enter.
842 User Guide

Links
Features of links

The Features window enables you to change the features of a link, including the role name and
association. The General tab includes the following fields:

� Role Name specifies the name by which one class recognizes the other class.
� Association specifies the association being instantiated by the link.

Rational Rhapsody allows you to specify a link without having to specify the association
being instantiated by the link. Until you specify the association with the pull-down menu,
this field is set to <Unspecified>.

� Description allows the user to add more detailed information about the association role.
The Messages tab of the Features window for the link lists the messages sent across the link, as
shown in the following figure.
Rational Rhapsody 843

Collaboration diagrams
Changing the underlying association

You can set the association on which the association role is based using the Features window. You
can also change the association via the menu, as follows:

1. Click the Select button .

2. Right-click the association role and then select Realization Of. A menu of available
associations is displayed, as shown in the following figure.

3. Highlight one of the associations, then click.

Link messages and reverse link messages
Once a link is created between two classifier roles, you can add messages to it. Link messages are
numbered automatically, but can be edited and renumbered, for example, using a subnumbering
system.

You need to use two tools to create the link messages in collaboration diagrams:

Like classifier and association roles, messages can be <Unspecified>, meaning that they are
abstract and not realizations of class operations. Link messages can be instances of existing
operations of a class or instances of new operations. However, for a link message to realize some
operation, the operation must be a method of the class associated with the target of the message.

Messages, whether abstract or instances of operations, have the notation ReturnValue =
MessageName(Arg, Arg, Arg...). You can use this notation in the message name when you
first create it, or you can fill in these boxes explicitly in the Features window.

 Link Message creates a message pointing toward the
second classifier role in the link.

 Reverse Link Message creates a link message pointing
in the other direction.
844 User Guide

Link messages and reverse link messages
Note that a message that is an instance of an operation does not necessarily show the form of the
actual call. You can specify just the items of interest in the collaboration. The ReturnValue is
optional; the function might not return a value, or you might not want to specify the local variable
to which the return value applies.

Creating a link message or reverse link message

To create a message:

1. Click either the Link Message or Reverse Link Message button. The cursor changes to a
small arrow pointing upwards.

2. Move the point of the arrow onto the association role, then click with the left mouse
button. A text box opens, containing an automatically generated number.

3. Type the name of the message. If wanted, you can change the numbering; the
autonumbering will continue from whatever number you specify.

Note: If you edit the number, make sure the numbering sequence ends with a
period (.) to clearly delineate it. If the period is missing, Rational Rhapsody
will not autonumber the messages correctly.

4. Press Enter to complete the name.

By default, the new message is <Unspecified>. To make it an instance of a new or existing
operation of the target class or actor, open its Features window (see Modifying the features of a
message.
Rational Rhapsody 845

Collaboration diagrams
846 User Guide

Component diagrams
You use component diagrams to create new or existing components, specify the files and folders
they contain, and define the relations between these elements. These relations include the
following items:

� Dependency shows a relationship in which the proper functioning of one element requires
information provided by another element. In a component diagram, a dependency can
exist between any component, file, or folder.

� Interface shows a set of operations that publicly define a behavior or way of handling
something so knowledge of the internals is not needed. Component diagrams define
interfaces between components only.

A component is a physical subsystem in the form of a library or executable program or
other software components such as scripts, command files, documents, or databases. Its
role is important in the modeling of large systems that comprise several libraries and
executables. For example, the Rational Rhapsody application itself is made up of many
components, including the graphic editors, browser, code generator, and animator, all
provided in the form of a library.
Rational Rhapsody 847

Component diagrams
Component diagram uses
Component diagrams are helpful in defining and organizing the physical file hierarchy of your
model. You can assign model elements to be contained in certain files, instead of using the default
Rational Rhapsody designations; you can organize files into folders or into components directly
and organize folders into components.

One aspect of a component that is not included in a component diagram, but is included in this
section, is how to create the configurations that are part of a component. Configurations specify
how the component should be built, such as the target environment, initialization needed, and
checks to perform on the model before code is generated. See Configurations for information.

The following figure shows a component diagram.
848 User Guide

Component diagram drawing Tools
Component diagram drawing Tools
The Diagram Tools for a component diagram contains the following tools.

The following sections describe how to use these tools to draw the parts of a component diagram.
See Graphic editors for basic information on diagrams, including how to create, open, and delete
them.

Drawing
Tool Name Description

Component Specifies all the software code that it comprises: libraries, header files, and any other
source files. See Components for more information.

File Specifies which model elements are generated in each file, the file names, and the
directory paths. See Files for more information.

Folder
Component

Physically organizes files or other folders. See Folders for more information.

Dependency Shows when one element depends on the existence of another element. See
Dependencies for more information.

Interface Creates an interface between components is a set of operations performed by a
hardware or software element in the system. See Component interfaces and
realizations for more information.

Realization Indicates that a component realizes an interface if it supports the interface. Then
another component uses that interface.

Flow Provides a mechanism for specifying exchange of information between components.
See Flows for more information.
Rational Rhapsody 849

Component diagrams
Elements of a component diagram
Component diagrams contain the following elements:

� Components
� Files
� Folders
� Dependencies
� Component interfaces and realizations
� Flows

The following sections describe these elements in detail.

Components

When you create a component, you specify all the software code that it comprises: libraries, header
files, and any other source files. Component diagrams generate code for components that are
labeled with the «Executable» or «Library» stereotype.

Creating a component
To create a component:

1. Click the Component icon in the Diagram Tools.

2. Do one of the following actions:

a. Click once in the diagram to create a component with the default dimensions.

b. Click to begin the upper, left corner of the component, drag to the lower right corner,
and release.

3. Edit the default name, then press Enter.

The new component is displayed in the diagram and in the browser, either in the Components
folder under the main project node, or nested under another component associated with this
diagram.

Note: You can draw a component within another component; the browser will display
the nested component accordingly.
850 User Guide

Elements of a component diagram
Features of components
Use the Features window to define a component.

General Features

� Name specifies the name of the component.
� L specifies the label for the element, if any.
� Stereotype specifies the stereotype of the component, if any. They are enclosed in

guillemets, for example «s1» and enable you to tag classes for documentation purposes.
See Stereotypes for information on creating stereotypes.

Note: The COM stereotypes are constructive; that is, they affect code generation.

� Directory specifies the root directory for all configurations of the component. This can be
the project directory or another directory.

� Libraries specifies any additional libraries to be added to the link. This field is relevant
for executables only. Libraries can be off-the-shelf libraries, legacy code, or Rational
Rhapsody-generated libraries.

� Additional Sources specifies external source files to be compiled with the generated
source files. Rational Rhapsody adds the files to the project makefile.

� Standard Headers specifies header files to be added to include statements in every file
generated for the project. Specify either a full path or, if only a filename, add a path in the
Include Path field.

� Include Path specifies the directory in which the include files are located.

Note that this field supports environment variables, such as
$ROOT\Project\ExternalCode.

� Type specifies the build type. Select Library, Executable, or Other. Rational Rhapsody
does not generate code for a component that has build type “other,” nor can such a
component be set as the active component. “Other” could be used to designate script files
or other non-code files.

Component scope

The Scope tab of the Component Features window allows you to specify which model elements
should be included in the component.

If you select the Selected Elements radio button, you can use the check boxes next to each
element to indicate which model elements should be included in the component.

If you select a check box for an element, all of the elements that it contains are included in the
component scope (for example, all of the classes in a package). If you would like to be able to
select sub-elements individually, right-click the check box of the parent element.
Rational Rhapsody 851

Component diagrams
Files

Files owned by a component are compiled together to build the component. You can specify which
model elements are generated in each file, the file names, and the directory paths. You can also
create a file in the browser and drag-and-drop it into a component diagram.

A file must be nested within a component or a folder.

Note
However, a file cannot contain another element.

Creating a file
To create a file:

1. Right-click a Component in the browser and select Add New > File. The File window
opens.

2. Begin to define this new file by typing the Name you want to replace the system generated
name. Click Apply to save the name and keep the window open. The new file name
displays in the diagram and in the browser, under the component with which it is
associated.

Note: A file must be an element of a component or a folder. If the component diagram
is under the project node, it is not yet associated with a component. First create
a component, then nest the file by drawing it inside the component. If the
diagram is already nested under an existing component, you can draw the file
in the “free space” of the diagram editor.

3. Change the remaining fields to define the file as you want.

� Path specifies where a file should be generated in relation to the configuration
directory. If this field is blank, the file is generated in the configuration directory.

� File Type specifies the type of file that should be generated. A specification file
contains the specifications of all elements; an implementation file contains their
implementations. They are specified by their suffixes, as follows:

Choose one of the following values:

– Logical creates both implementation and specification files.

File Type C++ C Java

Implementation .cpp .c .java
Specification .h .h N/A
852 User Guide

Elements of a component diagram
– Specification generates only a specification file. Both specifications and
implementations of all elements assigned to this file are generated into this
file.

– Implementation generates only an implementation file. Both specifications
and implementations of all elements assigned to this file are generated into
this file.

– Other where one file is generated with the name and extension specified in
the Name field. Both specifications and implementations of all elements
assigned to this file are generated into the file.

� Elements lists the elements mapped to a file. Elements that are not explicitly
mapped to files are generated in the default files that Rational Rhapsody would
normally generate for these elements in the configuration directory.

� Environment Settings where Rational Rhapsody fills in the settings from your
environment. The fields are as follows:

– Environment where this read-only field specifies which environment
(Microsoft, Solaris2, and so on) is selected for the active configuration. You
cannot change the environment for an individual file.

– Build Set where this read-only field specifies the build setting (Debug or
Release mode) for the active configuration. You cannot change the build
setting for an individual file.

– Compiler Switches specifies the compiler switches for the configuration.
Compiler switches default to those used for the configuration, but you can
override them for an individual file.

– Link Switches specifies the link switches used to link the active
configuration. You cannot change link switches for an individual file.

� Description describes the element. This field can include a hyperlink. See
Hyperlinks for more information.

4. Click OK.

Adding an element to a file
To add a package or class to a file:

1. In the window, click Add Element. The Add Elements window opens. The Type box lists
the file type you selected in the file Features window. You can change the file type here if
it is not logical. Logical files can contain only logical elements, but other types of files
can contain whatever you want. See The Features window for more information.

2. Select the elements that you want to map to the file. Note that selecting a package
automatically maps all its classes to the file.

3. Click OK.
Rational Rhapsody 853

Component diagrams
Adding text to a file
To add a text element to a file:

1. In the file Features window, click Add Text. The File Text Element window opens.

2. If wanted, edit the default name of the text element in the Name field.

3. In the Text Element field, type the text you want to add to the file. For example, you can
add #ifdef statements or #define statements, headers and footers, or additional
comments.

4. In the Description field, enter a description of the text element.

5. Click OK.

Deleting an element from a file

To delete an element from a file:

1. In the file Features window, select the element to delete.

2. Click Delete. Rational Rhapsody asks you to confirm that you want to remove the element
from the file.

3. Click Yes to delete the element.

Editing an element

To edit an element in a file:

1. In the file Features window, select the element you want to edit.

2. Click Edit. The File Text Element window opens.

3. Make the appropriate changes.

4. Click OK.

Rearranging elements in a file

You have explicit control over the order in which elements are generated in files. Moving an
element up or down in the list means that it will be generated earlier or later in the file.

To rearrange elements in a file:

1. In the file Features window, select the element you want to move.

2. Click Up to generate the element earlier in the file, or Down to generate the element later
in the file.
854 User Guide

Elements of a component diagram
Component diagram files menu
� Add New allows you to add a new relations, requirement, annotations, or tag to the file.
� Generate File creates the file from the elements assigned to it. The number and type of

files generated depends on the file type you have selected. See The Features window.
� Edit File opens the generated files in a text editor.

You can select an external text editor using the EditorCommandLine property under
General::Model. See Using an External Editor for more information.

Folders

Folders, or directories, help physically organize files. A folder must be nested within a component
or another folder. A folder can contain files or folders.

Creating a folder
1. Click the Folder tool.

2. Do one of the following actions:

a. Click once in the diagram to create a folder with the default dimensions.

b. Click to begin the upper, left corner of the folder, drag to the lower, right corner, and
release.

3. Edit the default name, then press Enter.

The new folder is displayed in the diagram and in the browser under the component or folder with
which it is associated.

Note
A folder must be nested within a component or another folder. If the component diagram is
under the project node, it is not yet associated with a component. You must first create a
component, inside of which you can then draw a folder. If the diagram is already nested
under an existing component, you can draw the folder in the “free space” of the diagram
editor; it is nested within the component associated with the diagram and is displayed
accordingly in the browser.

In the browser, folders are located under the components of which they are part.
Rational Rhapsody 855

Component diagrams
Features of folders
The Features window enables you to change the features of a folder, including its name and path.

A folder has the following features:

� Name specifies the name of the folder. The default name is folder_n, where n is an
incremental integer starting with 0.

� Path specifies where the folder should be generated in relation to the configuration
directory. Folders are generated as subdirectories under the configuration directory.

� Elements mapped to the folder specifies the elements you want to map to a folder.
Rational Rhapsody generates the default types of files it normally generates for these
elements in the folder if the elements are not specifically mapped to other files.

� Description describes the folder. This field can include a hyperlink. See Hyperlinks for
more information.

Note that the Features window for folders is available only for folders that you add to the
configuration, not for the top folder under the component.

Folders menu
� Add New opens a cascading menu that allows you to add elements to the folder. You can

add the following items:
– Folder adds a subdirectory to the current directory.
– File adds a file to the current directory.
856 User Guide

Elements of a component diagram
Dependencies

A dependency exists when the functioning of one element depends on the existence of another
element. A dependency between two components in a component diagram results in an #include
statement in the makefile for the dependent (or client) component.

Dependencies in component diagrams have the same stereotype values as dependencies created in
OMDs. See Dependencies.

In a component diagram, a dependency relation is also used in the definition of a component
interface. See Creating a component interface for more information.

Dependencies appear in the browser under the dependent, or client component.

Component interfaces and realizations

An interface between components is a set of operations performed by a hardware or software
element in the system. A component realizes an interface if it supports the interface; another
component then uses that interface. Interfaces promote design modularity; components are more
easily replaceable when they use interfaces instead of directly depending on components.
Component interfaces can be seen only in a component diagram. They cannot be viewed in the
browser. A component diagram supports only interfaces between components.

Creating a component interface
To create an interface:

1. Click the Interface icon in the Diagram Tools.

2. Click once in the diagram, or click-and-drag to create the component interface.

3. By default, Rational Rhapsody creates an interface named Interface_n, where n is an
integer value starting with 0. If wanted, rename the interface. The following example
shows a component interface. Rational Rhapsody adds the «Interface» stereotype
automatically.
Rational Rhapsody 857

Component diagrams
Flows

Flows provide a mechanism for specifying exchange of information between system elements at a
high level of abstraction. This functionality enables you to describe the flow of data and
commands within a system at a very early stage, before committing to a specific design. As the
system specification evolves, you can refine the abstraction to relate to the concrete
implementation.
858 User Guide

Component configurations in the browser
Component configurations in the browser
In the browser, components are displayed under the project main node or other components. There
are a number of component features that you can set via the component menu in the browser that
you cannot do in the component diagram. For example, in the browser you can set a component as
the active configuration or define the configuration settings for the component.

When you highlight a component in the browser, the Features window opens. See Features of
components for more information.

Component options

When you select a component in the browser, the menu includes the following component-specific
options:

Add New opens a cascading menu that allows you to add the following items to the component:

� Requirement allows you to add a textual annotation that describes the intent of the
component. Requirements are part of the model and are therefore displayed in the
browser.

� Relations contains -
– Dependency specifies the element on which the component depends, such as

a package that is not part of the component.
– Derivation adds a requirement that was derived from another
– Hyperlink adds internal links to Rational Rhapsody elements or external

links to a URL.
� Annotations contains -

– Constraint defines a semantic condition or restriction.
– Comment allows you to add a textual annotation that does not add semantics,

but contains information that might be useful to the reader and is displayed in
the browser.

– Controlled File allows you to add a file or reference purposes that was
produced in other programs, such as Word or Excel. These files become part
of the Rational Rhapsody project and are controlled by it.

� Tag holds model information relating to the domain or platform.
Delete from Model

Unit contains Save as Component Diagram Component, Unload Component Diagram
Component, and Edit Unit.
Rational Rhapsody 859

Component diagrams
Active component

The active component is the one built when you make the code. The icon for the active component
includes a red checkmark.

Setting the active component
To make a component active:

1. Select the component from the list on the toolbar.

2. In the browser, right-click the component and select Set as Active Component.

When you change the active component, the most recent active configuration within the
component becomes the active configuration and is listed in the Current Configuration list in the
Code toolbar.

Note
To become the active component, a component must be set to either the Executable or
Library build type.

Configurations

If a component is a physical subsystem, as in a communications subsystem, a configuration
(module) specifies how the component is to be produced. For example, the configuration
determines whether to compile a debug or non-debug version of the subsystem, whether it should
be in the environment of the host or the target (for example, Windows NT versus VxWorks), and
so on.

A component can consist of several configurations. For example, if you want to build a VxWorks
version and a pSOSystem version of the same component, you would create two configurations
under the component, one for each operating system. The decision as to whether these should be
two separate components or two configurations within the same component depends on whether
you want to compile them differently, or whether there is some logical variation between them.
Creating two separate components would require maintaining two separate implementation views,
whereas using separate configurations would not.

For information on setting configuration parameters, see Features of configurations.
860 User Guide

Component configurations in the browser
Configuration menu

If you right-click a configuration in the browser, the menu contains the following configuration-
specific options:

� Set as Active Configuration makes the configuration active.
� Edit Makefile enables you to edit the makefile generated for the configuration in a text

editor.
� Edit Configuration Main File edits the main file generated for the component. This

option is available for an executable or library component that has at least one package
with a global instance in its scope. See Making permanent changes to the main file for more
information.

� Generate Configuration Main and Make Files sets the configuration as the active
configuration and generates the main file and the makefile.

� Generate Configuration makes the configuration active and generates it.
� Build Configuration builds the active configuration.

Setting the active configuration

The active configuration is the one generated when you generate code, unless you are generating
selected classes. The active configuration, or the current configuration, displays in a list on the
Code toolbar. You can change the active configuration using either the toolbar or the menu for the
configuration.

To set the active configuration:

� Select the configuration from the Current Configuration list on the Code toolbar.
� Select the configuration in the browser. Right-click the configuration, and select Set as

Active Configuration from the menu.
The name of the new active configuration is displayed in the Current Configuration list in the
Code toolbar. In addition, the component that owns this configuration becomes active and is
displayed in the Current Component list (see Active component).
Rational Rhapsody 861

Component diagrams
Features of configurations

The Features window for a configuration contains the following tabs:

� General tab
� Initialization tab

� Settings tab
� Checks tab
� Relations tab
� Tags tab
� Properties tab

These tabs display configurable features and are described in detail in the following sections.

General tab
The General tab allows you to define general information for the configuration.

� Name specifies the name of the configuration. The default name for configurations is
configuration_n, where n is an incremental integer starting with 0.

� Description describes the configuration (for example, the target environment).
862 User Guide

Component configurations in the browser
Initialization tab
The Initialization tab allows you to specify which instances to initialize and whether to generate
code for actors.

� Initial instances adds code to the main program to instantiate only those packages,
classes, and actors that you specify. The possible values are as follows:

– Explicit instantiates only the selected elements.
– Derived instantiates the selected elements and any others to which these are

related, either directly or indirectly.
For example, if class A is selected, and class B is related to A, B is added to the
derived scope. If C is related to B, C is also added to the derived scope, and so on.

Two elements are related if there is a dependency or relation between them, use
types of the other element, or use events defined in the other element.

� Generate Code For Actors generates code for the actors specified in the Initial
Instances box. See Generating Code for Actors for more information about this feature.

� Initialization code where you type any user code you want to use to instantiate initial
instances or to initialize any other elements. This code is added to the main program after
any automatically generated initialization code and before the main program loop.
Rational Rhapsody 863

Component diagrams
Settings tab
The Settings tab allows you to specify numerous settings for the configuration.

Note
The values of each of these fields are appended to the settings fields of the component that
owns the configuration.

The Settings tab contains the following fields:

� Directory specifies the root directory for files generated for the configuration. This box is
available only if the Use Default option is not checked. You can specify either a full path
or a partial path that uses the current directory as the starting point.

� Use Default check this box to use the default directory for the configuration. The default
location is named after the configuration and is a subdirectory of the project directory.

� Libraries specifies additional off-the-shelf, legacy code, or Rational Rhapsody-generated
libraries to be added to the link. This box is relevant only for executables.

� Additional Sources specifies the external source files to be compiled with the generated
sources. Rational Rhapsody adds these files to the project makefile.

� Standard Headers specifies the header files to be added to #include statements in every
file generated for the project. Specify a full path or the file name. If you specify only the
file name in this field, specify the directory in the Include Path field.

� Include Path specifies the directory in which the include files for a configuration are
located. The include path is added to the makefile generated for a configuration. For
example, if you set the include path to d:\Rhapsody\MMM, the following code is generated
in the makefile:

 INCLUDE_PATH= \

 $(INCLUDE_QUALIFIER)d:\Rhapsody\MMM

� Instrumentation specifies whether the executable will have animation or tracing
capabilities, or neither. Select the appropriate value from the Instrumentation Mode list.

Click the Advanced button to specify the instrumentation scope, which determines the set
of Rational Rhapsody classes, packages, and actors that are instrumented in the associated
configuration. This functionality enables you to enable or disable animation of classes (or
entire packages) without changing the model elements themselves.

See Using selective instrumentation for more information.
� Webify specifies whether to Web-enable the configuration. See Managing Web-enabled

devices for more information.
Note: You cannot webify a file-based C model.

� Time Model specifies real or simulated time. With real-time emulation, timeouts and
delays are computed based on the system clock. With simulated time, a virtual timer
864 User Guide

Component configurations in the browser
orders timeouts and delays, which are posted whenever the system completes a
computation.

� Statechart Implementation specifies whether the statechart implementation is Reusable
or Flat (the default). The reusable model implements states as classes, whereas the flat
model implements states as simple enumerated types. Reusable is preferable for models
with deep class inheritance hierarchies, whereas flat is preferable for models with shallow
or no inheritance.

� Environment Settings specifies the following information about the target environment:
– Environment specifies the target environment
– Build Set specifies whether the generate a debug or non-debug (Release)

version of the executable
– Compiler Switches specifies the compiler switches applied by default when

compiling each file
– Link Switches specifies the link switches applied by default when linking the

compiled code

– Additional Settings This button allows you to integrate CodeTEST® with
Rational Rhapsody in C and C++, if you have CodeTEST on your system.
Otherwise, this button is unavailable.

When you click this button, Rational Rhapsody displays the Additional
Settings window. This window contains the following fields:

– With Applied Microsystems CodeTEST enables (select the check box) the
integration with CodeTEST.

– CodeTEST settings enables you to edit the compilation switches that will be
added to the CodeTEST instrumentation line in the generated makefile. The
value of the CodeTEST settings field corresponds to the value of the
<lang>_CG::VxWorks::CodeTestSettings property.

Checks tab
The Checks tab enables you to specify which checks to performed on the model before generating
code. See Checks for detailed information on checks performed by Rational Rhapsody.

Relations tab
The Relations tab lists all the relationships (dependencies, associations, and so on) the
configuration is engaged with. See Define relations for more information on this tab.

Tags tab
The Tags tab lists the available tags for this configuration. See Profiles for detailed information on
tags.
Rational Rhapsody 865

Component diagrams
Properties tab
The Properties tab enables you to set properties that affect the configuration. For more
information about using the Rational Rhapsody properties, see Properties.

Using selective instrumentation

The window for selective instrumentation enables you to select the specific model elements and
element types to be instrumented for animation or tracing in the given configuration. Using this
functionality, you can use partial animation or tracing without changing the properties of the
specific model elements.

When you click the Advanced button in the Instrumentation group, the Advanced
Instrumentation Settings window opens, as shown in the following figure.

Using this window, you can easily control whether instrumentation is available for model
elements, operations, and classes and packages for each configuration. The base model (stored in
the development tree) could be non-instrumented: to validate parts of the model, you would simply
change the animation settings in this window to enable or disable instrumentation.

The window contains the following fields:

� Trace determines whether tracing is available for the different model element types
(arguments, operations, attributes, relations, and events). This is equivalent to setting the
866 User Guide

Component configurations in the browser
Animate properties for the metaclass for the configuration.

For example, clearing the Operations check box sets the CG::Operation::Animate
property for the configuration to Cleared, so animation/tracing will not monitor
operations. You can override this behavior for a specific element by overriding the
property at the element level. For example, to monitor operations in a specific package
after clearing the Operations check box, set CG::Operation::Animate to Checked for
the specific package.

By default, all model types are selected for instrumentation.
� Enable Operation Calls specifies whether you can launch operation calls from the

Animation toolbar. The possible values are as follows:
– None means operation calls cannot be launched.
– Public means only public methods can be started.
– Protected means only protected methods can be started.
– All means all operation calls can be launched, regardless of visibility.

� Instrumentation Scope specifies which model elements (classes, packages, and actors) to
animate. By default, all model elements are selected.

When the All Elements radial button is selected, the behavior is as follows:
– Tree control is disabled. Tree control is available when you click Selected

Elements.

The tree view contains all the classes, actors, and packages in the scope of the
component whose <lang>_CG::<Metaclass>::Animate property is set to
Checked. Note that external elements (UseAsExternal is Checked) cannot be
in the scope of the component. When you select a package in this tree, you
also select all its aggregated classes and actors.

– All the elements in the code generation scope are instrumented, unless their
Animate property is set to Cleared.

The following table shows how the instrumentation scope and the Animate property determine
whether an element is instrumented.

Note the following behavior:

Value of the Animate
Property

Set in the
Instrumentation

Scope?

Will the Element be
Instrumented?

Checked Yes Yes

Checked No No

Cleared Yes No

Cleared No No
Rational Rhapsody 867

Component diagrams
� If the Animate property is set to Cleared, it applies to all configurations, regardless of the
instrumentation scope.

� If you change the instrumentation scope, all the source files of the component are
regenerated.

� When you select a class in the package, it is implied that the entire package is
instrumented (including all the events, types, and so on) even if the class does not use
them.

Making permanent changes to the main file

1. In the browser, right-click the component whose main file you want to edit.

2. Select Add New > File to create a new file.

3. Name the new file (for example, myMain).

4. Open the Features window for myMain and set the File Type field to Logical or
Implementation.

5. Select the Properties tab.

6. Click OK.

7. Right-click the active configuration for the component (used to build the application) and
then select Edit Configuration Main File.

8. Copy the contents of this file, including the header files.

9. Open the Features window for myMain and click Add Text.

10. Paste the code from the Rational Rhapsody-generated main file into the Text Element
field.

11. Customize the code as wanted.

12. Click OK.

13. Set the following properties for the configuration:

a. Set CG::Configuration::MainGenerationScheme to UserInitializationOnly.
This property controls how the main is generated.

b. Set <lang>_CG::<Environment>::EntryPoint to myMain. This property specifies
the name of the main program.

Now when you compile the application, Rational Rhapsody will compile your customized main
instead of generating a new one.
868 User Guide

Component configurations in the browser
Creating components under a package

When you create a Rational Rhapsody project, a component called DefaultComponent is created
directly beneath the project level. You can also create additional components at this hierarchical
level.

It is also possible to create a component as part of a package in the model. One of the advantages
of this approach is that if you only want to generate code for a specific package, you only have to
check out that package.

You can add a component to a package using any of the following methods:

� Create a new component in the package by right-clicking the package in the browser and
selecting Add New > Component.

� Move an existing component in the browser to the package.
� Draw a component in a component diagram that is located under a package.
� Create a new component in a package using the Rational Rhapsody API.

When a component is created under a package, its default scope is the package to which it belongs.

Like other components, components that belong to packages can be assigned to be the active
component for the project. When you create a new component in a package, it automatically
becomes the active component for the project.

Note
If you draw a component diagram under a package (rather than under the project), keep in
mind that then it is not possible to draw a new folder on the diagram. This is because the
folder element cannot be contained under a package.
Rational Rhapsody 869

Component diagrams
870 User Guide

Deployment diagrams
Deployment diagrams show the configuration of run-time processing elements and the software
component instances that reside on them. Use deployment diagrams to specify the run-time
physical architecture of a system.

Deployment diagrams are graphs of nodes connected by communication associations. Component
instances are assigned to run on specific nodes during program execution. Relation lines represent
communication paths between nodes.

The following figure shows a deployment diagram.
Rational Rhapsody 871

Deployment diagrams
Opening an existing deployment diagram
To open an existing deployment diagram in the drawing area:

1. Double-click the diagram name in the browser.

2. Click OK. The diagram opens in the drawing area.

As with other Rational Rhapsody elements, use the Features window for the diagram to edit its
features, including the name, stereotype, and description. See The Features window for more
information.

Deployment diagram drawing tools
The Diagram Tools for a deployment diagram contains the following tools:

The following topics describes how to use these tools to draw the parts of a deployment diagram.
See Graphic editors for basic information on diagrams, including how to create, open, and delete
them.

Drawing
Tool Name Description

Node Represents devices or other resources that store and process instances during run
time. See Nodes for more information.

Component Represents executable processes, objects, or libraries that run or reside on
processing resources (nodes) during program execution. See Component
instances for more information.

Dependency Represents a requirement by one component instance of information or services
provided by another. See Dependencies for more information.

Flow Describes the movement of data and commands within a system. See Flows for
more information.
872 User Guide

Nodes
Nodes
Nodes represent devices or other resources that store and process instances during run time. For
example, a node can represent a type of CPU. A node can be owned only by a package. In addition,
nodes cannot be nested inside other nodes. Nodes can contain component instances.

Note
In Rational Rhapsody, nodes represent UML node instances.

The graphical symbol for a node in the UML is a three-dimensional cube with a name, such as the
name of a processor.

Creating a node

You can create a node using the Node tool, Edit menu, or browser.

To use the Diagram Tools to create a node:

1. Click the Node icon in the Diagram Tools.

2. Click or click-and-drag with the mouse to place the node on the diagram. Rational
Rhapsody creates a node symbol with the default name of node_n, where n is an
incremental integer starting with 0.

To use the Rational Rhapsody browser to create a node:

1. Depending on the method you want to use:

– Right-click a package in the browser and select Add New > Node, or
– Right-click a node category and select Add New Node.

2. Edit the default name of the new node.

3. With both the browser and the deployment diagram editor in view, click-drag-and-drop the
node onto the diagram.
Rational Rhapsody 873

Deployment diagrams
You can click-and-drag any node that exists in the browser to add it to a deployment diagram.

Changing the owner of a node

To change the package that owns a node:

1. In the Rational Rhapsody browser, select the node.

2. Drag the node from its current package to a new package.

Designating a CPU type

Nodes drawn in deployment diagrams represent specific node instances, rather than general node
types. As such, a node should be given a specific name such as myPersonalIntelPentium, which
describes a specific processor, rather than a general name such as IntelPentium, which can apply
to many different processors of the same type.

1. Edit the name of the node, replacing the default name of instance_n with the name of a
type of CPU (for example, AMD Duron).

2. Press Enter, or click outside the edit box, to terminate editing of the node name.

Features of nodes

Use the Features window for a node to change the features of a node, including its type and the
event to which the reception reacts. A node has the following features:

� Name specifies the name of the node. The default name is node_n, where n is an
incremental integer starting with 0.

� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. See
Stereotypes for information on creating stereotypes.
874 User Guide

Component instances
Component instances
Component instances represent executable processes, objects, or libraries that run or reside on
processing resources (nodes) during program execution. They are represented by the UML
component symbol: a box with two small rectangles on the left side.

A component instance is an instance of a component type. Unlike components, there is no special
naming convention for component instances. Drawing a component instance inside a node
indicates that the component instance lives or runs on that node during run time.

Adding a component instance

You can add a component instance to a deployment diagram using the Component icon or the
Rational Rhapsody browser.

To use the Diagram Tools to add a component instance:

1. With a node already drawn on your deployment diagram, click the Component icon
in the Diagram Tools.

2. Draw the component instance inside the node. Rational Rhapsody creates the component
instance inside the selected node.

3. Edit the default name of the component instance, then press Enter.

Note that the component type is not part of the name for the component instance. The full
name of a component instance is the same as it displays in the browser.

4. Assign the component instance a type by opening its Features window and setting an
existing component in the Component Type box.

Note
You cannot draw a component instance outside of a node in a deployment diagram.

You can populate a deployment diagram with component instances by dragging them from the
Rational Rhapsody browser onto the diagram. Rational Rhapsody creates a component instance
based on the selected node.
Rational Rhapsody 875

Deployment diagrams
To use the Browser to add a component instance:

1. Depending on the method you want to use:

– Right-click a node in the browser and select Add New > Component
Instance, as shown in the following figure, or

– Right-click a component instance category, and select Add New Component
Instance.

2. Edit the default name of the component instance.

3. With both the browser and the deployment diagram editor in view, click-drag-and-drop the
component instance from the browser onto the diagram.
876 User Guide

Component instances
Moving a component instance

During the course of development, you might decide that you want a component instance to run on
a different node.

To move a component instance from one node to another:

1. In the Rational Rhapsody browser, select the component instance you want to move.

2. Use your mouse to drag the component instance to the new node.

Features of component instances

The Features window allows you to change the features of a component instance including its
name and type.

� Name specifies the name of the component instance. The default name is
componentinstance_n, where n is an incremental integer starting with 0.

� Stereotype specifies the stereotype of the element, if any. They are enclosed in guillemets,
for example «s1» and enable you to tag classes for documentation purposes. See
Stereotypes for information on creating stereotypes.

� Component Type specifies the component type. This list includes all the components that
exist in the model.

� Node specifies the name of the owning node. This box is read-only.
Rational Rhapsody 877

Deployment diagrams
Dependencies
A dependency represents a requirement by one component instance of information or services
provided by another. Dependencies can also be drawn between nodes. You can add a dependency
using the Dependency tool or the Rational Rhapsody browser.

Adding a dependency

To add a dependency using the Diagram Tools:

1. Click the Dependency button in the Diagram Tools.

2. Click the dependent node or component instance.

3. Click the node or component instance that is being depended on. The arrow at the end of
the dependency points to the selected instance.

.

To add a dependency using the Rational Rhapsody browser:

1. Right-click the dependent node or component instance in the browser and then select
Add New > Dependency.

2. On the Add Dependency window, select the node or component instance that is being
depended on from the Depends on list. The dependency is added as a relation under the
component instance. Click OK.

3. Click the Dependency icon.

4. Draw the dependency in the deployment diagram.

Note
You cannot add dependencies to a diagram by dragging.
878 User Guide

Flows
Flows
Flows and flowitems provide a mechanism for specifying exchange of information between
system elements at a high level of abstraction. This functionality enables you to describe the flow
of data and commands within a system at a very early stage, before committing to a specific
design. As the system specification evolves, you can refine the abstraction to relate to the concrete
implementation.

See Flows and flowitems for detailed information about flows and flowitems.
Rational Rhapsody 879

Deployment diagrams
Assigning a package to a deployment diagram
Like other diagrams, deployment diagrams belong to a package. When you create a deployment
diagram in the browser at the project level, Rational Rhapsody assigns the diagram to the default
package and displays it in the Deployment Diagrams folder located at the project level. To create a
deployment diagram in a particular package, first select the package, then create the new diagram.
The nodes and component instances in the deployment diagram belong to the package of that
diagram.

To assign a deployment diagram to a different package:

1. In the browser, right-click the deployment diagram and select Features to open the
Features window.

2. From the Default Package list, select the package to which you want to assign the
deployment diagram.

3. Click OK.

Diagrams located in the project-level Deployment Diagrams category remain in that category, but
any nodes and component instances that the diagram contains are listed under the selected
package.
880 User Guide

Checks
Before generating code, Rational Rhapsody automatically performs certain checks for the
correctness and completeness of the model. You can also perform selected checks at any time
during the design process. These predefined checks, also known as internal checks, are provided
with the Rational Rhapsody product. For a list of these predefined internal checks, see List of
Rational Rhapsody checks.

In addition, you can create checks that you code and customize to meet your needs. These
user-defined checks are also known as external checks because they are not part of the set of
predefined internal checks.

Both types of checks are displayed in the Rational Rhapsody GUI, as described in this section.

For more specific information about external checks, see User-defined checks.

Checker features
The checker works on either the active configuration or selected classes. It generates a list of the
errors and warnings found in the model, with errors listed first. Errors prevent code generation
from proceeding, while warnings draw your attention to unusual conditions in the model that do
not prevent code generation. If there are no errors or warnings, the checker generates a message
stating that all checks were completed successfully.

When you double-click a message, the checker opens the location in the model where the
offending element or statement can be found, with the source of the error highlighted.

Note
The checker verifies the structural model by checking OMDs, and the behavioral model by
checking statecharts. These are the main constructive diagrams in the model.
Rational Rhapsody 881

Checks
The Checks tab
The Checks tab of the Features window for a configuration, as shown in the following figure, lists
all the available checks.

The Checks tab contains the following columns:

� Name describes the check to be performed. For example, Attribute named the same as a
state checks whether an attribute and a state have the same name. By default, all possible
checks are selected. To not include a check, clear the applicable check box. If all the
checks are not selected and you want to do so, click the Select All button. To clear all of
the checks (to make it easier to select only certain checks), click the Deselect All button.

Note the following that when a name is very long, you can move your mouse pointer over
the name to see its full name in a tooltip.
882 User Guide

The Checks tab
� Domain specifies the area of the model that is searched. You can select checks that belong
to one domain or another to limit the scope of the checks. The possible values are as
follows:

– Class Model searches the structural part of the model.
– Statechart searches the behavioral part of the model.
– Common searches both the structural and behavioral parts of the model. For

example, Default names checks for default names in either classes or states.
– There might be other domains that are from user-defined external checks.

� Severity specifies whether the condition being checked for constitutes an error , a

warning , or is informational .

The following table lists the errors that cause code generation to stop.

� Integrity specifies whether the check has to do with the correctness or completeness of
the model.

To sort by a column, click the column header.

Name conflicts • An attribute is named the same as a state.
• A class is named the same in a different subsystem.
• An event and a generated state class have conflicting names.
• An event is named the same as a class.

Other errors • An OR state exists with no default state.
• A fork to non-orthogonal states.
• A join from non-orthogonal states.
• A reference to an unresolved event.
• A reference to an unresolved relational class.
• A reference to an unresolved superclass.
• A precondition for symmetric links failed.
Rational Rhapsody 883

Checks
Specifying which checks to run
You can control which checks are done. Note that Rational Rhapsody automatically performs the
predefined code generation checks when you do a check model.

To specify which checks to run:

1. Open your model.

2. Set the configuration for the model whose code you want to check to be the active
configuration. (See Setting the active configuration.)

3. Open the Features window for the active configuration and select the Checks tab. Do
either of the following actions:

� Choose Tools > Check Model > Configure.
The Features window opens with the Checks tab selected.

� From the main Rational Rhapsody browser, double-click the active configuration
and select the Checks tab.

4. Depending on what you want to do:

� To select all the checks, click the Select All button.
� To unselect all the checks so that you can more easily select the checks that you do

want, click the Deselect All button and then select the checks you do want to
perform.

� Select and clear the check boxes next to the checks as you want.
� Right-click one or more checks and select Select, Deselect, Invert Selection, as

applicable.
5. Click OK.
884 User Guide

Checking the model
Checking the model
Before checking the model, be sure you have done the steps in Specifying which checks to run.

To start checking the model:

1. If you want to perform checks only on selected packages or classes, select those elements
on the Rational Rhapsody browser.

Note: You can use Shift+Click to select contiguous elements and Ctrl+Click to
select non-contiguous elements.

2. Select Tools > Check Model and select one of the following options, when available:

� The active configuration
� Selected Elements to perform the checks on the selected elements only

3. Review the results on the Check Model tab of the Output window. See Check Model tab.

4. For errors and warnings, you can double-click a message on the Check Model tab and
Rational Rhapsody will open to the relevant model element (for example, the Features
window for an association) or to the code on which you can make corrections or view the
item more closely.

Checks tab limitations
There must be at least one check selected. Even if you clear all the check boxes and click Apply
and OK, the next time you open the Features window for the active configuration, you will see that
all checks on the Checks tab will be selected.
Rational Rhapsody 885

Checks
User-defined checks
You can create user-defined checks, which are also known as external checks, which are
customized checks that you code yourself. System profiles, for example, often require
domain-specific checks.

Just as the predefined internal checks provided by Rational Rhapsody, you can define if external
checks are called from code generation or not. In addition, you can define on which metaclasses
external checks will be executed.

You can implement user-defined external checks through the Rational Rhapsody API and use the
GUI already in place in Rational Rhapsody to run them (the Checks tab as described in The
Checks tab). Whether it is an internal check or an external check, the checks are performed and
their results displayed through the same GUI in Rational Rhapsody.

Creating user-defined checks

Rational Rhapsody provides an API for registering, enumerating, and removing user-defined
external checks through the use of the COM API for C++ and VB users, and the Java API for Java
users. COM callbacks (connection points) allow you to open user-defined code when checks are
executed. This capability is available for those users who use the COM API or Java API so that
you can add, execute, or remove user-defined checks.

You decide which metaclasses (or new terms) you want to check, and your checks are called to
check elements of whichever metaclasses you decided upon.

For example, for COM API users to create a user-defined check:

1. Implement a class defined from the interface IRPExternalCheck in the COM API.

2. Register this class using the IRPExternalCheckRegister Add method. You get this
singleton via a method on IRPApplication.

3. You must implement IRPExternalCheck on your client machine.
886 User Guide

User-defined checks
The following table lists the methods in the interface that you must implement for a user-defined
check.

Removing user-defined checks

To remove a user-defined check, remove your class using the IRPExternalCheckRegister
Remove method. You get this singleton via a method on IRPApplication.

Method Explanation

GetName() Returns the name attribute as a string.

GetDomain() Returns the domain attribute as a string.

GetSeverity() Returns one of the predefined severity strings: Error, Warning, or
Info.

IsCompleteness() Returns TRUE if the check is for completeness, otherwise FALSE
(the check is for correctness

ShouldCallFromCG() Returns TRUE if this check should be called when the user
generates code

GetRelevantMetaclasses() Returns a list of relevant metaclasses and/or new terms. The
check will be started by Rational Rhapsody for any element in the
scope of the current configuration whose metaclass is returned.

Execute() Called by Rational Rhapsody in order to run the check. This
routine returns TRUE if the check passes or FALSE if the check
failed. It has two parameters:

• The first parameter provided by Rational Rhapsody is the
IRPModelElements that the check should be run on (its
metaclass is in the checks GetReleventMeltaclass()
list).

• The second parameter, returned by the check when relevant,
is a collection of IRPModelElements that Rational
Rhapsody will highlight should the check fail.
Rational Rhapsody 887

Checks
Deploying user-defined checks

This capability is available for those C++ and VB users who the COM API, and Java users who
use the Java API, so that you can add, execute, or remove user-defined checks. You provide the
code in a COM client.

� If using VB, the client is an EXE file.
� If using C++, the client is an EXE or DLL file.
� If using Java, the client is a CLASS or JAR file.

Rational Rhapsody uses the plug-in mechanism to load your code, typically with a HEP file or INI
file. Typically, you added the HEP file next to the relevant project or file. For example, a user
wanting to write a Java plug-in would write the plug-in using the Rational Rhapsody Java API and
provide a HELP file similar to the one in the following example.

[Helpers]
numberOfElements=1
name1=ExternalChecks
JavaMainClass1=JavaPlugin.ExternalChecks
JavaClassPath1=$OMROOT\..\DoDAF

Sample check projects are provided for Java and VB in the ExternalChecksSample subfolder of
your Rational Rhapsody installation path (for example, <Rational Rhapsody
installation>\Samples\ExtensibilitySamples\
ExternalChecksSample).

External checks limitations

Rational RhapsodyCL is not supported because it does not support the COM API.
888 User Guide

List of Rational Rhapsody checks
List of Rational Rhapsody checks
The following table lists all the predefined internal checks that can be performed by Rational
Rhapsody. This table lists all the checks for all versions of Rational Rhapsody (Rational
Rhapsody in C, Rational Rhapsody in Ada, and so on) so all the checks listed here will not
necessarily appear in your version of the product. In addition, your system might have
user-defined external checks. For more information about these types of checks, see User-defined
checks.

For ease-of-use, the table lists the checks by name in alphabetical order.

� The Correct column marks the checks for correctness, whereas checks for completeness
are marked in the Complete column. In these columns, these are the possible values:

– E for Error message
– I for Informational message
– W for Warning message

For example, the Default names check has a W in the Complete column, which means it is a
warning for completeness.

� The Domain column denotes the domain of the check and has these possible values:
– C for Common error
– M for error in the class/object Model
– S for error in the Statechart

Check Correct Complete Domain Notes

A <<CORBAInterface>>
is mapped to server code,
while the configuration is
not a CORBA server
(property
Configuration::CORBA
::CORBAEnable is not set
to CORBAServer). Server
mainline (property
Configuration::
ORBname::ServerMainL
ineTemplate) is ignored.

W C

A COM Interface can
inherit only from a single
COM Interface

E M

A COM Interface cannot
have a 1-n relationship

E M
Rational Rhapsody 889

Checks
A COM Server/COM
Library can contain at most
one COM Library package

E C

A COM TLB component
can contain only one
package, which should be
a COM Library

E C

A Composition
Association’s End inverse
cannot have a multiplicity
>1. Multiplicity is ignored

W M

A Java class can inherit
only from a single non-
interface class

E M

A Java interface can inherit
only from other interfaces

E M

A Package stereotyped as
<<CORBAModule>>
cannot contain functions or
variables

E M

A circular composition
relation was detected

W M

A singleton object cannot
have a multiplicity other
than one

W M

Activity diagram contains
unsupported elements,
such as events or triggered
operations. The operation
will not be generated!

W C

AddressSpaceName
property is limited to 32
characters

E M

An auto-generated
sequence for basic CORBA
types is not generated

W M

Association End of
composition kind cannot
have qualifier. Qualifier is
ignored.

W M

Attempt to create a global
instance of an
uninstantiable element

E M Instances of any kind can be
created only from instantiable
elements.

Check Correct Complete Domain Notes
890 User Guide

List of Rational Rhapsody checks
Attempt to create an initial
instance of an
uninstantiable element

E M Instances of any kind can be
created only from instantiable
elements.

Attribute modifiers are not
supported in COM/CORBA

W M

Attribute named the same
as a state

E M

Attribute will not be
accessible from the Web
because it is missing both
its accessor and mutator

W C

Attribute/Type references a
template class as its type.

E M

Bad nesting E M A CORBA check on
permitted stereotypes in
nested classes.

CG::Package::
EventsBaseID property
value is out of legal event
ID range

E M

COM ATL class cannot be
an active class

E M

COM ATL class cannot
inherit from more than one
COM Coclass

E M

COM Coclass can inherit
only from COM Interfaces

E M

COM Interface can inherit
only from COM Interface

E M

COM Library can contain
only COM elements

E M

CORBAException has an
operation

E M

CORBAException has an
outgoing relation

E M

CORBAException involved
in inheritance

E M

CORBAInterface inherits a
non-CORBAInterface

E M

Cannot find template of
template specialization

E M

Check Correct Complete Domain Notes
Rational Rhapsody 891

Checks
Class does not realize all
the interfaces provided by
its behavioral ports.

W M

Class does not use all its
reactive interface’s
receptions and triggered
operations

W M

Class named the same as
its package

E M A class and package cannot
have the same name,
because this would interfere
with proper code generation.

Class with empty statechart W M

Code generation does not
support instrumentation of
symmetic associations to
or from files. The
instrumentation of
association will not be
generated.

W M

Code generation does not
support the use of event/
triggered operation
arguments whose type
contains a C++ reference
(‘&’).

E M

Code generation for
operations with activity
diagrams is not supported
for operations with
variable-length argument
lists. The operation will not
be generated!

W C

Code generation ignores
inheritance between
classes in C.

W M

Code generation scope
contains more than one
SDLBlock class. This may
result in compilation errors.

W M

Component contains
CORBA elements, but
configuration is neither a
CORBA client nor a
CORBA server (property
Configuration::CORBA
::CORBAEnable) is set to
No

E C

Check Correct Complete Domain Notes
892 User Guide

List of Rational Rhapsody checks
Component file contains
unsupported fragments by
Classic Code Generation

W M

Composite with single
component

W M

Const attribute cannot have
initial value. Initial value is
ignored.

W M

Constructors and
destructors cannot be
exported to the web. Web
Instrumentation code will
not be generated for them

W C

Cross package link
requires component based
initialization scheme
(CG::Component::
InitializationScheme
)

W M

Currently only rapid ports
(relay of events) are
supported in C

W M

Dangling transition E S A dangling transition is an
transition that does not
connect to another element.
This can occur in Rational
Rhapsody if the element to
which an transition is
connected to is deleted.
Rational Rhapsody will not
automatically delete the
transition in this case so that
you do not lose any data on
the transition.

Default names W C Some elements in the model
use the default names
assigned by Rational
Rhapsody.

Initial Connector not
targeted to its state’s
substate

E S Every Or state with more
than one substate must have
an initial connector. This
error occurs when the initial
connector leads to something
other than one of the
substates for the Or state.

Check Correct Complete Domain Notes
Rational Rhapsody 893

Checks
Dependency between
components will not be
generated based on the
<<Usage>> dependency
since a matching
configuration on the
dependent component is
not found

W C

Dependency on unresolved
element

E M Rational Rhapsody cannot
find the element referenced.
See Unloaded units.

Dynamic allocation should
be allowed for a non-
embeddable object

E M

ESTL does not support
multiple/virtual inheritance

W M

Element with no relations I M

Empty body of primitive
operations or global
functions

W M The implementations of
these operations/functions
are not defined.

Empty description W C

Event ID is not unique E M Event IDs should be unique
to avoid conflicts.

Event and generated state
in a class have conflicting
names

E M The implementation names
of events and state cannot be
the same.

Event is defined in the
package but is not
referenced in the interface
of this package’s Classes

W M You have defined an event in
a package but there is no
class that actually uses this
event.

Event named the same as
a class

E M

File includes type with the
same name

W M

File name has to be in F8.3
format

E M If the Filename property
(under CG::Package/
Class) is defined as a file
name longer than eight
characters and the
<lang>_CG::<Environne
nt>::IsFileNameShort
property is set to Checked,
the checker reports an error.

Check Correct Complete Domain Notes
894 User Guide

List of Rational Rhapsody checks
Flow charts and blocks in
flow charts must reach
exactly one final activity

E S

Flowport must have a
matching attribute (by
name and type) of its class
owner

W M

Flowports connected by a
link must have the same
type. and in Atomic
flowports, their direction
should opposite of each
other (one ‘In’ and one
‘Out’)

W M

For dual interfaces,
operations and attributes
must have unique IDs (IDs
cannot be blank).
Rhapsody has generated
unique IDs for one or more
operations or attributes.

W M

Fork to non-orthogonal
states

E S

Friend dependency of
template class is ignored

W M

Global functions and
variables are illegal in Java

E M

Ill-formed link across
composite boundaries,
code will not be generated

W M

Illegal connections of a
diagram/stub connector

E S

Illegal for COM Coclass or
COM Interface to have
nested classes

E M

Illegal for COM Coclass to
have attributes

E M

Illegal for COM Coclass to
have operations

E M

Illegal for COM Library to
have nested packages

E M

Illegal initialization of
internal objects
(Configuration dialog,
Initialization tab)

E M

Check Correct Complete Domain Notes
Rational Rhapsody 895

Checks
Illegal outgoing relation for
COM Coclass

E M

Illegal relation to a template E M

Implement statechart
property differs for derived
and base Classes

E M The CG::Class::
ImplementStatechart
property must be the same
for base and derived classes.

ImplementActivityDia
gram is not supported in
Classic Code Generation

W M

Implementation not
supported in the generated
language.

E M

Inconsistent multiplicity in
symmetric relation:
instances won't be
connected

W M

Inheritance is illegal in
template instantiation

E M

Isolated states W S A state exists in a statechart
that is not connected to any
other state.

Join from non-orthogonal
states

E S There is a join connector that
is coming from a non-
orthogonal state. The
transition segments entering
a join connector must
originate from states residing
in different orthogonal
components.

Link doesn’t instantiate an
association. Link is
ignored.

W M

Link is based on
unresolved relation.

E M

Link via ports with no
matching interfaces. Link is
ignored.

W M

Link will not be instantiated
- Duplicated link between
the same ends and over
the same relation

W M

Link will not be instantiated
- ill-formed link across
composite boundaries

W M

Check Correct Complete Domain Notes
896 User Guide

List of Rational Rhapsody checks
Methods of dual and
custom interfaces must
return HRESULT

W M

Mismatch between
implementation and
multiplicity

E M The Implementation
property setting is not
appropriate for the multiplicity
of the relation.

Missing runtime libraries
required for Webify Toolkit.
Check the value of
GetConnectedRuntimeL
ibraries property for you
current environment.

W M

Missing template
instantiation parameters
value

W M

Missing template
specialization parameters
value

W M

Misuse of embedded
implementation in a relation

E M Embedded <Fixed/
Scalar> properties are not
correctly set for a relation.

Modeling of composite
types (Enumeration/
Typedef) is not supported
in COM/CORBA

W M

Multiple inheritance from
reactive classes is not
supported

E M

Multiple timeouts and
duplicate triggers from the
same state

E M Each state should only have
a single timeout or trigger.

Multiple transitions with the
same origin and destination
- only one allowed

E S

Name already in use by the
component

E M

Networkport and Flowport
connected by a link must
have the same type, and
their direction should match
- Input Networkport linked
to “In” Flowport and vice
versa.

E M

Check Correct Complete Domain Notes
Rational Rhapsody 897

Checks
Node has no outgoing
transitions, an implicit
transition to the final activity
is created

W S

Non-behavioral port not
connected to internal part.
Assuming port is meant to
be behavioral.

I M

Non-behavioral port with
explicit interfaces is not
connected to an internal
part. Messages might not
be relayed.

W M

Non-interface classes are
being specified as provided
or required by the port.
Please revise contract.

E M

Not enough values for
initializer arguments

W M

Number of events in the
package exceed the event
ID range (defined in the
property
<lang>::Component::
PackageEventIdRange)

E M

Objects with multiplicity
greater than one are not
initialized correctly when
JAVA_CG::Component::
InitializationScheme
is set to ByComponent.
Either set the property to
ByPackage or initialize
objects programmatically.

W M

Only a COM Library can
contain COM elements

E M

Only components
stereotyped as COM DLL,
COM EXE, and COM TLB
can contain a COM Library.

E C

Only one ‘SFunctionBlock’
could be in a component
scope

E M

Operation with activity
diagram contains user-
supplied code, which will
be ignored.

W C

Check Correct Complete Domain Notes
898 User Guide

List of Rational Rhapsody checks
Or state with no default
state

E S You have created an Or state
without determining which is
the default state. Use an
initial connector in the
statechart to determine the
default state (error of
completeness).

Out of event IDs. There are
more packages with events
than possible event IDs.
Modify the
CG::Package::
PackageEventIdRange
property or reduce the
number of packages with
events

E M

Out of triggered operation
IDs

E M There is a limit of 1,768
triggered operations for a
class and all its base classes.

Outgoing interface must be
a COM Interface

E M

Outgoing relation from a
COM Interface must be
stereotyped as connection
point

E M

Outgoing relation from a
CORBAInterface to a non-
CORBAInterface

E M CORBAInterfaces can only
have outgoing relations to
other CORBAInterfaces.

Package is defined under
its class in the same
implementation file

E C

Port connected to more
than one end that provides
the same interface.

W M

Port has an empty contract
- no provided or required
interfaces were specified.
Assuming port is meant to
replay an event.

I M

Port has unresolved
Contract

E M

Port provides and requires
same interface(s) - please
revise contract details.

E M

Check Correct Complete Domain Notes
Rational Rhapsody 899

Checks
Port with empty contract
owned by non-reactive
class\object. Port will not
relay messages.

W M

Ports code generation is
only supported in C++ and
C. They will be ignored.

W M

Primitive, triggered
operation or event is
named the same as a state

E M You created a state with the
same name as an event.

Published object’s name is
limited to 32 characters

E M

Qualifier for qualified
relation not found

E M No qualifier was defined for a
qualified relation.

Reactive interface with a
reactive super class; code
cannot be generated

E M

Reactive interface with a
statechart or an activity
diagram; code cannot be
generated

E M

Reactive interface without
receptions or triggered
operations

I M

Reactive template and
Reusable statechart
generation scheme

E M The Flat implementation of
statecharts must be used
with reactive template
classes.

Reference To Template
Parameter Type From
Another Class

E M

Reference to unresolved
element in the scope of the
active component

E M

Reference to unresolved
event

E M A reference to an event
exists in one view, but that
event does not appear in at
least one other view. This
can occur when you are
collaborating with other
developers.

Reference to unresolved
relational class

E M Same as “Reference to
unresolved event,” except
that the unresolved element
is a relational class.

Check Correct Complete Domain Notes
900 User Guide

List of Rational Rhapsody checks
Reference to unresolved
statechart

E M Same as “Reference to
unresolved event,” except
that the unresolved element
is a statechart.

Reference to unresolved
stereotype

E M Same as “Reference to
unresolved event,” except
that the unresolved element
is a stereotype

Reference to unresolved
super class

E M Same as “Reference to
unresolved event,” except
that the unresolved element
is a superclass.

Reference to unresolved
type

E M At least one element is
defined to be of a type that is
not defined in the model.

Relation should be
implemented as static array
when static architecture is
used

W M The Implementation
property of the relation
should be set to
StaticArray when using
static architecture.

Relation to a
CORBAException

E M Relations to
CORBAExceptions are not
allowed.

Relation without a
multiplicity

W M

Relations from Java
interfaces cannot be
generated

E M

Rhapsody code generation
does not support link
between port required and
CORBA interfaces. Code
will not be generated.

W M

Rhapsody doesn’t support
multiplicity of more than 1
for Flowports

E M

SDL model data required
for code generation is
missing. Check the SDL
model execution
information that you
provided in the Import/Sync
SDL model dialog.

W M

Sendaction, unresolved
event or its arguments

W S

Check Correct Complete Domain Notes
Rational Rhapsody 901

Checks
Sendaction, unresolved
index of a target

E S

Since Arguments cannot
take on default values
within the CORBA domain,
these default values will be
ignored within the CORBA
domain.

W M

Since Attributes cannot
take on initial values within
the CORBA domain, these
initial values will be
ignored.

W M

Since Enumeration
Constants cannot take on
default values within the
CORBA domain, these
default values will be
ignored.

W M

Since animation of class
nested in template is not
supported, instrumentation
code will not be generated.

W M

Since attributes within the
CORBA domain cannot be
marked with a Static
modifier, attributes marked
as Static will ignore that
marking during code
generation.

W M

Since attributes within the
CORBA domain cannot be
of Reference Types,
attributes marked with a
Reference modifier will
ignore that marking during
code generation.

W M

Since structure attributes
within the CORBA domain
cannot be marked with a
Constant modifier,
attributes marked as
Constant will ignore that
marking during code
generation.

W M

Check Correct Complete Domain Notes
902 User Guide

List of Rational Rhapsody checks
Since the
CORBA::Attribute::
ConstantAsReadOnly
property is set to False,
attributes marked as
Constant will ignore that
marking during code
generation.

W M

Since typedefs within the
CORBA domain cannot be
marked with a Constant
modifier, typedefs marked
as Constant will ignore that
marking during code
generation.

W M

Since typedefs within the
CORBA domain cannot be
of Reference Types,
typedefs marked as a
Reference modifier will
ignore that marking during
code generation.

W M

Singleton stereotype
ignored: instance located in
a different package

W M

Singleton stereotype
ignored: instance
multiplicity is not 1

W M

Singleton stereotype
ignored: matching instance
is not owned by a package

W M

Singleton stereotype
ignored: multiple instances
found

W M

Singleton stereotype
ignored: no matching
instance found

W M

Singleton stereotype
ignored: the
C_CG::Class::ObjectT
ypeAsSingleton
property is set to False

W M

SourceArtifacts under class
or package are not
supported in Class code
generation

W M

Check Correct Complete Domain Notes
Rational Rhapsody 903

Checks
State named the same as
its own class, super class,
or related class

E M

Static memory Class with
non flat statechart

E M Flat implementation of
statecharts must be used
with static architectures.

Static memory class with
override of operator new or
delete

E M

Static memory element
cannot be initialized

E M

Static reaction without
action

W S You have defined a static
reaction for a state but have
not defined an action for it in
the Features window.

Static reaction without
guard or trigger

E S

StaticImport of a non-static
class member/method

W M

Stereotype exception is
ignored when inheriting
from a non-exception class

W M

Symmetric relation with bi-
directional inline in
specification causes a
dependency loop that is not
supported by <language>;
the inline is ignored during
code generation

W M

Template Specialization In
Different Place Than Its
Template

E M

Template instantiation of
unresolved template

E M

The Active Configuration
must have the ‘S-
FunctionConfig’ stereotype
when creating a
non-animated S-Function
or the Instrumentation
Mode set to animation for
animated S-Function

W M

Check Correct Complete Domain Notes
904 User Guide

List of Rational Rhapsody checks
The SDL_Suite
environment header file
was not found. It is
recommended that you
return to SDL Suite, select
the Generate
environment header file
check box in the Generate
> Make dialog and remake.

W M

The Trigger of an transition
can’t be abstract

W M

The active component is
defined with “Other” as its
build type

E C

The body of an abstract
method is ignored

W M

The contract of the port is
not an interface. Please
replace contract or convert
it to an interface.

E M

The events base ID set by
the
CG::Package::EventsB
aseID property collides
with the generated base
events IDs

E M

The name of the actor is
not a legal code name

E M

The scope of the active
component contains File-s
that are not external

E M

Transition’s edge is
inconsistent with the pin’s
direction

W S

Transitions cannot cross
block boundaries in flow
charts

E S

Trigger of transition is not
under its swimlane’s
represented class

W S

Type is mapped to File.
Mapping is ignored.

W M

Typedef with Constant
modifier is based on a type
with a Constant modifier.

E M

Check Correct Complete Domain Notes
Rational Rhapsody 905

Checks
Unable to generate link -
multiplicities do not match
or specified using *, or a
range of numbers

W M

Unresolved type
referenced by a template
parameter.

E M

Unspecified
AssociationRole - the
AssociationRole is not
connected to a ‘formal Link’

W M

Unspecified ClassifierRole
- the object is not
connected to a ‘formal
classifier’

W M

Unspecified message W M

Unsupported elements in
flowchart

E S

Usage dependencies on
IDE configurations are
currently not generated. If
needed, specify the build
details in the
configuration’s Features
window

I M

Web support is unavailable
for a language variable of
this type. Web
Instrumentation code will
not be generated for it.

W C

Web support is unavailable
for global functions and
global variables. Web
Instrumentation code will
not be generated for them.

W C

Web support is unavailable
for operations or events
with more than one
argument. Web
Instrumentation code will
not be generated for them.

W C

Web support is unavailable
for templates and template
instantiations. Web
Instrumentation code will
not be generated for them.

W C

Check Correct Complete Domain Notes
906 User Guide

List of Rational Rhapsody checks
When the property
C_CG::Class::EnableD
ynamicAllocation is set
to FALSE,
C_CG::Configuration
::InitializeEmbeddab
leObjectsByValue
should be set to TRUE.

E C

When working with an IDF
environment, the IDF
profile should be used

W M

Wrong Nested Statechart
Hierarchy, try to use
‘MergeBack’ or Delete
AndState to fix hierarchy

E M

Wrong language of element
in scope

E M

Wrong language of initial
instance

E M

Check Correct Complete Domain Notes
Rational Rhapsody 907

Checks
908 User Guide

Basic code generation concepts
This section provides you with basic code generation concepts in Rational Rhapsody. While this
section focuses mostly on C++, information about other languages (C, Java, and Ada) might also
appear.

Rational Rhapsody generates implementation code from your UML model. You can generate code
either for an entire configuration or for selected classes. Inputs to the code generator are the model
and the code generation (<lang>_CG and CG) properties. Outputs from the code generator are
source files in the target language: specification files, implementation files, and makefiles.

Note that you can set up roundtripping and reverse engineering in Rational Rhapsody Developer
for C and C++ so that they respect the structure of the code and preserve this structure when code
is roundtripped/regenerated from the Rational Rhapsody model. For details on how to activate the
code respect ability, see Reverse engineering.

C code generation in Rational Rhapsody is compliant with MISRA-C:1998. Note that there are
justified violations, which are noted where appropriate.

Code generation overview
Between the code generator and the real-time Object Execution Framework (OXF), which is
provided as a set of libraries, Rational Rhapsody can implement most low-level design decisions
for you. These decisions include how to implement design elements such as associations,
multiplicities of related objects, threads, and state machines.

� Elaborative. You can use Rational Rhapsody simply as a code browser, with all relations,
state machine generation, and so on disabled. No instance initializations or links are
generated. You do everything manually.

� Translative. You can draw a composite with components, links, and state machines, click
a button, and get your application running while having to write only a minimum of code
(you would have to write at least some actions in a statechart).
Rational Rhapsody 909

Basic code generation concepts
The Rational Rhapsody code generator can be both elaborative and translative to varying degrees.
Rational Rhapsody does not force translation, but allows you to refine the code generation process
to the wanted level. Rational Rhapsody can run in either mode, or anywhere between these two
extremes.

Note
Microsoft is the default working environment for Rational Rhapsody. You can specify other
“out-of-the-box” environments in the environment settings for the configuration. For more
information, see Component configurations in the browser.

The following figure shows the elements involved in generating code and building a component in
Rational Rhapsody. The dependency arrows indicate which files are generated and which files are
included by the code generator and compiler, respectively. The thick borders around the code
generator and compiler indicate that these are active classes.
910 User Guide

Code generation overview
Object Model of Generate, Make, Run
Rational Rhapsody 911

Basic code generation concepts
The Code Toolbar
When you are ready to build and execute your program, you can use the Code menu or the Code
toolbar. If the Code toolbar is not displayed, choose View > Toolbars > Code.

The code generation process has the following operations and icons:

� Make builds the executable. You must have already generated the code for the model.

� GMR (Generate, Make, Run) generates the code, builds the executable, and runs the
executable.

� Stop Make/Execution stops the build, or stops the program execution.

� Run Executable launches the executable portion of the model.

� Disable dynamic model code associativity disables automatic changes to the code
whenever you make changes to the model. By default, dynamic model-code associativity
is available.

Generating Code
Before you generate code, you must set the active configuration, as described in Setting the active
configuration.

The code generator automatically runs the checker to check for inconsistencies that might cause
problems in generating or compiling the code. Some of the checks performed by the checker detect
potentially fatal conditions that might cause code generation to stop processing if not corrected
before generating code. For information about selecting checks to perform, see Checks.

� Select Code > Generate > (active configuration), or
� Press Ctrl+F7

Note that it is possible to generate code without intertask communication and event dispatching
from Rational Rhapsody, but this will disable the animation and visual debugging features. You
can mitigate this effect by wrapping your in-house intertask communication and event dispatching
routines inside an operation that is defined inside the model. In this case, the visualization is of the
operation as a representative of your “real” intertask communication and event dispatching.

Incremental Code Generation

After initial code generation for a configuration, Rational Rhapsody generates code only for
elements that were modified since the last generation. This provides a significant performance
improvement by reducing the time required for generating code.
912 User Guide

Generating Code
In support of incremental code generation, Rational Rhapsody creates a file in the configuration
directory named <configuration>.cg_info. This file is internal to Rational Rhapsody and does
not need to be placed under configuration management.

Forcing Complete Code Generation
In some instances, you might want to generate the entire model, rather than just the modified
elements.

To force a complete regeneration of the model, select Code > Re Generate > (configuration).

Note
Forcing a regeneration of code using Code > Re Generate > (configuration) does not
always regenerate the source files. The model is being regenerated (as is shown in the
Output window) but only to temporary files. These files are then compared with their
original counterparts and then overwritten if changes have been made. If you want to ensure
that the code is completely regenerated each time, then you need to delete the active
configuration folder. To automate this with a macro, choose Tools > Customize to create
your macro (helper application) and set the helper trigger to Before Code Generation.

Regenerating Configuration Files
When you delete classes or packages from the model, or add the first global instance to a package,
you need to regenerate the configuration files (main and makefile).

� Select Code > Re Generate > Configuration Files, or
� Right-click the active configuration in the browser and select Generate Configuration

Main and Makefiles

Smart Generation of Packages

Rational Rhapsody generates code for a package only if it contains meaningful information, such
as instances, types, and functions. This streamlines the code generation process by preventing
generation of unnecessary package files.

To modify this behavior, use the CG::Package::GeneratePackageCode property. See the
definition provided for the property on the applicable Properties tab of the Features window.

To remove existing package files that do not contain meaningful information, select Code > Clean
Redundant Source Files.
Rational Rhapsody 913

Basic code generation concepts
Generating Code Guidelines

When you generate code, consider the following information:

� A reactive class that inherits from a non-reactive class might cause a compilation warning
in Instrumentation mode. You can ignore this warning.

� If a class has a dependency on another class that is outside the scope of the component,
Rational Rhapsody does not automatically generate an #include statement for the
external class. You must set the <lang>_CG::Class::SpecInclude property for the class
of the dependent.

Dynamic Model-Code Associativity

If you choose Code > Dynamic Model Code Associativity and then either the Bidirectional or
Code Generation command, Rational Rhapsody generates code automatically when an element
changes and is in need of regeneration. These changes include the following possibilities:

� Changes to the element itself, such as its name or properties or by adding or removing
parts of the element

� Changes in its owner, an associated element, a project, a selected component or
configuration

� Adding an element to the model through the Add to Model feature
� Checking out the element with a CM tool
� Using the Undo command while editing the element

Code for an element is automatically generated if one of the following occurs:

� You open a Code View window for the element, either with the internal code editor or an
external code editor. See Viewing and Editing the Generated Code.

� You set focus on an existing Code View window for that element.
If you set dynamic model-code associativity to None or to Roundtrip, you must use
Code > Generate to generate code for the modified elements.

Note
Dynamic model-code associativity is applicable to all versions of Rational Rhapsody
(meaning, Rational Rhapsody Developer for C, C++, Java, and Ada).

Generating Makefiles

Rational Rhapsody generates plain makefiles that include the list of files to be compiled and
linked, their dependencies, and the compilation and link command.
914 User Guide

Generating Code
Rational Rhapsody generates makefiles when it generates the target file. The
<lang>_CG::<Environment>::InvokeMake property defines how to execute the makefile. You
can customize the content of the makefile by modifying the
<lang>_CG::<Environment>::MakeFileContent property. See the definition provided for these
properties on the applicable Properties tab of the Features window.

Stopping Code Generation

To stop a long code generation session, select Code > Stop X. For example, if you are in the
middle of building the code, the name of the option is Stop Build.

Another way to stop code generation is to create a file named abort_code_gen (no extension) in
the root generation directory of the configuration. Rational Rhapsody checks for the file while
generating code; if the file is found, Rational Rhapsody deletes the file and stops code generation.

Note
If you start code generation from the Active Code View, you can stop only by using the
abort_code_gen file. You cannot stop using the UI.
Rational Rhapsody 915

Basic code generation concepts
Targets
Once the code has been generated correctly, you can build the target component and delete old
objects.

Building the Target

To build the target, use one of the following methods:

� Select Code > Build <targetname>.exe
� Click the Build Target button on the Code toolbar

As Rational Rhapsody compiles the code, compiler messages are displayed in the Output window.
When compilation is completed, the message Build Done is displayed.

Note
If you want to build applications for 64-bit targets, you must first rebuild the Rational
Rhapsody framework libraries. If you are running Rational Rhapsody on a 64-bit system,
then if you rebuild the libraries using Code > Build Framework, the Rational Rhapsody
libraries will be rebuilt such that you will be able to build applications for 64-bit targets.
However, if you are running Rational Rhapsody on a 32-bit system, you will have to rebuild
the Rational Rhapsody framework libraries manually.
916 User Guide

Targets
Deleting Old Objects Before Building Applications

In some cases, it is possible for the linker to link an application using old objects. To clean out old
objects, use one of the following methods:

� Use the Code > Clean command to delete all compiled object files for the current
configuration.

� Use the Code > Rebuild command every time, which might be time-consuming for
complex systems.

� Modify the start of make within etc/msmake.bat and remove the /I option. This will stop
the build after the first source with errors.

� Within the site.prp file, change the CPPCompileCommand property from String to
MultiLine, and change the content so that before a file is compiled, the existing .obj file
is deleted.

For example:
CPPCompileCommand Property

Metaclass Microsoft:

Property CPPCompileCommand MultiLine
" if exist $OMFileObjPath erase $OMFileObjPath

$(CPP) $OMFileCPPCompileSwitches
/Fo\"$OMFileObjPath\" \"$OMFileImpPath\" "

Metaclass VxWorks:

Property CPPCompileCommand MultiLine
" @echo Compiling $OMFileImpPath

@$(RM) $OMFileObjPath

@$(CXX) $(C++FLAGS) $OMFileCPPCompileSwitches -o
$OMFileObjPath $OMFileImpPath”
Rational Rhapsody 917

Basic code generation concepts
Running the Executable
Once you have built the target file, you can run it by using one of the following methods:

� Select Code > Run <config>.exe.
� Click the Run tool in the Code toolbar.

The default executable application is a console application. Once the application is started,
regardless of its instrumentation level, a console window is displayed. If the application sends text
messages to the standard output device, they are displayed in the console window.

Shortcut for Creating an Executable

� Select Code > Generate/Make/Run.
� Click the Generate/Make/Run tool in the Code toolbar.

Instrumentation

If you included animation instrumentation in your code, running the code displays the Animation
toolbar. If you included trace instrumentation in your code, running the code displays the Trace
window. You can choose animation or trace instrumentation when you set the parameters of your
configuration. See Configurations.

For more information about instrumentation, see Animation and Tracing.

Stopping Model Execution

� Select Code > Stop.
� Click the Stop Make/Execution tool in the Code toolbar.
918 User Guide

Generating Code for Individual Elements
Generating Code for Individual Elements
You can generate code for a package and all its classes, or generate code for selected classes within
a package. You can generate code from the Code menu, the browser, or an OMD.

Before you generate code for a class or package, you must set the active configuration, just as if
you were generating the executable for the entire model. For more information, see Setting the
active configuration.

Using the Code Menu

1. Select a class from the browser, or select one or more classes in an OMD.

2. Select Code > Generate > Selected Classes.

If you have generated code for the entire model at least once, the Generate command generates
code only for elements that have been modified since the last code generation.

1. Select a class from the browser, or select one or more classes in an OMD.

2. Select Code > Re Generate > Selected Classes.

Using the Browser

1. In the browser, right-click a package or class.

2. Depending on your choice:

– For a package, select Generate Package from the menu to generate code for
all classes in the package.

– For a class, select Generate Class to generate code only for that class.

Using an Object Model Diagram

To generate code for a class in an OMD, right-click the class and select Generate Class.
Rational Rhapsody 919

Basic code generation concepts
Results of Code Generation
When code generation completes, Rational Rhapsody informs you of the results. Code generation
messages are displayed in the Output window. Click a message to view the relevant location in the
model.

Output Messages

When you generate code and build the target, messages are displayed in the Output window that
either confirm the success of the operation or inform you of errors.

Some modeling constructs can cause code generation errors. Checking the model before
generating the code enables you to discover and correct most of these errors before they can cause
serious problems.

Locating and Fixing Compilation Errors

Rational Rhapsody displays compilation errors that occur. To find the source of the compilation
error in the code, double-click the relevant error message. Rational Rhapsody tries to get you as
close as possible to the source of the compilation error:

� If the source of the problem is in the implementation of an operation, the Features window
for the operation is opened with the Implementation tab displayed and the problematic
line of code highlighted.

� If the source of the problem is in the initialization for a configuration, the Features window
for the configuration is opened with the Initialization tab displayed and the problematic
line in the initialization code highlighted.

� If the source of the problem is in the actions defined for a state, the Features window for
the state is opened with the General tab displayed and the problematic line of code
highlighted.

� If the source of the problem is in a reaction defined for a state, the Features window for the
relevant reaction is opened and the problematic line of code is highlighted.

� If the source of the problem is in the action code defined for a transition, the Features
window for the transition is opened with the General tab displayed and the problematic
line of code is highlighted.

� For other compilation errors, Rational Rhapsody opens up the relevant file in the code
editor and highlights the problematic line of code. If you know where to correct this code
within the model, you should do so. If not, you can correct the code manually and
roundtrip the corrected code back into the model.
920 User Guide

Viewing and Editing the Generated Code
Note
If there is no apparent problem in the model and you have been generating code on selected
classes, clean the whole configuration using the Code/Clean menu command. Compilation
errors can occur if files were generated with different versions of the model.

Viewing and Editing the Generated Code
The Code View feature enables you to edit code for classes or a selected package (but not
configurations). You can select one or more classes and bring up a text editor of your choice to edit
the code files directly.

Setting the Scope of the Code View Editor

Before you can view or edit code, you must set the scope of the code view editor:

1. Right-click the component that includes the packages or classes whose code you want to
view and select Set as Active Component.

2. In the Current Configuration field, select the configuration you want to use.
Rational Rhapsody 921

Basic code generation concepts
Adding Line Numbers

To display line numbers for the generated code:

1. Select View > Active Code View from the menu bar. Rational Rhapsody displays the
generated code in the results window.

2. To display line numbers, click the tab for the generated code and right-click in the code
window.

3. Select Properties from the menu and click the Misc tab.

4. In the Line Numbering area, select Decimal from the Style menu and enter 1 in the Start
at field as shown in the following figure.

5. Click OK.
922 User Guide

Viewing and Editing the Generated Code
Editing Code

There are two basic methods that can be used to edit code:

� Highlight the element, then select Code > Edit > Selected classes.
� Right-click the element, then select Edit <element>.

The specification and implementation files for the selected classes or package open in separate
windows. You can use the internal code editor or an external code editor to edit the files. For more
information, see Using an External Editor.

Depending on the dynamic model-code associativity (DMCA) setting, the changes you make to
the code can be automatically roundtripped, or incorporated into the model. For more information,
see Automatic and forced roundtripping.

In addition, the DMCA setting determines whether open code views are updated if the code is
modified by an external editor or the code generator. In the case of code generation, the code might
have changed significantly. If this happens, the following message might be displayed:

filename: This file has been modified outside the source editor. Do you want
to reload?

If you click Yes, the code view is refreshed with the new file contents and does not replace
implementation files with obsolete information.

Locating Model Elements

When viewing code, Rational Rhapsody provides a rapid method to locate in the browser the
model element represented by the current position in the code.

To locate the model element, do one of the following actions:

� Right-click in the code window and then select Locate in Model.
� Press Ctrl+L.

The element represented by the code is highlighted in the browser and the Features window is
opened with the relevant line of code highlighted in the window.

If the model element is part of a statechart, the statechart is opened, with the relevant element
highlighted in the diagram, and the Features window is opened with the relevant line of code
highlighted.

Note
This feature is available both in the normal code view and in the active code view.
Rational Rhapsody 923

Basic code generation concepts
Regenerating Code in the Editor

To re-generate code for files that are currently open in the editor, choose Code > Re Generate >
Focused Views.

Associating Files with an Editor

You can associate a specific editor with the extension of a source file:

1. Set the General::Model::ClassCodeEditor property to Associate.

2. Click OK.

Note
Microsoft Visual C++ 6.0 includes an Open with MSDEV operation in the list of
operations associated with *.cpp and *.h files. If you have MVC++ 6.0, Rational Rhapsody
can erroneously associate the source files with the Open with MSDEV operation instead of
with the Open operation.

To make sure that Rational Rhapsody associates the MVC++ Open operation with the source files:

1. From Windows Explorer, select View > Options > File Types.

2. Select a file type (for example, C Header File associated with the file extension H), then
select Edit.

The Edit File Type window opens. Generally, the first action listed is Open with
MSDEV.

3. Click New, add an “Open” action, and associate the Open action with your preferred
editor application.

4. Remove the Open with MSDEV action.
924 User Guide

Viewing and Editing the Generated Code
Using an External Editor

Note that if you use an external editor to edit code for a Rational Rhapsody model, you can set up
Rational Rhapsody Developer for C++ and C so that it respects the structure of the code and
preserves this structure when code is regenerated from the Rational Rhapsody model. For details
on how to activate the code respect ability, see Code respect.

To specify an external editor when you edit code:

1. Select File > Project Properties.

2. Select the Properties tab.

3. Navigate to the General::Model::EditorCommandLine property.

4. Click in the property value call in the right column to activate the field, then click the
ellipsis (...) to open the Browse for File window.

5. Browse to the location of the editor you want to use (for example, Notepad) and select the
editor. Click OK to close the window. Rational Rhapsody fills in the path in the property
value field.

6. Click OK.

Viewing Generated Operations

For each model, Rational Rhapsody provides setter and getter operations for attributes and
relations, initializer and cleanup operations, and one called startBehavior(). However, Rational
Rhapsody displays these automatically generated operations in the browser only if you set the
CG::CGGeneral::GeneratedCodeInBrowser property to Checked. After you modify this property
and regenerate the code, you will be able to view the automatically generated operations in the
browser.
Rational Rhapsody 925

Basic code generation concepts
Deleting Redundant Code Files
A file can become redundant for the following reasons:

� An element mapped to a file is deleted or renamed.
� A change is made in the component scope.
� Changes are made in the mapping of elements to files.

Changes are made in component-level elements (components, configurations, folders, and files).

To delete redundant source files from the active configuration, select Code > Clean Redundant
Source Files.

Generating Code for Actors
When you create a configuration, you can choose to generate code for actors (see Features of
configurations). If you set the active configuration to generate code for actors, Rational Rhapsody
generates, compiles, and links the actor code into the same library or executable as the rest of the
system. This enables you to use actors to simulate inputs and responses to the system during
system tests.

There are limits on the code generated for an actor, as described in Limitations on Actor
Characteristics.
926 User Guide

Generating Code for Actors
Selecting Actors Within a Component

Classes have code generation properties that determine whether Rational Rhapsody should
generate code for relations and dependencies between actors and classes.

To select code generation for actors within a component:

1. Right-click the component in the browser and then select Features.

2. Select the Initialization tab.

3. Under Initial Instances, select the actors to participate in the component.

4. Make sure Generate Code for Actors is selected.

Generate Code for Actors is selected by default, but is cleared when loading pre-version
3.0 models to maintain backward compatibility.

By default, relations between actors and classes are generated only if the actor is generated. You
can fine-tune this within the class by using the CG::Relation::GenerateRelationWithActors
property. See the definition provided for the property on the applicable Properties tab of the
Features window.

Limitations on Actor Characteristics

There are limitations on how actors can be created, which affect code generation. These limitations
are as follows:

� An actor cannot be specified as a composite in an OMD. Therefore, Rational Rhapsody
does not generate code that initializes relationships among its components.

� The base of an actor must be another actor. The base of a class must be another class.
� An actor can embed only nested actors. A class can embed only nested classes.
� The name of an actor does not have to conform to code standards for a class name. But if

an actor name is illegal (that is, it does not have a name that can be compiled) an error is
generated during code generation.
Rational Rhapsody 927

Basic code generation concepts
Generating Code for Component Diagrams
The following code generation semantics apply to component diagrams:

� Code generation is provided for library and executable build type components.
� Code generation is provided for folder and file component-related metatypes.
� Code is generated only with regard to relations between the binary components (library

and executable).
� The following parts of a component diagram provide no code generation:

– Relations involving files and folders
– Interfaces realized by a component
– All other component types that are not stereotyped «Library» or
«Executable»

� A dependency between components generates code only if it has the «Usage» stereotype,
with the following restrictions and limitations:

– Related components must have a configuration with the same name.
– If the two related components map the same element, code generation uses the

first related component that was checked.
– If an element is uniquely mapped (in the scope of a single binary component),

the element file name is taken from that component.
– If the element is not found in the scope of the generated component, related

component, or uniquely mapped to some other component, the file name of
the element is synthesized.

To disable the synthesis of the name, set the
CG::Component::UseDefaultNameForUnmappedElements property to Cleared.

The CG::Component::ComponentsSearchPath property specifies the name of related
components, although the dependencies are checked before the property. For example, a
dependency from component A to component B is equivalent to putting B in the
ComponentsSearchPath property (with the obvious advantage on name change recovery).
928 User Guide

Generating Code for Component Diagrams
Consider the diagrams shown in the following figure.

Classes C1 and C2 have a relation to each other (an association). The model has two components,
component_1 and component_2, that each have a configuration with the same name. Component_1
has a dependency with stereotype «Usage» to component_2. Class C1 is in the scope of
component_1. Class C2 is not in the scope of component_1, but is mapped to a file F1 in
component_2.

� Look for an element file name in related components (when the element is not in the scope
of the current component).

For example, when generating component_1, when Rational Rhapsody needs to include
C2, it will include F1 (the file in component_2).

� Add related components to the makefile include path. For example, in the component_1
makefile, a new line is added to the include path with the location of component_2.

� If the current component build type is executable, and a related component build type is
library, add the library to the build of the current component. For example, if the build
type of component_1 is executable, and the build type of component_2 is library, the
component_1 makefile will include the library of component_2 in its build.
Rational Rhapsody 929

Basic code generation concepts
Cross-Package Initialization
Rational Rhapsody has properties that enable you to specify code that initializes package relations
after package instances are initialized, but before these instances react to events. More generally,
these properties enable you to specify any other initialization code for each package in the model.
They enable you to initialize cross-package relations from any of the packages that participate in
the relation or from a package that does not participate in the relation.

The properties that govern package initialization code are as follows:

� CG::Package::AdditionalInitialization specifies additional initialization code to run
after the execution of the package initRelations() method.

� CG::Component::InitializationScheme specifies at which level initialization occurs.
The possible values are as follows:

– ByPackage where each package is responsible for its own initialization; the
component needs only to declare an attribute for each package class. This is
the default option and maintains backward compatibility with pre-V3.0
Rational Rhapsody models.

– ByComponent where the component must initialize all global relations
declared in all of its packages. This must be done by explicit calls in the
component class constructor for each package initRelations(), additional
initialization, and startBehavior().

The following example shows C++ code generated from the model in the diagram above when the
InitializationScheme property is set to ByPackage.

The component code is as follows:

class DefaultComponent {
private :

P1_OMInitializer initializer_P1;
P2_OMInitializer initializer_P2;

};

The P1 package code is as follows:

P1_OMInitializer::P1_OMInitializer() {
P1_initRelations();

< P1 AdditionalInitializationCode value>
P1_startBehavior();

}

930 User Guide

Cross-Package Initialization
The following example shows C++ component code generated when the InitializationScheme
property is set to ByComponent:

DefaultComponent::DefaultComponent() {
P1_initRelations();
P2_initRelations();

< P1 AdditionalInitializationCode value>
< P2 AdditionalInitializationCode value>

P1_startBehavior();
P2_startBehavior();

}

Rational Rhapsody 931

Basic code generation concepts
Class Code Structure
This section describes the structure of the generated code, including information on how the model
maps to code and how you can control model mapping. In addition to the model elements, the
generated source code includes annotations and, if instrumented, instrumentation macros.

Note
Annotations map code constructs to design constructs. They play an important role in
tracing between the two. Do not touch or remove annotations. If you do, you hinder tracing
between the model and the code. Annotations are comment lines starting with two slashes
and a pound sign (//# for C and C++) or two dashes and a plus sign (--+ for Ada).

Instrumentation macros become hooks and utility functions to serve the animation/trace
framework. They are implemented as macros to minimize the impact on the source code. If you
remove instrumentation macros, animation cannot work correctly.

The code structures shown are generic, using generic names such as class and state. Your code will
contain the actual names.

Class Header File

The class header file contains the following sections:

� Prolog
� Forward declarations
� Instrumentation
� Virtual and private inheritance
� User-defined attributes and operations
� Variable-length argument lists
� Relation information
� Statechart implementation
� Events interface
� Serialization instrumentation
� State classes
932 User Guide

Class Code Structure
Prolog
The prolog section includes the framework file, and a header or footer file (if applicable).

You can add additional include files using the <lang>_CG::Class/Package::SpecIncludes
property. You might have to do this if you create dependencies to modules that are not part of the
Rational Rhapsody design.

For example:

#ifndef class_H
#define class_H
#include <oxf.h> // The framework header file
//--
// class.h
//--

Relationships to Other Classes
This section of the header file includes forward declarations for all the related classes. These are
based on the relationships of the class with other classes specified in the model.

For example:

class forwarded-class1;
class forwarded-class2;

class class : public OMReactive {
// Class definition, and inheritance
// from framework class (if needed!).

Instrumentation
If you compiled with instrumentation, instrumentation macros provide information to animation
about the run-time state of the system.

For example:

 DECLARE_META // instrumentation for the class
Rational Rhapsody 933

Basic code generation concepts
User-Defined Attributes and Operations
In this section, all operations and attribute data members are defined. The code in this section is a
direct translation of class operations and attributes. You control it by adding or removing
operations and attributes from the model.

For example:

//// User explicit entries ////
public :

//## operation op1() // Annotation for the operation
void op1(); // Definition of an operation

protected :
// Attributes:
//## attribute attr1 // Annotation for an attribute
attrType1 attr1; // Definition of an attribute

//// User implicit entries ////
public :

// Constructors and destructors:
class(OMThread* thread = theMainThread);
virtual ~class(); // Generated destructor

Generating Code for Static Attributes

When you generate code for a static attribute, the initial value entered is generated into a statement
that initializes the static attribute outside the class constructor. Consider the following initial
values for three static attributes:

When you generate code, these values cause the following statements to be generated in the
specification file A.h:

//---
// A.h
//---
class A {
//// User explicit entries ////
protected:
 //## attribute attr3
 static OMString attr3;

 //## attribute attr1
 static int attr1;

 //## attribute attr2
 static OMBoolean attr2;
...
};

Attribute Type Value

attr1 int 5

attr2 OMBoolean true

attr3 OMString “Shalom”
934 User Guide

Class Code Structure
In the implementation file, A.cpp, the following initialization code is generated:

#include "A.h"

//---
// A.cpp
//---

// Static class member attribute
OMString A::attr3 = "Shalom";

// Static class member attribute
int A::attr1 = 5;

// Static class member attribute
OMBoolean A::attr2 = true;
A::A() {
};

Variable-Length Argument Lists
To add a variable-length argument list (...) as the last argument of an operation, open the
Properties window for the operation, and set the
CG::Operation::VariableLengthArgumentList property to Checked.

For example, if the VariableLengthArgumentList property is set to Checked for an operation
void testA(int i), the following declaration generated for testA():

void testA(int i, ...);

Synthesized Methods and Data Members for Relations
This section of the header file includes every relation of the class defined in the model. If
appropriate, it includes a data member, as well as a set of accessor and mutator functions to
manipulate the relation.

You can control this section by changing the relation properties and container properties. For more
information about the CG properties, see Properties.

For example:

OMIterator<rclass1*> getrelation1()const;
void addrelation1(rclass* p);
void removerelation1(rclass* p);
void clearrelation1();

protected :
//
OMCollection<rclass*> relation1;
attrType1 getattr1()const;
void setattrType1(attrType1 p);

Statechart Implementation
� Change the statechart implementation strategy from reusable to flat.
� Disable code generation for statecharts.
Rational Rhapsody 935

Basic code generation concepts
For example:

//// Framework entries ////
public :

State* state1; // State variables
State* state2;
void rootStateEntDef(); // The initial transition

// method
int state1Takeevent1(); // event takers
int state2Takeevent2();

private :
void initRelations(); //InitRelations or

//InitStatechart is
//generated to initialize
//framework members

void cleanUpRelations();//CleanupRelations or
//CleanupStatechart is
//generated to clean up
//framework members in
//destruction.

Note
The initRelations() and cleanUpRelations() operations are generated only if the
CG::Class::InitCleanUpRelations property is set to Checked. See the definition
provided for the property on the applicable Properties tab of the Features window.

Events Interface
The section of the code illustrates events consumed by the class. It is for documentation purposes
only because all events are handled through a common interface found in OMReactive. This
section is useful if you want to implement the event processing yourself.

For example:

//// Events consumed ////
public :

// Events:
// event1
// event2

Note that code generation supports array types in events. Is it possible to create the following
GEN():

Client->GEN(E("Hello world!"));

In this call, E is defined as follows:

class E : public OMEvent {
Char message[13];

 };

Serialization Instrumentation
If you included instrumentation, the following instrumentation macro is included in the header
file:
936 User Guide

Class Code Structure
DECLARE_META_EVENT
};

It expands to method definitions that implement serialization services for animation.

State Classes
The state defines state classes to construct the statechart of the class. State classes are generated in
the reusable state implementation strategy.

For example:

class state1 : public ComponentState {
public :
// State class implementation
};
class state2 : public Orstate {
public :
// State class implementation
};
#endif

You can eliminate the state classes by choosing the flat implementation strategy, where states are
manifested as enumeration types.
Rational Rhapsody 937

Basic code generation concepts
Implementation Files

The class implementation file contains implementation of methods defined in the specification
file. In addition, it contains instrumentation macros and annotations. As noted previously,
eliminating or modifying either instrumentation macros and annotations can hurt the tracing and
functionality between your model and code.

Headers and Footers
You can define your own headers and footers for generated files. See the property definitions
displayed in the Properties tab of the Features window.

Prolog
The prolog section of the implementation file includes header files for all the related classes. You
can add additional #include files using the C_ and CPP::Class/Package::ImpIncludes
property. See the definition provided for the property on the applicable Properties tab of the
Features window.

You can wrap sections of code with #ifdef #endif directives, add compiler-specific keywords,
and add #pragma directives using prolog and epilog properties. For more information, see
Wrapping Code with #ifdef-#endif.

The following code shows a sample prolog section:

//## package package
//## class class
#include "class.h"
#include <package.h>
#include <rclass1.h>
#include <rclass2.h>
//---
// class.cpp
//---
DECLARE_META_PACKAGE(Default)
#define op1_SERIALIZE
938 User Guide

Class Code Structure
Constructors and Destructors
A default constructor and destructor are generated for each class. You can explicitly specify
additional constructors, or override the default constructor or destructor by explicitly adding them
to the model.

For example:

class::class(OMThread* thread) {
NOTIFY_CONSTRUCTOR(class, class(), 0,

class_SERIALIZE);
setThread(thread);
initRelations();

};

If you are defining states, use initStatechart instead of initRelations:

class::~class() {
NOTIFY_DESTRUCTOR(~class);
cleanUpRelations();

};

Similarly, if you are defining states, use cleanUpStatechart instead of cleanUpRelations.

Operations
The following code pattern is created for every primitive (user-defined) operation:

void class::op1() {
NOTIFY_OPERATION(op1, op1(), 0, op1_SERIALIZE);

// Instrumentation
//#[operation op1() // Annotation

// body of the operation as you entered
//#]

};

Accessors and Mutators for Attributes and Relations
Accessors and mutators are automatically generated for each attribute and relation of the class.
Their contents and generation can be controlled by setting relation and attribute properties.

For example:

attr1Type class::getattr1()const {
return attr1;

};

void class::setattr1(attr1type p) {
attr1 = p;

};

OMIteratorrclass* class::getItsrclass()const {
OMIteratorrclass* iter(itsrclass);
return iter;

};

void Referee::_addItsRclass(Class* p_Class) {
NOTIFY_RELATION_ITEM_ADDED(“itsRClass”,p_Class,
Rational Rhapsody 939

Basic code generation concepts
FALSE, FALSE);
itsRclass->add(p_Class);

};

void class::removeItsrclass(rclass* p) {
NOTIFY_RELATION_ITEM_REMOVED();
rclass.remove(p);

};

void class::clearItsPing() {
};

Instrumentation
This section includes instrumentation macros and serialization routines used by animation.

For example:

void class::serializeAttributes() const {
// Serializing the attributes
};

void class::serializeRelations() const {
// Serializing the relation
};

IMPLEMENT_META(class, FALSE)
IMPLEMENT_GET_CONCEPT(state)

State Event Takers
These methods implement state, event, and transition behavior. They are synthesized based on the
statechart. If you set the CG::Attribute/Event/File/Generalization/Operation/
Relation::Generate property of the class to Cleared, they are not generated.

For example:

int class::state1Takeevent1() {
int res = eventNotConsumed;
SETPARAMS(hungry);
NOTIFY_TRANSITION_STARTED("2");
Transition code
NOTIFY_TRANSITION_TERMINATED("2");
res = eventConsumed;
return res;

};
940 User Guide

Class Code Structure
Initialization and Cleanup
These methods implement framework-related initialization and cleanups.

For example:

void class::initRelations() {
state1 = new state1Class(); // creating the states

};

void class::cleanUpRelations() {
};

Implementation of State Classes
This section implements a dispatch method and a constructor for each state object. You can change
this by choosing the flat implementation strategy, which does not generate state classes.

For example:

class_state1::class_state1(class* c, State* p,
State* cmp): LeafState(p, cmp) {
// State constructor

};

int class_state1::takeEvent(short id) {
int res = eventNotConsumed;
switch(id) {

case event1_id: {
res = concept->state1Takeevent1();
// Dispatching the transition method
break;

};
};

};
Rational Rhapsody 941

Basic code generation concepts
Changing the Order of Operations/Functions in
Generated Code

By default, operations appear in the following order in generated code:

1. Constructors and destructors

2. User-defined operations

3. Triggered operations

Within each of these categories, the operations are displayed in the following order: public,
protected, private. Within these access subcategories, operations are listed alphabetically.

In some cases, you might want to define a specific order for the operations when the code is
generated. To modify the order of appearance in the generated code:

1. Highlight Operations or Functions in the browser.

2. Right-click and select Edit Operation Order (or Edit Function Order).

3. In the window that is displayed, highlight the Signature that you want to move and use
the Up and Down buttons to modify the order that will be used in code generation.

4. Click OK.

Note
If the Up and Down buttons are disabled (as shown in this example), clear the Use Default
Order check box at the top of the window.
942 User Guide

Changing the Order of Operations/Functions in Generated Code
If you would like to restore the default order used by Rational Rhapsody for code generation, make
these changes:

1. Select the Use Default Order check box.

2. Click OK.
Rational Rhapsody 943

Basic code generation concepts
Using Code-Based Documentation Systems
Rational Rhapsody enables you to standardize the way element comments are generated. Using a
template, the code generator can take the element description from the model, along with its tag
values, and format it as the generated comment inside the code. These generated comments can
then be processed by code-based documentation tools such as Doxygen™.

Template Properties

The following table lists the properties (under <lang>_CG) that enable you to standardize the way
comments are generated in the code.

Metaclass Property Description

File ImplementationFooter Specifies the multiline footer to be
generated at the end of implementation
files.

ImplementationHeader Specifies the multiline header that is
generated at the beginning of
implementation files.

SpecificationFooter Specifies the multiline footer to be
generated at the end of specification
files.

SpecificationHeader Specifies the multiline header to be
generated at the beginning of
specification files.

Configuration DescriptionBeginLine Enables you to specify the prefix for the
beginning of comment lines in the
generated code. This functionality
enables you to use a documentation
system (such as Doxygen), which looks
for a certain prefix to produce the
documentation.
Note: This property affects only the code
generated for descriptions of model
elements; other auto-generated
comments are not affected.

DescriptionEndLine Enables you to specify the prefix for the
end of comment lines in the generated
code.
944 User Guide

Using Code-Based Documentation Systems
Sample Usage

This section documents a simple model configured to generate Doxygen-compatible descriptions,
including the appropriate property settings.

The Model Profile
The DoxygenDescription profile defines the description tags and sets the default property values.
The following table lists the property values for the DoxygenDescription profile.

Argument
Attribute
Class
Event
Operation
Package
Relation
Type

DescriptionTemplate Specifies how to generate the element
description in the code. An empty
MultiLine (the default value) tells
Rational Rhapsody to use the default
description generation rules.

Property Value

C_ and CPP_CG::Configuration

"*"

DescriptionEndLine ""

C_ and CPP_CG::File

SpecificationHeader "/**
* (C) copyright 2004
*
* @file $FullCodeGeneratedFileName
* @author $FileAuthor
* @date $CodeGeneratedDate
* @brief $FileBrief
*
* Rhapsody: $RhapsodyVersion
* Component: $ComponentName
* Configuration: $ConfigurationName
* Element: $ModelElementName
*
*/"

C_ and CPP_CG::Class

DescriptionTemplate "/**
* Class $(Name)
* @brief $Description
* @see $See
* @warning $Warning
*/"

Metaclass Property Description
Rational Rhapsody 945

Basic code generation concepts
Point Class Definition
The Point class might contain these elements:

� Point is a 2D point representation
� Point.create() is a static method to create a new Point
� Point.create().x is the x coordinate for the new Point
� Point.create().y is the y coordinate for the new Point

The following table shows the tag values set by the model elements.

C_ and CPP_CG::Operation

DescriptionTemplate "/**
* Operation $Signature
* @brief $Description
* $Arguments
* @return $Return
* @see $See
* @warning $Warning
*/"

C_ and CPP_CG::Argument

DescriptionTemplate "@param $(Name): [$Direction]
$Description"

Element Tag Name Tag Value

Point FileAuthor Ford Perfect

Point FileBrief The Point class definition

Point See Point3D

Point Warning NA

Point.create() Return a new Point with the
specified coordinates

Point.create() See NA

Point.create() Warning NA

Property Value
946 User Guide

Using Code-Based Documentation Systems
The Generated Code for the Point
The file header for the Point specification file is as follows:

/**
* (C) copyright 2004
*
* @file DefaultComponent\DefaultConfig\Point.h
* @author Ford Perfect
* @date //! Tue, 16, Mar 2004
* @brief The Point class definition
*
* Rhapsody: 5.0.1
* Component: DefaultComponent
* Configuration: DefaultConfig
* Element: Point
**/

The generated description of the Point class is as follows:

/**
* Class Point
* @brief A 2D point representation
* @see Point3D
* @warning NA
*/
//## class Point
class Point {...

The generated description of the create() operation is as follows:

/**
* Operation create(int,int)
* @brief A static method to create a new Point
* $Arguments
* @param x: [in] The new Point x coordinate
* @param y: [in] The new Point y coordinate
* @return a new Point with the specified coordinates
* @see NA
* @warning NA
*/
//## operation create(int,int)
static POint* create(int x, int y);
Rational Rhapsody 947

Basic code generation concepts
Roundtripping Behavior
Advanced/Full roundtrip does not update element descriptions when the relevant
DescriptionTemplate properties are not empty.

The following table lists the properties for which roundtripping does not update the element
description.

Element Element Descriptions are Not Updated when these
Properties are Not Empty

Argument The argument description is not updated when the owner
(operation or event) description is not updated.

Association end <lang>_CG::Relation::DescriptionTemplate

Attribute <lang>_CG::Attribute::DescriptionTemplate

Class <lang>_CG::Class::DescriptionTemplate

Event <lang>_CG::Argument::DescriptionTemplate

<lang>_CG::Event::DescriptionTemplate

(both at the operation or argument level)

Operation <lang>_CG::Argument::DescriptionTemplate

<lang>_CG::Operation::DescriptionTemplate

(both at the operation or argument level)

Package <lang>_CG::Package::DescriptionTemplate

Type <lang>_CG::Type::DescriptionTemplate
948 User Guide

Wrapping Code with #ifdef-#endif
Wrapping Code with #ifdef-#endif
If you need to wrap an operation with an #ifdef #endif pair, add a compiler-specific keyword, or
add a #pragma directive, you can set the SpecificationProlog, SpecificationEpilog,
ImplementationProlog, and ImplementationEpilog properties for the operation.

For example, to specify that an operation is available only when the code is compiled with _DEBUG:

� Set SpecificationProlog to #ifdef _DEBUG <CR>.
� Set SpecificationEpilog to #endif.
� Set ImplementationProlog to #ifdef _DEBUG <CR>.
� Set ImplementationEpilog to #endif.

The same properties are available for configurations, packages, classes, and attributes. For detailed
definitions of these properties, see the property definitions displayed in the Features window.

Overloading Operators
You can overload operators for classes created in Rational Rhapsody. For example, for a Stack
class, you can overload the “+” operator to automatically perform a push() operation, and the “-”
operator to automatically perform a pop() operation.

All of the overloaded operators (such as operator+ and operator-) can be modeled as member
functions, except for the stream output operator<<, which is a global function rather than a
member function and must be declared a friend function. The overloaded operators that are class
members are all defined as primitive operations.

To illustrate operator overloading, consider two classes, Complex and MainClass, defined as
follows:

Class Complex

Attributes:

double imag;
double real;

Operations:

Complex() // Simple constructor
Body:
{

real = imag = 0.0;
}

Complex(const Complex& c) //Copy constructor
Arguments: const Complex& c
Body:
{

Rational Rhapsody 949

Basic code generation concepts
real = c.real;
imag = c.imag;

}
Complex(double r, double i) // Convert constructor
Arguments: double r

double i = 0.0
Body:
{

real = r;
imag = i;

}

operator-(Complex c) // Subtraction
Return type: Complex
Arguments: Complex c
Body:
{

return Complex(real - c.real, imag - c.imag);
}
operator[](int index) // Array subscript
Return type: Complex&
Arguments: int index // dummy operator - only

// for instrumentation
// check

Body:
{

return *this;
}
operator+(Complex& c) // Addition by value
Return type: Complex

Arguments: Complex& c
Body:
{

return Complex(real + c.real,imag + c.imag);
}
operator+(Complex* c) // Addition by reference
Return type: Complex*
Arguments: Complex *c
Body:
{

cGlobal = new Complex (real + c->real,
imag + c->imag);

return cGlobal;
}
operator++() // Prefix increment
Return type: Complex&
Body:
{

real += 1.0;
imag += 1.0;
return *this;

}
operator=(Complex& c) // Assignment by value
Return type: Complex&
Arguments: Complex& c
Body:
{

real = c.real,
imag = c.imag;
return *this;

}

950 User Guide

Overloading Operators
operator=(Complex* c) // Assignment by reference
Return type: Complex*
Arguments: Complex *c
Body:
{

real = c->real;
imag = c->imag;
return this;

}

The following are some examples of code generated for these overloaded operators.

This is the code generated for the overloaded prefix increment operator:

Complex& Complex::operator++() {
NOTIFY_OPERATION(operator++, operator++(), 0,

operator_SERIALIZE);
//#[operation operator++()
real += 1.0;
imag += 1.0;
return *this;
//#]

};

This is the code generated for the overloaded + operator:

Complex Complex::operator+(Complex& c) {
NOTIFY_OPERATION(operator+, operator+(Complex&), 1,

OM_operator_1_SERIALIZE);
//#[operation operator+(Complex&)
return Complex(real + c.real, imag + c.imag);
//#]

};

This is the code generated for the first overloaded assignment operator:

Complex& Complex::operator=(Complex& c) {
NOTIFY_OPERATION(operator=, operator=(Complex&), 1,

OM_operator_2_SERIALIZE);
//#[operation operator=(Complex&)
real = c.real;
imag = c.imag;
return *this;

//#]
};

The browser lists the MainClass, which is a composite that instantiates three Complex classes.

Its attributes are as follows:

Complex* c1
Complex* c2
Complex* c3

Body~MainClass() //Destructor
Body
{

delete c1;
delete c2;
delete c3;
Rational Rhapsody 951

Basic code generation concepts
}
e() // Event

The stream output operator << is a global function that must be declared a friend to classes that
want to use it. It is defined as follows:

operator<<
Return type: ostream&
Arguments: ostream& s

Complex& c
Body:
{

s << "real part = " "<< c.real<<
"imagine part = " << c.imag << "\n" << flush;

return s;
}

952 User Guide

Overloading Operators
To watch the various constructors and overloaded operators as they are being called:

1. Assign animation instrumentation to the project by selecting Code > Set Configuration >
Edit > Setting tab.

2. Make and run DefaultConfig.exe.

3. Using the animator, create an animated sequence diagram (ASD) that includes the
MainClass and instances Complex[0]:Complex, Complex[1]:Complex, and
Complex[2]:Complex.

4. Click Go on the Animation bar to watch the constructor and overloaded operator messages
being passed between the MainClass and its part instances.

The ASD will be similar to the following figure.
Rational Rhapsody 953

Basic code generation concepts
Using Anonymous Instances
In Rational Rhapsody, you can create anonymous instances that you manage yourself, or create
instances as components of composite instances that are managed by the composite framework.

Creating Anonymous Instances

You can create anonymous instances, apply the C++ new operator as in any conventional C++
program. Rational Rhapsody generates a default constructor (ctor) for every class in the system.
You can add additional constructors using the browser.

For example, to create a new instance of class A using the default constructor, enter the following
code:

A *a = new A();

For reactive and composite classes, the default constructor takes a thread parameter that, by
default, is set to the main thread for the system. To associate the instance with a specific thread
rather than the main thread for the system, you must explicitly pass this parameter to the
constructor.

The following example creates an instance of class A and assigns it to a thread T.

A *a = new A(T);

After creating a new instance, you would probably call its relation mutators to connect it to its
peers (see Using Relations). If the class is reactive, you would probably call its startBehavior()
method next.

Composite instances manage the creation of components by providing dedicated operations for the
creation of new components. For each component, there is an operation phil of type
Philosopher. The new phil operation creates a new instance, adds it to the component relation,
and passes the thread to the new component.

The following code shows how the composite sys can create a new component phil.

Philosopher *pPhil = sys->newPhil();

After creating the new instance, you would probably call its relation mutators to connect it to its
peers. If the class is reactive, you would probably call its startBehavior() method next.
954 User Guide

Using Anonymous Instances
Deleting Anonymous Instances

In Rational Rhapsody, you manage anonymous instances yourself. As a result, it is your
responsibility to delete them. Components of composite instances are managed by the composite.
To delete them, you must make an explicit request of the composite object.

Apply the C++ delete operator as in any conventional C++ program. Deletion of instances
involves applying the destructor of that instance. Rational Rhapsody generates a default destructor
for every class in the system. You can add code to the destructor through the browser.

For example, to delete an instance pointed to by aB, use the following call:

delete aB;

Deleting Components of a Composite

For each component of a composite, there is a dedicated operation that deletes an instance of that
component.

For example, deleting an instance pointed to aB from a component named compB in a composite C,
use the following call:

C->deleteCompB(aB);
Rational Rhapsody 955

Basic code generation concepts
Using Relations
Relations are the basic means through which you reference other objects. Relations are
implemented in the code using container classes. The Rational Rhapsody framework contains a set
of container classes used by default. You can change the default, for example to use Standard
Template Library (STL)™ containers, using properties. For more information about using the
Rational Rhapsody properties, see Properties.

The collections and relation accessor and mutator functions documented in this section refer to the
default set provided with Rational Rhapsody.

Note
To quickly see the relations for a class, object, and package, right-click the element in the
Rational Rhapsody browser and select Show Relations in New Diagram from the menu.
For more information about this menu command, see Showing all relations for a class,
object, or package in a diagram.

To-One Relations

To-one relations are implemented as simple pointers. Their treatment is very similar to that of
attributes; that is, they also have accessor and mutator functions.

If B is a class related to A by the role name role, A contains the following data member:

B* role;

It contains the following methods:

B* getRole();
void setRole(B* p_B);

These defaults are modifiable through the properties of the role. For more information about using
the Rational Rhapsody properties, see Properties.

To-Many Relations

To-many relations are implemented by collections of pointers using the OMCollection template.

If E is a class name multiply related to F by role name role, E contains the following data member:

OMCollection<F*> role;

The following methods are generated in E to manipulate this relation:

� To iterate through the relation, use the following accessor:
OMIterator<F*> getRole() const;
956 User Guide

Using Relations
For example, if you want to send event X to each of the related F objects, use the
following code:

OMIterator<F*> iter(anE->getRole());
while(*iter)
{

*iter->GEN();
iter++;

}

In this code, anE is an instance of E.

� To add an instance to the collection, use the following call:
void addRole(F* p_F);

� To remove an instance from the collection, use the following call:
void removeRole(F* p_F);

� To clear the collection, use the following call:
void clearRole();

These defaults are modifiable through the properties of the role. For more information about using
the Rational Rhapsody properties, see Properties.

Ordered To-Many Relations

Ordered to-many relations are implemented by collections of pointers using the OMList template.

A to-many relation is made ordered by making the Ordered property for the relation to Checked.

All the manipulation methods are the same as described in To-Many Relations.

Qualified To-Many Relations

A qualified to-many relation is a to-many relation qualified by an attribute in the related class. The
qualified to-many is implemented by a collection of pointers using the OMMap template.

All the manipulation methods are the same as described in To-Many Relations. In addition, the
following key qualified methods are provided.

F* getRole(type key) const;
void addRole(type key, F* p_F);
void removeRole(type key);
Rational Rhapsody 957

Basic code generation concepts
Random Access To-Many Relations

A random access to-many relation is a to-many relation that has been enhanced to provide random
access to the items in the collection.

A to-many relation is made random access by making the GetAtGenerate property for the relation
to Checked. This causes a new accessor to be generated:

F* getRole(int i) const;
958 User Guide

Support for Static Architectures
Support for Static Architectures
Static architectures are often used in hard real-time and safety-critical applications with memory
constraints. Rational Rhapsody provides support for applications without memory management
and those in which non-determinism and memory fragmentation would create problems by
completely avoiding the use of the general memory management (or heap) facility during
execution (after initialization). This is a typical requirement of safety-critical systems.

Rational Rhapsody can avoid the use of the general heap facility by creating special allocators, or
local heaps, for designated classes. The local heap is a preallocated, continuous, bounded chunk of
memory that has the capacity to hold a user-defined number of objects. Allocation of local heaps is
done via a safe and simple algorithm. Use of local heaps is particularly important for events and
triggered operations.

Rational Rhapsody applications implicitly and explicitly result in dynamic memory operations in
the following cases:

� Event generation (implicit) means optionally resolved via local heap
� Addition of relations means resolved by implementing with static arrays (dynamic

containers remain dynamic)
� Explicit creation of application objects via the new operator means resolved via local

heap if the application indeed dynamically creates objects
You can specify whether local heaps apply to all or only some classes, triggered operations, events,
and thread event queues.
Rational Rhapsody 959

Basic code generation concepts
Properties for Static Memory Allocation

The following table lists some of the properties that enable you to configure static allocations for
the generated code. Setting any of these properties at a level higher than an individual instance sets
the default for all instances. For example, setting a class property at the component level sets the
default for all class instances. In all cases, behavior is undefined if the actual number of instances
exceeds the maximum declared number.

Property Subject and Metaclass Description

BaseNumberOfInstances <lang>_CG::Class

CG::Event
Specifies the size of the
local heap memory pool
allocated for either:

• Instances of the class
(<lang>_CG::Class)

• Instances of the event
(<lang>_CG::Event)

This property provides support
for static architectures found in
hard real-time and safety-critical
systems without memory
management capabilities during
run time. All instances of events
are dynamically allocated during
initialization.
Once allocated, the event queue
for a thread remains static in
size.
Triggered operations use the
properties defined for events.
When the memory pool is
exhausted, an additional amount,
specified by the
AdditionalNumberOf
Instances property, is
allocated.
Memory pools for classes can be
used only with the Flat statechart
implementation scheme.

AdditionalNumberOfInstances <lang>_CG::Class

CG::Event

Specifies the number of
instances or events for which
memory is allocated when the
current pool is empty.

ProtectStaticMemoryPool CG::Class/Event Determines whether to protect
access to the allocated memory
pool using an operating system
mutex to provide thread safety.
960 User Guide

Support for Static Architectures
See the definition provided for each property on the applicable Properties tab of the Features
window.

Events generated in an interrupt handler should not rely on rescheduling and therefore should not
cause the use of an operating system mutex. In other words, ProtectStaticMemoryPool should be
False. It is up to you to make sure that the memory pool is not thread-safe. The animation
framework is not subject to this restriction.

The framework files include reachable code for both dynamic and static allocation. Actual usage is
based on the generated code. Use of the GEN and gen macros is the same for both modes.

Implementation of fixed and bounded relations with static arrays via the
<lang>_CG:Relation::ImplementWithStaticArray property implicitly uses static allocation
apart from initialization.

MaximumPendingEvents CG::Class Specifies the maximum number
of events that can be
simultaneously pending in the
event queue of the active class.

Property Subject and Metaclass Description
Rational Rhapsody 961

Basic code generation concepts
Static Memory Allocation Algorithm

Rational Rhapsody implements static memory allocation by redefining the new and delete
operators for each event and class that use local heaps. The memory allocator holds enough
memory to accommodate n instances of the specific element, where n is the value of the
BaseNumberOfInstances property. The memory allocation is performed during system
construction and uses dynamic memory. The memory allocator uses a LIFO (stack) algorithm, as
follows:

� Claimed memory is popped off the top of the stack, and the top pointer is moved to point
to the next item.

� Returned memory is pushed onto the top of the stack, and the top pointer is moved to point
to the returned item.

The generated class (whether a class, event, or triggered operation) is instrumented to introduce
additional code needed for use by the memory allocator (specifically the next pointer).

Attempts to instantiate a class whose memory pool is exhausted result in a call to the
OMMemoryPoolIsEmpty() operation (in which you can set a breakpoint) and in a tracer message.
Failure to instantiate results in a tracer message.

Containment by Value via Static Architecture
Rational Rhapsody normally generates containment by reference rather than containment by value
for 1-to-MAX relationships, regardless of the relationship type (set in the diagram). However, the
static architecture feature enables you achieve the effect of containment by value by defining the
maximum number of class instances and event instances via the static architecture properties, and
thus avoiding the use of the default, non-deterministic new() operator.
962 User Guide

Support for Static Architectures
Static Memory Allocation Conditions

If the application uses static memory allocation, the checker verifies that the following conditions
are met:

� The maximum number of class instances is non-zero.
� The statechart implementation is flat.
� The new and delete operators are explicitly specified for each event and class using local

heaps.
Reports include limits set for the number of instances.

All properties are loaded and saved as part of the element definition in the repository.

Static Memory Allocation Limitations

The following limitations apply to static memory allocation:

� Support is not yet provided for allocation of arrays. Instances must be allocated one-by-
one. This is because of the (unknown) memory overhead associated with allocation of
arrays.

� The tm() timeout function is not yet supported.
Rational Rhapsody 963

Basic code generation concepts
Using Standard Operations
Standard operations are class operations that are standardized by a certain framework or
programming style. Notable examples are serialization methods that are part of distribution
frameworks (see Standard Operations Example), and copy or convert constructors. Such operations
generally apply aggregate functions to class features (such as attributes, operations, and
superclasses). The following sections describe how to add standard operations to the code
generated for classes and events.

Applications for Standard Operations

Standard operations can be used to follow these steps:

� Create event serialization methods.
� Support canonical forms of classes.
� Make a class persistent.
� Support a particular framework.

Event Serialization
1. An Event class is instantiated, resulting in a pointer to the event.

2. The event is queued by adding the new event pointer to the event queue for the receiver.

Once the event has been instantiated and added to the event queue of the receiver, the event is
ready to be “sent.” The success of the send operation relies upon the assumption that the memory
address space of the sender and receiver are the same. However, this is not always the case.

For example, the following are some examples of scenarios in which the sender and receiver
memory address spaces are most likely different:

� The event is sent between different processes in the same host.
� The event is sent between distributed applications.
� The sender and receiver are mapped to different memory partitions.

One common way to solve this problem is to marshall the information. Marshalling means to
convert the event into raw data (or serialize it), send it using frameworks such as publish/
subscribe, and then convert the raw data back to its original form at the receiving end. High-level
solutions, such as CORBA, automatically generate the necessary code, but with low-level
solutions, you must take explicit care. Standard operations enable you to specify to a fine level of
detail how to marshall, and unmarshall, events and instances.
964 User Guide

Using Standard Operations
Canonical Forms of Classes
Many style guidelines and writing conventions specify a list of operations to include in every
class. Common examples are copy and convert constructors, and the assignment operator. Rational
Rhapsody enables you to define standard operations such as these for every class.

Persistence
Making classes persistent is usually achieved by adding an operation with a predefined signature
to every class. This can be done with a standard operation.

Support for Frameworks
Many object-oriented frameworks are used by deriving subclasses from a base class and then
overriding the virtual operations. For example, MFC constructs inherit from the CObject class and
then override operations such as the following example:

virtual void Dump(CDumpContext& dc) const;

This is another example of something that can be done with standard operations.

You can add framework base classes using the <lang>_CG::Class::AdditionalBaseClasses
property.
Rational Rhapsody 965

Basic code generation concepts
Creating Standard Operations

For every standard operation defined, you must specify an operation declaration and definition.
This is done by adding the following two properties to the site.prp file to specify the necessary
function templates:

� <LogicalName>Declaration specifies a template for the operation declaration
� <LogicalName>Definition specifies a template for the operation implementation

For example, with a logical name of myOp, you would add the following property (using the
site.prp file or the COM API (VBA)):

Subject CG
Metaclass Class

Property myOpDeclaration MultiLine ""
Property myOpDefinition MultiLine ""

end

You add all of the properties to be associated with a standard operation to the site.prp file under
their respective CG subject and metaclasses. All of these properties should have a type of
MultiLine.

Template Keywords
The template can contain the following keywords:

� $Attributes where for every attribute in the class, this keyword is replaced with the
contents of the template specified in the CG::Attribute::<LogicalName> property for
the attribute. For example, <lang>_CG::Attribute::myOp.

� $Relations where for every relation in the class, this keyword is replaced with the
contents of the template specified in the CG::Relation::<LogicalName> property for the
relation. For example, <lang>_CG::Relation::myOp.

� $Base (visibility) where for every superclass/event, this keyword is replaced with the
content of the template specified in the superclass/event property CG::Class/
Event::<logicalName>Base. For example, CG::Class::myOpBase.

� $Arguments where for every argument in the class, this keyword is replaced with the
contents of the template specified in the CG::Argument::<LogicalName> property for the
argument. For example, <lang>_CG::Argument::myOp.

Note
If you do not set the new location (CG.Argument.<standardOpName>), the old location
(CG.Event.<standardOpName>Args) is still valid.
966 User Guide

Using Standard Operations
When expanding the properties, you can use the following keywords:

� $(Name) specifies the model name of the class (attribute, relation, operation, or base
class), depending on the context of the keyword. If applicable, $Type is the type
associated with this model element.

� $ImplName specifies the name of the (generated) code. This is usually the data member
associated with this model element.

This is useful in C, where the logical name can be replaced in the generated code to a
more complex name.

In addition, you can create custom keywords that relate to any property in the context using the
convention $<property name>. For example, if you added a property CG::Class::testA, you
can relate to the property content in CG::Class::myOpDefinition by $testA.

Note that this feature, combined with stereotype-based code generation, lets a power user define a
set of standard operations, associate them to stereotypes, and lets other members of the team apply
the stereotypes (getting the standard operations without worry over the properties). See Customize
Code Generation with Stereotypes.

Standard Operations Example
If you need to implement a serialization of events for all the events in a certain package, the
CG::Event::StandardOperations property for the package will contain “serialize,
unserialize.” If the serialization is done by placing the event argument values inside an
strstream, the corresponding properties and their values are as follows:

CG::Event::SerializeDeclaration

public:

strstream & serializer(strstream & theStrStream)
const;

CG::Event::SerializeDefinition

strstream & $Name::serialize(strstream & theStrStream) {
$Base
$Arguments
return theStrStream;

}

CG::Event::SerializeArgs

theStrStream << $Name;
Rational Rhapsody 967

Basic code generation concepts
CG::Event::SerializeBase

$Name::serialize(theStrStream);

If you defined an event VoiceAlarm with two arguments, severity and priority, and
VoiceAlarm inherits from Alarm, the resulting code for the template would be as follows:

strstream & VoiceAlarm::serialize(strstream & theStrStream) {
Alarm::serialize(theStrStream);
theStrStream << severity;
theStrStream << priority;
return theStrStream;

}

The same process is done for the unserialize part.

Customize Code Generation with Stereotypes
Stereotypes allow extension of the UML metamodel by “typing” different model elements. Certain
stereotypes are predefined in the UML, others might be user-defined. Rational Rhapsody
properties are name-value pairs that allow, among other things, customization of code generation.
Property settings can be applied to a stereotype, and when that stereotype is applied to a model
element, the properties for the stereotype are transferred onto the model element. For more
information on stereotypes, see Stereotypes.

A stereotype is typically defined as part of a profile, which is a special package primarily
containing stereotypes and tags. For more information on profiles, see Profiles.

Example of Using Stereotypes to Customize Code Generation

A Rational Rhapsody project has a Whole and Part class and uses an ordered container (OMList) to
keep track of the Part objects. For this project, you create a profile called CustomCG and define an
stereotype called OrderedContainer. You make the OrderedContainer stereotype only applicable to
AssociationEnd elements. For the OrderedContainer stereotype, you set the
CG::Relation::Ordered property to Checked. For the AssociationEnd, you set the stereotype to
be OrderedContainer. When you generate code, you will see that OMList is used.
968 User Guide

Using Standard Operations
Providing Support for Java Initialization Blocks
Java initialization blocks are used to perform initializations before instantiating a class, such as
loading a native library used by the class. You can use standard operations to provide a convenient
entry point for this language construct, as follows:

1. Open the site.prp file and add the following property:

Subject CG

Metaclass Class
Property StandardOperations String "InitializationBlock"

end
end

2. Open the siteJava.prp file and add the following property:

Subject JAVA_CG

Metaclass Class
Property InitializationBlockDeclaration MultiLine ""

end
end

3. For every class that needs an initialization block, enter the text in the
InitializationBlockDeclaration property for the class. For example:

static {
System.loadLibrary("MyNativeLib");

}

The text is entered below the class declaration.
Rational Rhapsody 969

Basic code generation concepts
Statechart Serialization
Rational Rhapsody provides a mechanism for serialization of reactive instances. By setting a
number of Rational Rhapsody properties, you can have methods added to the generated code,
which you can then use to implement serialization.

Note
This feature is available only for C and C++ code.

Generating Methods for Serialization

The property [C][CPP]_CG::Statechart::StatechartStateOperations determines whether
the code is generated for this feature. The possible values for this property are:

� None (default value) where code is not generated for the feature
� WithoutReactive where Rational Rhapsody does not generate calls to OMReactive
� WithReactive where Rational Rhapsody generates calls to OMReactive

Note
In C++, when using inheritance, a hierarchy of classes must use the same value for the
property CPP_CG::Statechart::StatechartStateOperations.

Serialization Properties

The following properties, listed for C++ and C respectively, are related to the use of the
serialization methods:

� CPP_CG::Framework::ReactiveGetStateCall

Default value is OMReactive::getState();

Defines the prototype of the getState framework method.

� CPP_CG::Framework::ReactiveSetStateCall

Default value is OMReactive::setState(p_state);

Defines the prototype of the setState framework method.

� CPP_CG::Framework::ReactiveStateType

Default value is unsigned long

Defines the oxfstate type.

� C_CG::Framework::ReactiveGetStateCall
970 User Guide

Statechart Serialization
Default value is RiCReactive_getState(ric_reactive);

Defines the prototype of the getState framework method.

� C_CG::Framework::ReactiveSetStateCall

Default value is RiCReactive_setState(ric_reactive, p_state);

Defines the prototype of the setState framework method.

� C_CG::Framework::ReactiveStateType

Default value is long

Defines the oxfstate type.

Methods Provided for Implementing Serialization

When the properties are set to generate the relevant code, the following public virtual member
functions are generated for reactive classes:

Note
For the C functions, the prefix <class name> refers to the “class” in the model, for which
the statechart was created.

� virtual int getStatechartSize()for C++
int <class name>_getStatechartSize(<class name>* me) for C

Returns the number of variables that the statechart uses. This function should be
used to allocate the state vector that is passed to the function getStatechartStates.

� virtual void getStatechartStates(int stateVector[], unsigned long&
oxfReactiveState) const for C++

void <class name>_getStatechartStates(const <class name>* const me,
int stateVector[], unsigned long* oxfReactiveState) for C

Fills stateVector with the current statechart state, and sets oxfReactiveState
based on the OMReactive internal state.

The type of oxfReactiveState is taken from the property
[C][CPP]_CG::Framework::ReactiveStateType.

The type of stateVector is taken from the property
CG::Statechart::FlatStateType (default value is int).

In WithoutReactive mode, the last argument is eliminated and the function
prototypes become:
Rational Rhapsody 971

Basic code generation concepts
– virtual void getStatechartStates(int stateVector[])
for C++

– void <class name>_getStatechartStates(const <class name>* const
me, int stateVector[]) for C

� virtual void setStatechartStates(int stateVector[], unsigned long*
oxfReactiveState) for C++

void <class name>_setStatechartStates(<class name>* const me, int
stateVector[], unsigned long* oxfReactiveState) for C

Set the reactive instance states as well as the OMReactive internal state.

The type of oxfReactiveState is taken from the property
[C][CPP]_CG::Framework::ReactiveStateType.

The type of stateVector is taken from the property
CG::Statechart::FlatStateType (default value is int).

Note
If setStatechartState is used during animation, then the instance statechart will not
display new states. In order to “refresh” the statechart, you can switch to Silent animation
mode, run the animation, and then switch back to Watch animation mode.

Generating Classes as Structs in C++
When generating C++ code, Rational Rhapsody generates classes in your model as C++ classes in
the code. While this is the default behavior, it is also possible to have Rational Rhapsody generate
classes as structs in your C++ code. To have one or more classes generated as structs, modify the
value of the property CPP_CG::Class::GenClassAsStruct.
972 User Guide

Components-based Development in C
Components-based Development in C
We enable component-based developed in Rational Rhapsody Developer for C by introducing
code generation support for interfaces and ports.

A class might realize an interface, that is, provide an implementation for the set of services it
specifies (that is, operations and event receptions). As in Rational Rhapsody Developer for C++
and Rational Rhapsody in Java, you use a realization relationship to indicate that a class is
realizing an interface. In addition, an interface might inherit another interface, meaning that it
augments the set of interfaces the superinterface specifies. You can specify interfaces, realize
them, and connect to objects via the interfaces.

C users can take advantage of service ports that allows the passing of operations and functions via
ports, in addition to passing events. Just like in C++, you can specify ports with provided and
required interfaces. In addition, Rational Rhapsody 7.1 provides code generation support for
standard UML ports in C and code generation of ports supports the initialization of links via ports.
For more information about ports, see Ports.

In this type of development in C, interfaces are treated as a specification of services (that is,
operations) and not as inheritance of data (attributes). Also, in this type of development in C,
realization (as opposed to inheritance) is used to distinguish between realizing an interface and
inheriting an interface/class.

As of Rational Rhapsody 7.1, code generation supports realizing interfaces in C. This means
interfaces and ports specified in a C model will be implemented by the code generator. This means
code generation generates:

� Code for a C interface (a class with “pure virtual operations”)
– Virtual tables with function pointers
– Relay code from the interface to the realizing class according to the virtual

table
� The “realization code” for the realizing class

– Aggregating the interface
– Initializing the virtual table

� Links between objects that instantiate associations to the interface
Rational Rhapsody 973

Basic code generation concepts
Action Language for Code Generation

The following syntax is used for C code generation support for interfaces and ports. In these
examples, we have an interface x, an operation f, a port p, and a class A.

Calling an operation via a C interface
[Interface]_[Operation]([object realizing the interface]
[, argList])

Example: To call operation x_f (object realizing the interface, port number), where
the port number is 5, do:

x_f(me->itsl, 5);

Sending an event via a C interface
RiCGEN_[Interface]([object realizing the interface], [event([argList])])

Example: To send event RiCGEN_l(object realizing the interface, port number), do:

RiCGEN_l(me->itsl, evt());

Calling an operation via a C port
[Interface]_[Operation](OUT_PORT([class], [port], [interface])
[, argList])

Example: To call operation x_f (object realizing the port, port number), where the port
number is 5, do:

x_f(OUT_PORT(A, p, x), 5);

Sending an event via a C rapid port
RiCGEN_PORT([pointer to port], [event])

Example: To send event RiCGEN_PORT(object realizing the port, event), do:

RiCGEN_PORT(me->p, evt());
974 User Guide

Components-based Development in C
Sending an event via a C rapid port using ISR
RiCGEN_PORT_ISR([pointer to port], [event])

Example: To send event RiCGEN_PORT_ISR, do:

RiCGEN_PORT_ISR(me->p, evt());

Querying the port through which the event was received
RiCIS_PORT([object], [pointer to port])

Example: To query port RiCIS, do:

RiCIS_PORT(me, me->p);

Sending an event via a C non-rapid port
RiCGEN_PORT_I([class], [port], [interface], [event([argList])])

Example: To send event RiCGEN_PORT_I(object realizing the port, event), do:

RiCGEN_PORT_I(A, p, x, evt());

C Optimization

Note the following information:

� If a port has only provided interfaces, or just required interfaces, code generation
generates a single additional inner part.

� Ports that are purely reactive are implemented as rapid ports. For more information about
rapid ports, see Using rapid ports.
Rational Rhapsody 975

Basic code generation concepts
Backward Compatibility

To enable interface realization for models made before Rational Rhapsody 7.1, you must set the
C_CG::Class::InterfaceGenerationSupport property to Checked. The choices are as follows:

� Checked means interfaces are generated with virtual tables and can be realized.
� Cleared means the Interface stereotype is ignored. Meaning you can turn off the interface

generation ability.
See the definition provided for the property on the applicable Properties tab of the Features
window.

Note the following information:

� If the C_CG::Class::InterfaceGenerationSupport property is set to Cleared for at
least one of the interfaces in the contract for the port, the port is treated as a rapid port.

� C_CG::Class::InterfaceGenerationSupport is a backward compatibility property only
and is not listed in new models.

Limitations

Note the following code generation limitations:

� There is no general inheritance support.
� Ports code is generated into separate files (meaning that there are no nested classes in

Rational Rhapsody Developer for C).
� An inheritance from a class to an interface is interpreted as a realization.
� No code is generated for a <<friend>> dependency to the template class.
976 User Guide

Customize C code generation
One of the key features of Rational Rhapsody is the ability to generate code based on a Rational
Rhapsody model. There are two primary methods you can use to customize code generation:

� Modifying the values of various properties in Rational Rhapsody. This method is
available for all Rational Rhapsody versions (C, C++, Java, and Ada). These properties
are found under the CG and <lang>_CG subjects (for example,
CG::Package::UseAsExternal and JAVA_CG::Dependency::SpecificationEpilog).

� Using rules. You might want to use this method if you have significant changes in the
generated code where it is not enough to use properties and you want to have a starting
point that is the out-of-the-box code generation. This method is available only for
Rational Rhapsody Developer for C.

Note: You can also write your own code generator with the use of the RulesComposer
tool. Note that you must have a valid license to be able to use this tool.

The using-rules method is described in detail in this section, including the conceptual basis for this
customization mechanism, as well as specific instructions for customizing code generation.

Note that both methods let you control the content and appearance of the generated code. These
two mechanisms co-exist and can be referred to as basic (using properties) and advanced (using
rules) customization, respectively.

Code customization concepts
The process of converting a generic UML model into code can be divided into the following
phases:

1. Transformation. The transformation phase of the original model into a refined model
takes into account the elements of the specific programming language in which the code
will be generated. In Rational Rhapsody, this is called “Simplification” and the properties
related to it begin with the word “Simplify” (for example,
C_CG::ModelElement::SimplifyAnnotations).

2. Writing. This is the conversion of the refined model into valid code in the chosen target
language.
Rational Rhapsody 977

Customize C code generation
Customizing code generation
The customization feature is available only for Rational Rhapsody Developer for C.

When you instruct Rational Rhapsody to generate code, Rational Rhapsody can take a number of
different paths, depending on the value of the property
C_CG::Configuration::CodeGeneratorTool.

If CodeGeneratorTool is set to a value other than Customizable, Rational Rhapsody starts its
standard internal code generation mechanism.

If CodeGeneratorTool is set to Customizable, Rational Rhapsody:

1. Creates a refined model from the original model. This model is referred to as the
simplified model. (This step represents the transformation phase described in Code
customization concepts.)

2. Opens the external RulesPlayer code writer to create the code itself. (This step represents
the writing phase described in Code customization concepts.)

Note: You must have a valid license to be able to use the RulesPlayer code writer.

When code generation is running in Rational Rhapsody, you will see the
following messages to show that the RulesPlayer is at work:

Loading external generator...
Invoking RulesPlayer
Evaluation of RiCWriter.

Both of these steps creation of the simplified model and generation of code from the simplified
model) can be customized, as described in Customize the generation of the simplified model and
Customizing the code writer.
978 User Guide

Viewing the simplified model
Viewing the simplified model
When the property C_CG::Configuration::CodeGeneratorTool is set to Customizable, a
simplified model is created automatically as the first step of the code generation process.

By default, the simplified model is not displayed in Rational Rhapsody. To have the simplified
model displayed in the browser, set the property
C_CG::Configuration::ShowCGSimplifiedModelPackage property to Checked. Once you
have done so, the next time you generate code, the simplified model will be added
automatically at the top of the project tree in the Rational Rhapsody browser.

Customize the generation of the simplified model
Rational Rhapsody contains a default mapping that determines how model elements are
treated when generating a simplified model.

Properties used for simplification

To change the way specific types of elements are handled, you modify the properties that
control simplification. For each type of model element, there is a property that determines how
it will be handled during the transformation of the model, for example,
SimplifyConstructors and SimplifyDestructors.

Each of these properties can take any of the following values. Note that these values might not
appear for every Simplify property.

� None. The element is ignored in the simplified model.
� Copy. The element is just copied from the original to the simplified model. It is not

modified in any way.
� Default. Uses the standard simplification for this item, as defined in Rational Rhapsody.
� ByUser. Uses the customized simplification provided by the user. For details, see User-

provided simplification (ByUser option).
� ByUserPostDefault. Uses the customized simplification provided by the user, but only

after the Rational Rhapsody standard simplification for the element has been applied.

User-provided simplification (ByUser option)
If you have indicated in the property settings that a user-provided simplification is to be used
for a given type of element, then the code generation process starts the user-provided code for
transforming the model. The basics of this process are as follows:

� The user-provided transformation code is provided as a Rational Rhapsody plug-in.
Rational Rhapsody 979

Customize C code generation
� You add this plug-in information to the rhapsody.ini file, or provide the information
necessary to have the plug-in run only for a certain profile.

� During the code generation process, Rational Rhapsody checks whether the user-provided
code has implemented the relevant “simplify” interface for the element in question.
(These interfaces are defined in the Rational Rhapsody API.)

Note: Rational Rhapsody provides you with sample projects that show the “simplify”
interface. Look in the <Rational Rhapsody installation
path>\Samples\CustomCG Samples path. For example, see the sample
projects provided in the Statechart_Simplifier_Writer subfolder. You
should review the Readme.txt file that accompanies each sample project for
details about that project.

� If the user-provided code implements the “simplify” interface, your implementation is
called.

� The user-provided transformation code uses the Rational Rhapsody API to directly modify
the way model elements are transformed.

Customizing the code writer

The rules for rules-based code generation are contained in the Rational Rhapsody Developer for C
Writer project. You customize the rules with the use of the RulesComposer tool. The RulesPlayer
code writer generates code from the simplified model using these rules.

The following topic describes the steps that are required if you want to customize the rules used for
generating code from the simplified model.

Note
For detailed information on how to use the RulesComposer, see the tutorial PDF provided
with the installation of the product (look in <Rational Rhapsody installation
path>\Rhapsody\Sodius\RulesComposer\help\tutorial). There is also a changes
document for the RulesComposer that you might find useful (look in <Rational Rhapsody
installation path>\Rhapsody\Sodius\RulesComposer\help).
980 User Guide

Customize the generation of the simplified model
Customizing the C rules

To customize the rules used to generate code for a simplified model:

1. Open RulesComposer from Rational Rhapsody. Choose Tools > RulesComposer.

2. When RulesComposer opens, the Rational Rhapsody Developer for C Writer project
should already be open. If not, open the project manually by choosing File > Import in
RulesComposer and selecting the <Rational Rhapsody installation
path>\Share\CodeGenerator\GenerationRules\LangC\RuleSet\RiCWriter folder.
When you choose this directory, Eclipse will automatically load the RiCWriter project
that it contains.

Note: The project is read-only by default. In order to modify the rules, you will need
to change the relevant files to read-write.

3. Once the project is open, make your changes to the rules and script files (.java, .tgs).
These are located in the src subfolder. Notice the Placeholders package. It contains
hooks provided in the default rules for user customization. These hooks are empty scripts
where you can enter code. These scripts are run from the existing rules at the appropriate
time during code generation. For more information, see Placeholders package.

4. Save your changes to the Rational Rhapsody Developer for C Writer project.

5. After saving your changes, you can test them by selecting Run in Eclipse. This will take
your updated rules and apply them to the model that is currently open in Rational
Rhapsody. You can then look at the generated code to verify that the new rules had the
intended effect.

Note
The updated rules can only be used to generate code if there is an existing simplified model
to which they can be applied. This means that you must have already generated code with
Rational Rhapsody at least once for the model with the property CodeGeneratorTool set to
Customizable and the property ShowCGSimplifiedModel set to Checked. (When the
property ShowCGSimplifiedModel is set to Cleared, the simplified model is deleted after
code generation has been completed. So in such a case, you would not have a simplified
model to which the updated rules could be applied.)\
Rational Rhapsody 981

Customize C code generation
Placeholders package
The Placeholders package, as partially shown in the following figure, contains hooks provided in
the default rules for user customization. These hooks are empty scripts where you can enter code.
These scripts are run from the existing rules at the appropriate time during code generation. For
example, you can insert code in the post_implementation() script in the Attribute placeholder
group. This script runs after implementation of the attribute rules.
982 User Guide

Customize the generation of the simplified model
You can go to the reference for a script to find where the script is called.

To find a reference for a particular script:

1. Right-click the script on the RulesComposer Project Explorer, select References, and then
select Workspace, Project, or Hierarchy (see left third of the following figure), which
opens a Search tab in the RulesComposer.

2. Double-click the found script on the Search tab (see right third of the figure), which opens
the applicable file in the middle of the RulesComposer window (see middle third of the
figure).

Note: For illustrative purposes, the following figure shows the results after the above
steps have been completed once.
Rational Rhapsody 983

Customize C code generation
Deploying the changed rules

Once you are satisfied that the changes to the rules have the intended effect on code generation, the
last step is to deploy the rules to the .jar file that Rational Rhapsody uses when it performs
customized code generation.

To deploy the changed rules:

1. In RulesComposer, select File > Export.

2. For the export destination, select RulesComposer > Deployable RulesComposer
configuration.

3. Click Next.

4. For the export directory, select <Rational Rhapsody installation
path>\Share\CodeGenerator\GenerationRules\LangC\CompiledRules

Note: By default, the .jar file containing the existing rules (RiCWriter.jar) is
read-only. Make sure to change this attribute before attempting to export the
updated rules.

5. Under Export Options, select Deploy JAR file.

6. Click Finish. The new rules will be saved as RiCWriter.jar.

Note: Rational Rhapsody looks for the compiled rules in the filename given for the
property C_CG::Configuration::GeneratorRulesSet. The default value for
this property is $OMROOT\CodeGenerator\GenerationRules\LangC\
CompiledRules\RiCWriter.classpath.

7. To have Rational Rhapsody implement the rules in the updated .jar file, you must close
and then re-open Rational Rhapsody after you have exported the .jar file.
984 User Guide

Reverse engineering
Reverse engineering lets you import legacy C, C++, and Java code into a Rational Rhapsody
model. It extracts design information from the code constructs found in the source file and builds a
model corresponding to the wanted design, as much as possible.

Note
You can also reverse engineer Ada code. In Rational Rhapsody in Ada, choose Tools >
Reverse Engineer Ada Source Files. For documentation about reverse engineering in Ada,
see the documentation provided in <Rational Rhapsody installation
path>\Sodius\RiA_CG\AdaRevEng\help.

Once you generate a Rational Rhapsody model from legacy code in the reverse engineering
process, further edits to the model or to the code become synchronized in the roundtripping
process thereafter. See Roundtripping.

Reverse engineering restrictions
The following restrictions need to be followed when planning and executing a reverse engineering
operation:

� Rational Rhapsody does not import makefiles. Even if a configuration already has an
existing makefile, Rational Rhapsody generates another makefile and does not use the
original.

� Files to be imported must contain compilable code with no syntax errors.
� To change the location of where reverse engineering information is retrieved and saved

requires the engineer to close the Reverse Engineering window and change the active
configuration for the model in Rational Rhapsody.

� The tree view does not support displaying files selected from multiple drives. In those
cases, Rational Rhapsody does not allow you to switch from tree view to the flat view.
Rational Rhapsody 985

Reverse engineering
Reverse engineering legacy code
To reverse engineering existing code for use in a Rational Rhapsody project, begin by launching
the reverse engineering tool:

1. Open the model into which you want to import legacy code and set which configuration
you want to be the active configuration. See Setting the active configuration.

2. Select Tools > Reverse Engineering. A display message displays to confirm that reverse
engineering settings will be retrieved from/saved to and for which active component/
configuration, as shown in the following figure.

Notice that simultaneously the Output window opens in the Rational Rhapsody main
window.

3. Click Continue. The Reverse Engineering window opens.

Reverse engineering tool features

In the flat view, the Reverse Engineering window contains the following controls:

� Flat View button and Tree View button , which you can use to toggle between the
two views. A flat view shows folders and files in a list structure while a tree view shows a
tree structure.

� Add Files button lets you add to the import file individual files (such as .h files for C and
C++ projects) that you want to reverse engineer.

� Add Folder button lets you add to the import file a folder that contains files that you want
to reverse engineer.

� Remove button, which is available only when applicable, lets you remove one or more
highlighted items on the import list.

� Options group with Visualization Only (Import as External) and Populate Object
Model Diagrams check boxes.

Select Visualization Only (Import as External), when you want Rational Rhapsody to
add as external elements all the elements created in Rational Rhapsody during reverse
engineering (the CG::Class/Package/Type::UseAsExternal property is set to
Checked.) This means that while you can see the code using pictures and you can relate to
it, the code is still maintained outside Rational Rhapsody and is not generated by Rational
Rhapsody. This property is overridden for all packages (but not their contained elements,
such as classes, files, types, unless the contained elements are also packages; and in that
case they will also have their CG::Package::UseAsExternal property set to Checked).
Note that when you select or clear the Visualization Only (Import as External) check
box, this same check box is automatically set the same way on the Mapping tab of the
Reverse Engineering Options window. See Mapping classes to types and packages.
986 User Guide

Reverse engineering legacy code
Select Populate Object Model Diagrams when you want imported object model
diagrams to be automatically created in your project. Note that when you select or clear
the Populate Object Model Diagrams check box, this same check box is automatically
set the same way on the Model Updating tab of the Reverse Engineering Options
window. See Updating existing packages.

� Start button lets you start the reverse engineering process. This button changes to Stop
during the processing.

� Advanced button gives you access to the Reverse Engineering Options window.
� Close button lets you close a window without invoking whatever process is associated

with the window.

Displaying files in a tree view

To locate and display the files for the reverse engineering in a tree structure, click the Tree View

button to display the files, as shown here.

1. Click the Browse button to open the Browse to Folder window and browse to the folder
that has the legacy code you want to reverse engineer, as shown in the following figure,
and click OK.
Rational Rhapsody 987

Reverse engineering
2. Select the files you want to reverse engineer. You can select a check box next to one or
more individual files. You can also use the Select All and Deselect All buttons. In the
Select Folders box, you can select the check box next to a folder to select all the files in
that folder. Note that the appearance of the check boxes in the Select Folders box have
these definitions:

 All items (files and subfolders) in the folder has been selected

. Some items have been selected

 No items have been selected
3. Select any of the check boxes in the Options group, as applicable.

Note: To specify the filename extensions that should be used to filter files in the
Reverse Engineering window, use the
<lang>_ReverseEngineering::Main::ImplementationExtension and
<lang>_ReverseEngineering::Main::
SpecificationExtension. In addition, note that files that are matching the
ReverseEngineering::Main::ExcludeFilesMatching property will be
filtered out in contrast to the other two properties mentioned previously. For
more about the ReverseEngineering::Main::ExcludeFilesMatching
property, see Excluding particular files. Also, see the definition provided for
each property on the applicable Properties tab of the Features window.
988 User Guide

Reverse engineering legacy code
Displaying files in a flat view

If you are using the flat view of the Reverse Engineering window, to display files in a flat view:

1. To select individual files, click Add Files to open the Open window open and browse to
the files you want to import. Then click Open. Rational Rhapsody displays the files.

2. To include all the files in a folder for reverse engineering, click Add Folder to open the
Browse for Folder window, as shown in the following figure. This means you want to
reverse engineer all the files (that is possible) in the folder. Click OK.

The folder is added to the Reverse Engineering window. When you add files or
folders to this window, the list maintains itself from session to session so you can
maintain the history of the file list.

3. To specify options for this reverse engineering session, click the Advanced button to open
the Reverse Engineering Options window contains the following tabs:

� Preprocessing (see Defining preprocessor symbols)
� Input (see Analyzing #include files)
� Mapping (see Mapping classes to types and packages)
� Filtering (see Specifying reference classes)
� Misc (see Miscellaneous reverse engineering options)
� Process (see Reverse engineering error handling)
� Model Updating (see Updating existing packages)
� Log (see Reverse engineering message reporting)
Rational Rhapsody 989

Reverse engineering
4. Click OK to close the Reverse Engineering Options window.

5. On the Reverse Engineering window, click Start to begin the import. Notice that the label
for this button changes to Stop.

6. Click OK to confirm your requested action.

7. Wait while the reverse engineering process completes. When the Stop button changes to
Start again, you can click Close to close the Reverse Engineering window.

Note: Depending on the number of files in your folders and the size of your files, the
reverse engineering process can take some time. You might want to do a few
files first to experience the process before you do whole folders or larger or
multiple files at once.

8. You should see information about the reverse engineering in the Output window and in
your Rational Rhapsody browser.

Reverse engineering messages in the Output window

Messages are displayed in the Output window that indicate which files and constructs are being
analyzed and which design elements are being added to the model. Note that the reverse
engineering tool does not report on every item being parsed, nor does it report on ignored
constructs. You can specify how or whether certain events are reported using the Log and Process
options. See Reverse engineering message reporting and Reverse engineering error handling for
more information.

Note that once a file has been successfully imported, Rational Rhapsody does not provide a means
to delete information associated with an imported file. If you need to delete imported elements, do
it manually from the Rational Rhapsody browser. See Deleting elements.
990 User Guide

Initializing the Reverse Engineering window
Initializing the Reverse Engineering window
If the properties for the active configuration already contain information about a reverse
engineering configuration (list of files and other options), the Reverse Engineering window will be
initialized with this information by default. This initialization includes the following information:

� The directory tree displays and the selection status is marked according to the list of files
saved with the ReverseEngineering::Main::Files property. Be sure to include the
backslash (for Windows systems) at the end of a path (for example:
C:\TEMP2\ReverseEngineeringFiles\).

� When you open the Reverse Engineering tool, the file list will be created and selection
status marked accordingly for each item on the directory tree. Notice the three files in the
Select Files box.

� The options in the Reverse Engineering window and the Reverse Engineering Options
window are initialized accordingly.
Rational Rhapsody 991

Reverse engineering
Excluding particular files
If you want to exclude particular files or folder from being reverse engineered, you can use the
ReverseEngineering::Main::ExcludeFilesMatching property. You can assign one or more
comma-separated wildcard expressions to this property, as shown in the following figure. The files
or folders that are matched using these wildcard expressions will not be reverse engineered.

Note
This property affects only the tree view of the Reverse Engineering window.

With the ExcludeFilesMatching property set to res*, when you open the Reverse Engineering
tool (Tools > Reverse Engineering), the Reverse Engineering window (tree view) looks like the
following figure, which shows only one file in the Select Files box to be reverse engineered.
Compare this with the figure in Initializing the Reverse Engineering window that shows the same
window but without the ExcludeFilesMatching property set.

Analyzing makefiles
The Reverse Engineering window requires you to provide the list of files to reverse engineer. In
addition, the Advanced Options window allows you to specify other settings for reverse
engineering, such as include paths. To facilitate the entry of this information, if you have a
makefile for your project, you can just provide Rational Rhapsody with the location of the
makefile and it will analyze the makefile in order to retrieve the list of source files and any other
settings that are relevant for reverse engineering. To have Rational Rhapsody analyze a makefile:

1. Open the Reverse Engineering window (choose Tools > Reverse Engineering).

2. In the Select Files section, select the Makefiles radio button.

3. Use the Browse button at the top of the window to locate the root directory to use for
reverse engineering. The file list area will then list any makefiles located in this directory
(based on the value of the [lang]_ReverseEngineering:Main:MakefileExtension
property).
992 User Guide

Analyzing makefiles
4. Mark the check box next to the filename of the makefile in the file list.

5. Use the Environment list to choose the correct environment.

6. Click the Analyze Makefile button.

After the analysis is complete, the source files referenced in the makefile will be displayed in the
Select Files section of the window. If you go to the Reverse Engineering Advanced Options
window, you will see that Rational Rhapsody has also brought in the other relevant settings from
the makefile.

When using this feature, there a number of points that should be kept in mind:

� While the makefile analysis feature allows you to bring in the settings from the makefile
and review them in the Reverse Engineering window (and its Advanced Options
window), you can also use the settings from the makefile for reverse engineering without
performing the analysis step: simply select the appropriate makefile, and click the Start
button to begin reverse engineering.

� When analyzing makefiles, Rational Rhapsody does not actually parse the makefile.
Rather, it opens the makefile and then analyzes the output. Therefore, in order for this
feature to work properly, you have to make sure that the value of the property
InvokeMake is correct.

� Since the syntax of makefiles varies between environments, Rational Rhapsody uses a set
of environment-level properties in order to analyze makefiles. These properties can be
found under [lang]_ReverseEngineering::Makefile[environment name], and they
are used to define the syntax for standard makefile commands. The values of these
properties can be customized for different environments. This set of properties includes:

– MakeCommand
– IncludeSwitch
– DefineSwitch
– UndefineSwitch
– CompileNoLinkSwitch
– CompileCommands
– LinkCommands
– ChangeDirectoryCommand
– ChangeDirectorySwitch
Rational Rhapsody 993

Reverse engineering
Visualization of external elements
Rational Rhapsody enables you to visualize legacy code or edit external code as external elements.
This external code is code that is developed and maintained outside of Rational Rhapsody. This
code will not be regenerated by Rational Rhapsody, but will participate in code generation of
Rational Rhapsody models that interact or interface with this external code so, for example, the
appropriate #include statement is generated. This functionality provides easy modeling with code
written outside of Rational Rhapsody, and a better understanding of a proven system.

Rational Rhapsody supports the following reverse engineering functionality using external
elements:

� Reverse engineering can import elements as external.
� Reverse engineering populates the model with enough information to:

– Model external elements in the model.
– Enable you to open the source of the external elements, even if the element is

not included in the scope of the active component.
For more information, see External elements.
994 User Guide

Defining preprocessor symbols
Defining preprocessor symbols
The Preprocessing tab, as shown in the following figure, lets you define preprocessor symbols to
be uniformly applied to all imported files.

You can define the following types of preprocessor symbols:

� D means symbol defined with #define. See Defined symbols (C and C++).
� I means directory added to #include search path. See Include/CLASSPATH paths.
� K means additional keywords. See Additional keywords (C and C++).
� U means symbol undefined with #undef. See Undefined symbols (C and C++).
Rational Rhapsody 995

Reverse engineering
The Preprocessing tab has the following controls:

� Add button lets you add a preprocessing symbol. See Adding a preprocessing symbol.

� Remove button, which is available only when applicable, lets you remove one or more
selected symbols from the list.

� Modify button lets you modify the selected symbol.
� Delete All button lets you delete all preprocessing symbols from the list.

Adding a preprocessing symbol

To add a preprocessing symbol, click Add on the Preprocessing tab of the Reverse Engineering
Options window to open the Add Preprocessing Symbol window.

In C and C++, you can add the following symbols:

� Include symbols. See Include/CLASSPATH paths.
� Defined symbols. See Defined symbols (C and C++).
� Undefined symbols. See Undefined symbols (C and C++).
� Additional keywords. See Additional keywords (C and C++).

In addition, in C++ you can load dialects. See Dialects (C++).
996 User Guide

Defining preprocessor symbols
For Rational Rhapsody in Java, the Add Preprocessing Symbol window enables you to specify
only the CLASSPATH option, as shown in the following figure.

Include/CLASSPATH paths
Include paths tell Rational Rhapsody where to look for header files to be included using #include
directives found in the source file. This directive has the same effect as the following
preprocessing switch:

/I<dir>

The reverse engineering tool adds constructs declared in header files with #include statements to
the model, as long as either condition is true:

� The file is in the same directory as the one being imported.
� An include path is specified on the Preprocessing tab.

To include the path:

1. In the Add Preprocessing Symbol window, select the Add Symbol and Include/
CLASSPATH radio buttons.

2. Use the Browse button to locate the appropriate folder.

3. Depending on what you want to do:

� Click Apply if you want to enter another Include path.
� Click OK if you are done and to return to the Preprocessing tab. Notice that a

symbol with type I is added to the list of preprocessing symbols.
4. Click OK again to close the Reverse Engineering Options window.

5. Click Start to re-import the file.
Rational Rhapsody 997

Reverse engineering
Defined symbols (C and C++)
The #define symbol is a constant and macro that the preprocessor expands before compilation.
No storage is allocated for these symbols. They have no type, and the debugger cannot reference
them. This definition has the same effect as the following preprocessing switch:

/D<name>{=|#}<text>

� Solving parser problems with unknown macros or statements
� For #ifdef inclusion or exclusion of code parts

To define symbols:

1. On the Add Preprocessing Symbol window, select the Add Symbol and Defined radio
buttons.

2. In the Symbol box, type the name of the symbol and the value, if it has one, using the
following format:

<symbol> = <value>

For example, to define a preprocessing symbol ev_H with the value
"$Id: event.h 1.22 1999/02/03 11:12:36 amy Exp $", type:

ev_H = "$Id: event.h 1.22 1999/02/03 11:12:36 amy Exp $"

3. Depending on what you want to do:

� Click Apply if you want to enter another #define symbol.
� Click OK if you are done and to return to the Preprocessing tab. Notice that a

symbol with type D is added to the list of preprocessing symbols.
4. Click OK.
998 User Guide

Defining preprocessor symbols
Using #define

Rational Rhapsody supports #define preprocessor directives that use the following format:

#define <identifier> <replacement list>

Typically, you declare a #define declarative in a C model is as follows:

� If it contains parameters, model it as a function with the C_CG::Operation::Header
property set to in_header. For example:

#define MAX(X,Y)
 (X)>(Y)?(X):(Y)

� If it is does not contain parameters (for example, it defines a constant), model it as a
constant variable. For example:

#define SIZE 1024

� Otherwise, model it as a type (for example, multi-line #defines).
Typically, to declare a #define declarative in a C++ model is as follows:

� If the #define declarative in C++ does not contain parameters (for example, it defines a
constant), model it as a constant variable and set the
CPP_CG::Attribute::ConstantVariableAsDefine property to Checked. For example:

#define SIZE 1024

� Otherwise, model it as a type.
The reverse engineering tool imports the #defines according to the way they are modeled.
However, if the comment for the #define is a multi-line, even though the #define itself is one
line, the reverse engineering tool imports it as a type. For example:

#define SIZE 1024 /* my buffer
 size */

To import all #define as a type, set the
<lang>_ReverseEngineering::ImplementationTrait::ImportDefineAsType property to
True. See the definition provided for the property on the applicable Properties tab of the Features
window.
Rational Rhapsody 999

Reverse engineering
Using #if...#ifdef...#else...#endif

The reverse engineering tool reacts to preprocessor conditions
(#if...#ifdef...#else...#endif) just as a compiler does. The preprocessor condition structure
is not read by the reverse engineering parser, and the only data received is the data inside valid
preprocessor conditions.

Consider the following code in a source file:

#ifdef _STDC
#define _A
#else
#define_B
#endif

� If _STDC is known by the preprocessor, the result of importing this file will be the creation
of a user type named _A with the following declaration:

#define %s

� If _STDC is not known by the preprocessor, the result of importing this file will be the
creation of a user type named _B with the following declaration:

#define %s

Undefined symbols (C and C++)
The #undef preprocessing directive undefines symbols previously defined using the #define
directive. This has the same effect as the following preprocessing switch:

/U<name>

To undefine a symbol with #undef:

1. In the Add Preprocessing Symbol window, select the Add Symbol and Undefined radio
buttons.

2. In the Symbol box, type the name of the symbol you want to undefine.

3. Depending on what you want to do:

� Click Apply if you want to enter another symbol with #undef.
� Click OK if you are done and to return to the Preprocessing tab.

4. Click OK.
1000 User Guide

Defining preprocessor symbols
Additional keywords (C and C++)
To improve keyword support for reverse engineering and roundtripping so that Rational Rhapsody
can correctly import and roundtrip declarations that use non-standard or unknown keywords, you
can add a list of additional user-defined keywords to the Preprocessing tab of the Reverse
Engineering Options window.

To add additional keywords:

1. On the Add Preprocessing Symbol window, select the Add Symbol and Additional
Keywords radio buttons.

2. Enter a keyword in the Symbol box, as shown in the following figure.

3. Depending on what you want to do:

� Click Apply if you want to enter more additional keywords.
� Click OK if you are done and to return to the Preprocessing tab.

4. Notice on the Preprocessing tab that your keywords with type K are added to the list of
preprocessing items.

Note
You can use the <lang>_ReverseEngineering:Parser:AdditionalKeywords property to
add a list of comma-delimited additional keywords (for example: far,near). Note that this
property might already have keywords included in it that is provided with Rational
Rhapsody.
Rational Rhapsody 1001

Reverse engineering
Additional keywords limitations

Note the following limitations for additional keywords:

� Keywords with parameters are not supported.
� Keywords with more than one word in them are not supported.
� Keywords cannot be seen in the signature for the element.
� If the same keyword is used in more then one place (for example, before the type and after

the type), the parser will encounter an ambiguity and will fail to indicate the keyword use
correctly.

Dialects (C++)
Imported source files must contain C++ code that complies with the ANSI/ISO C++ standard. In
practice, there are many dialects of C++ in use, some reflecting various stages in the evolution of
the language. The dialect setting determines the default dialect. In addition, it can add a list of
dialect-specific preprocessing switches to the user-defined switches. The Reverse Engineering tool
understands the Microsoft Visual C++ 6.0 (MSVC60) dialect.

To select this dialect in Rational Rhapsody Developer for C++:

1. In the Add Preprocessing Symbol window, select the Load Dialect radio button.

2. From the Dialect list, select MSVC60, as shown in the following figure.

3. Click OK.
1002 User Guide

Analyzing #include files
Analyzing #include files
The Input tab, shown in the following figure, lets you specify which include files should be
analyzed in the reverse engineering process.

� None means to analyze only the files or folders specified in the main Reverse Engineering
window; all #include statements are ignored.

This mode contributes the least performance drain to the reverse engineering process.
Reverse engineering in this most limited mode should only be used when appropriate.
This mode imports no implementation information (such as operation bodies) or
initialization of static variables, and loses needed information such as dependencies. Keep
in mind that implementation files cannot be analyzed without first analyzing their
corresponding specification files.

Note: Using None will not import the content of .cpp or .c files.

� Only header file with the same name means to analyze only the matched included files.
In other words, the corresponding specification file for the analyzed implementation file
of the same name. This is known as logical files mode.

For example, for the implementation file named MyClass.cpp, the reverse engineering
Rational Rhapsody 1003

Reverse engineering
utility will analyze only the include file named MyClass.h. All other included files in the
list of files you selected are not analyzed. This high-performance mode imports full
information about analyzed classes, but might lose dependencies through separated parts
of a project. This mode is designed for reverse engineering of large projects (about 1000
files).

Note: If you select this option, nested #include statements are not analyzed.

See Analyzing header files with the same name for an example.

� Only from file list means to analyze only the include files you specified in the main
Reverse Engineering window.

For example, suppose you have four files (one.h, two.h, three.h and one.cpp) and you
select the files named one.h, two.h, and one.cpp. The reverse engineering utility will
analyze one.cpp and its include files one.h and two.h. It will not analyze three.h
because you did not select it.

This mode gives you the most control and strategic conservation of performance,
eliminating the needless analysis of irrelevant files and redundant information. In
addition, it enables you to select files containing important declarations to the analysis
without having to add every file within the directory. This mode of reverse engineering
imports all the information needed and creates dependencies through whole project. It is
designed for middle-sized projects (about 100 files).

See Analyzing a list of files for an example.

� All means to analyze all included files on all levels. This mode is called recursive analysis,
and consumes the most performance because it imports all information, even redundant
information such as MFC and STL. This is the default value.

The <lang>_ReverseEngineering::ImplementationTrait::AnalyzeIncludeFiles property
has enumerated values to indicate how the reverse engineering process analyzes include files. See
the definition provided for the property on the applicable Properties tab of the Features window.

For C++ projects, you can use the CreateDependencies property to specify how the reverse
engineering feature should handle the creation of dependency elements in the model from code
constructs such as #includes, forward declarations, friends, and namespace usage. For more
details on how to use this property, see the definition provided for the property on the applicable
Properties tab of the Features window.
1004 User Guide

Analyzing #include files
Analyzing header files with the same name
Suppose you want to reverse engineer the file omreactive.cpp. It has the following included files:

#include <oxf.h>
#include <omoutput.h>
#include <omreactive.h>
#include <state.h>
#include <omthread.h>
#include <aommacro.h>

To reverse engineer only omreactive.cpp and omreactive.h:

1. Add the file omreactive.cpp to the main Reverse Engineering window.

2. Click Advanced to open the Reverse Engineering Options window.

3. On the Input tab, select the Only header file with the same name radio button.

4. On the Preprocessing tab, add the path to the oxf folder (for example, <Rational
Rhapsody installation path>\Share\LangCpp). You need to set this value because the
directive #include <omreactive.h> says to look for the specification file in
omreactive, so you need to specify where that is.

5. Click OK.
Rational Rhapsody 1005

Reverse engineering
6. Click Start on the Reverse Engineering window.

The tool will analyze omreactive.h and ignore the other files included in the
omreactive.cpp file. As you can see from the following figure, the Rational Rhapsody
browser shows the oxf package with the OMReactive class and some of its data
members. The OMReactive class has Usage dependencies to externally referenced
classes and inherits from the IOxfReactive superclass.
1006 User Guide

Analyzing #include files
Analyzing a list of files
Suppose you want to reverse engineer the file omreactive.cpp. It has the following included files:

#include <oxf.h>
#include <omoutput.h>
#include <omreactive.h>
#include <state.h>
#include <omthread.h>
#include <aommacro.h>

If you specified all of these files except for state.h, all the include files except for state.h will
be analyzed by the reverse engineering tool.
Rational Rhapsody 1007

Reverse engineering
Mapping classes to types and packages
The Mapping tab, as shown in the following figure, enables you to:

� Create external files in a given package or component.
� Set the modeling policy based on a file or a class.
� Allow files to be imported into one package, or to import the files while emulating the

existing directory structure.
� Set standard directories.
� Create UML dependencies from include statements.
1008 User Guide

Mapping classes to types and packages
The Mapping tab has the following controls:

� Visualization Only (Import as External) check box, when selected, sets Rational
Rhapsody to add as external elements all the elements created in Rational Rhapsody
during reverse engineering (their CG::Class/Package/Type::UseAsExternal property
is set to Checked). This property is overridden for all the packages (but not their contained
elements, such as classes, files, types, unless the contained elements are also packages;
and in that case they will also have their CG::Package::UseAsExternal property set to
Checked). In C++, this control has an effect on the controls available in the Modeling
Policy group.

Note: When you select or clear the Visualization Only (Import as External) check
box, this same check box is automatically set the same way on the Reverse
Engineering window.

� Modeling Policy group lets you save the original file mapping after reverse engineering.
This group has the following controls:

– File radio button lets you save files to be imported into separate packages.
This is the default value for Rational Rhapsody Developer for C. For C, this
means that a model is a file-based (Functional C) model, which is a code-
centric model.

This option is only available in C++ when importing the package as
“external” (select the Visualization Only (Import as External) check box).
Importing C++ external files as packages is not advisable if the imported code
needs to be reused because code generation for package files is not supported.

This option is unavailable in Java.
– Class radio button means that no files are created.

Note: If you want the mapping file saved to a component (so that you can import files
as class-based information and replicates the file structure), set the
<lang>_ReverseEngineering::ImplementationTrait::
RespectCodeLayout property to Mapping.

The root path of the top-most folder created during reverse engineering is added to
the Include Path field of the active component; it is later used to compile #include
statements for the imported files and to open the source code for external elements.
If the imported files have several, non-dependent roots, multiple paths are written to
the field, separated by commas.

For example, for files C:\Project1\Subsystem\A.h and
D:\Project2\Subsystem2\B.h, the Include Path field would contain the following
string:

 C:\Project1;D:\Project2
Rational Rhapsody 1009

Reverse engineering
If this option is used with an empty component (one whose scope is empty or
includes only external elements), the first root path is added to the Directory field of
the component; any additional paths are written to the Include Path field.

� Map to Package group lets you specify how to organize imported elements to packages.
This group has the following controls:

– All to radio button lets you map all imported elements to the package you
specify in the text box next to this radio button. For example, when you select
the All to radio button, the Reverse Engineering tool automatically fills in the
default name of ReverseEngineering in the text box. This means that all
imported elements will be mapped to a package called ReverseEngineering.
You can change this value, for example, to MyREPackage.

Note: It is possible to set a nested package in this field. The syntax is
Package1::Package2. Non-existent packages will be created during reverse
engineering.

– Directory is a Package radio button lets you reverse engineer the files while
emulating the existing directory structure so that packages are created for
each imported directory. All the files in the directory are imported to the
corresponding package. This is the default value. You can set the root
directory or have the Reverse Engineering tool calculate it for you. See
Specifying directory structures for more details and an example.

Note: This option sets the CG::Package::GenerateDirectory property to Checked
for the active configuration. For elements, the original hierarchy of directories
is restored on code generation for the imported elements, and #include
statements are generated for references to them.
1010 User Guide

Mapping classes to types and packages
� Standard Directories group lets you separate the header and source files to different
directories for the reverse engineering of your selected project. This group has the
following controls:

– Specification box. Enter the name of the directory for your header files (for
example, inc).

– Implementation box. Enter the name of the directory for your source files
(for example, src).

Using the Specification and Implementation boxes provides you with better
modeling of your code if you want to separate the header and source files to different
directories. Code generation (after reverse engineering) will also generate each
header file to a directory called inc and each source file to a directory called src (or
whatever names you designed in the Specification and Implementation boxes).
The following table illustrates if you use these boxes (left column) verses if you do
not (right column).

Note: You cannot view code using the Active Code View window nor can you edit
code if you generate to an external directory.

Specification = inc
Implementation = src

Specification = [blank]
Implementation = [blank]
Rational Rhapsody 1011

Reverse engineering
� Dependencies list lets you set Rational Rhapsody to create dependencies from the include
files during reverse engineering. This means that #include between files can create
dependencies between the component files and/or between classes. In addition, forward
declarations of elements (variables, functions, classes, and so on) will create
dependencies from the component file to the element. The possible values are:

– ComponentOnly means to create dependencies between component files, but
not between model classes

– None means do not create dependencies on reverse engineering
– PackageAndComponent means to create dependencies between model

classes and component files
– PackageOnly means to create dependencies between model classes, but not

between component files
– SmartPackageAndComponent means to create only necessary

dependencies to reflect the code
Note: The above values for Dependencies are all that are available in the current

Rational Rhapsody version. Note the following information:

Not all these values will appear for every language of Rational Rhapsody. For
example, all of the above values might be available for Rational Rhapsody in
C++, but only two might be available for Rational Rhapsody in Java.

You can set the default for Dependencies in the
<lang>_ReverseEngineering::ImplementationTrait::
CreateDependencies property. You might notice in the property definition
that there is a DependenciesOnly value, but it does not appear in the
Dependencies list. This value is only for backward compatibility purposes and
you cannot set this value directly. In a case where you might have an old model
that uses DependenciesOnly, the current Rational Rhapsody automatically sets
the value to PackageOnly.

The list of values and backward compatibility behavior are different among the
languages.
1012 User Guide

Mapping classes to types and packages
This operation is successful if the reverse engineering utility analyzes both the
included file and the source; and the source and included files contain class
declarations for creating the dependencies between them. If there is not enough
information, the includes are not converted into dependencies. This can happen in
the following cases:

– The include file was not found, or is not in the scope of the settings on the
Input tab.

– A class is not defined in the include file or source file, so the dependency
could not be created.

If the dependency is not created successfully, the include files that were not
converted to dependencies are imported to the <lang>_CG::Class::SpecIncludes
or <lang>_CG::Class::ImpIncludes properties so you do not have to re-create
them manually. If the include file is in the specification file, the information is
imported to the SpecIncludes property; if it is in the implementation file, the
information is imported to the ImpIncludes property.

If a file contains several classes, include information is imported for all the classes in
the file.
Rational Rhapsody 1013

Reverse engineering
Specifying directory structures

The Directory is a Package radio button lets you import files into one package, or to import the
files while emulating the existing directory structure. When you select the Directory is a Package
radio button, the file hierarchy is preserved during import, and the tool creates nested packages
from the folders (if any), as shown in the following figure where the left-most image shows the
path of the source files, the middle image of the Rational Rhapsody browser shows the results of
the reverse engineering, and the right-most image shows the Mapping tab settings for the reverse
engineering.

You can use the <lang>_ReverseEngineering::ImplementationTrait::RootDirectory
property to designate the root directory that contains all the folders that should become package. In
this way, Rational Rhapsody builds the package hierarchy according to the folder tree from the
specified path.

With the RootDirectory property set, the root directory path shows on the Mapping tab when
you access it. You can change the path for the particular reverse engineering session you are in by
changing the value in the Root Directory box on the Mapping tab.

The RootDirectory property is necessary for code centric modeling as it determines the
component directory and supports the package-to-directory connection.
1014 User Guide

Mapping classes to types and packages
When applicable, the reverse engineering tool calculates the directory that creates the minimum
number of packages and suggests (through a message window) this directory as the root directory
during the reverse engineering process. Use the <lang>_ReverseEngineering::
ImplementationTrait::UseCalculatedRootDirectory property to set whether the root
directory should be calculated, that the calculated root directory should always override the value
in the RootDirectory property, or that you should be automatically asked if you want the
calculated root directory to override the value in that property.

Note
The root directory feature is available for Rational Rhapsody in C, C++, and Java.

Note the following information:

� If you are doing reverse engineering with merge option, there will be no calculated root
directory and the current value will be used.

� For Rational Rhapsody in Java, if there is no value in the RootDirectory property and
you are using the tree view version of the Reverse Engineering window (click the Tree

View button), the root directory from the tree view will be used.
� When you export an Eclipse project to Rational Rhapsody, the root directory is set

according to the Eclipse project. The UseCalculatedRootDirectory property is ignored.
� If you use batch or the COM API to do reverse engineering, a No Reply is used if the

UseCalculatedRootDirectory property is set to Auto. To avoid the calculate root
directory message box, you might want to set the UseCalculatedRootDirectory
property to Always or Never.

C++ namespaces
The reverse engineering tool fully supports C++ namespaces. Namespaces are always converted to
packages.

For example, the following code will be imported correctly:

namespace XXX {
class CCC {

int i;
};

}

Rational Rhapsody 1015

Reverse engineering
Specifying reference classes
The Filtering tab, shown in the following figure, enables you to specify classes that should be
imported as reference classes (the equivalent of CG::Class::UseAsExternal set to Checked). You
can select individual classes to model as reference classes, or specify an entire directory of
reference classes. Reference classes are imported without attributes and operations; they are used
for referencing only.
1016 User Guide

Specifying reference classes
The tab contains the following controls:

� Create Reference Classes check box lets you specify whether to create external classes
for undefined classes that result from forward declarations and inheritance. By default,
reference classes are created (as in previous versions of Rational Rhapsody).

If the incomplete class cannot be resolved, the tool deletes the incomplete class if the
<lang>_ReverseEngineering::Filtering::CreateReferenceClasses property is set
to Cleared.

Note: In some cases, the class cannot be deleted (for example, a class referenced by a
typedef type).

� Import as Reference Classes group has the following controls:
– Classes box lists the classes that should be imported as reference classes and

their directories. The following buttons control this list:

Add lets you add a reference class.

Remove lets you remove one or more selected reference classes from the list.

Modify lets you modify the specified reference class.
– Directories box lists the directories for the imported classes. The following

buttons control this list:

Browse button lets you to browse to the correct directory.

Remove lets you remove one or more selected directories from the list.
To analyze these elements during reverse engineering, set the following properties (under
<lang>_ReverseEngineering::Filtering) to Checked:

� AnalyzeGlobalFunctions

� AnalyzeGlobalVariables

� AnalyzeGlobalTypes

See the definition provided for a property on the applicable Properties tab of the Features window.
Rational Rhapsody 1017

Reverse engineering
Reference classes

Reference classes are imported into the model as placeholders without members or relations. A
typical example is the MFC classes, which are not of interest for elaboration but can be listed
simply to show that they are acting as superclasses or peer classes to other classes in the model.
Wildcard expressions are permissible for reference class names.

Adding a reference class
To add a reference class:

1. In the Filtering tab on the Reverse Engineering Options window, click Add to open the
Add window.

2. Type a wildcard expression in the Classes box to match the reference class names, as
shown in the following figure. For example, to match all class names that begin with the
letter A, enter the following wildcard expression:

A*

3. Click OK.

Deleting a reference class
To remove a reference class, select the class in the Classes list and click Remove.
1018 User Guide

Specifying reference classes
Modifying a reference class
To modify a reference class:

1. In the Classes list, select the reference class and click Modify. The Modify window opens,
as shown in the following figure.

2. Modify the wildcard expression.

3. Click OK.

Locating a directory that contains reference classes

The Directories list under the Classes list on the Filtering tab specifies the directories that the
reverse engineering tool should search for reference classes, including their subdirectories.

To locate a directory that contains reference classes:

1. On the Filtering tab, click Browse to open the Browse for Folder window.

2. Select the appropriate directory and click OK.

To remove a directory, select the reference class directory and click Remove.
Rational Rhapsody 1019

Reverse engineering
Miscellaneous reverse engineering options
The Misc tab, shown in the following figure, enables you to:

� Import specific classes as Rational Rhapsody types
� Reflect data members

The Misc tab has the following controls:

� Model as “Language” types box lets you specify which classes should be modeled as
types. This box has the following controls:

– Add button lets you add a class to be modeled as a type.
– Remove button, which is available when applicable, lets you remove the

selected type from the list.
– Modify button, which is available when applicable, lets you modify the

selected type.
See Modeling classes as Rational Rhapsody types.
1020 User Guide

Miscellaneous reverse engineering options
� Reflect Data Members means if this check box is not selected (the check box is cleared),
the access level of data members is imported to the Visibility property for attributes
and the DataMemberVisibility property for relations. The visibility in the Features
window is always Public. This is the behavior of previous versions of Rational Rhapsody.

If this check box is selected, the access level of data members is displayed in the Features
window. The Visibility property is always set to fromAttribute (as VisibilityOnly).
For relations, the access level is imported to the DataMemberVisibility property. In
addition, generation of helper functions is disabled on the class properties level.

By default, this checked box is selected.
Rational Rhapsody 1021

Reverse engineering
The following table lists the property values that will be set if the Reflect Data
Members check box is selected.

Note: The setting of this check box is equivalent to the
<lang>_ReverseEngineering::ImplementationTrait::
ReflectDataMembers property. See the definition provided for the property on
the applicable Properties tab of the Features window.

See Reflect data members for an example.

Subject and Metaclass Property Value

For attributes
<lang>_CG::Attribute AccessorGenerate Cleared

MutatorGenerate Never

For relations
<lang>_CG::Relation GetAtGenerate Cleared

GetKeyGenerate Cleared

RemoveKeyGenerate Cleared

CG::Relation AddComponentHelpersGenerate Cleared

AddGenerate Cleared

AddHelpersGenerate False

ClearGenerate Cleared

ClearHelpersGenerate Cleared

CreateComponentGenerate Cleared

DeleteComponentGenerate Cleared

FindGenerate Cleared

GetEndGenerate Cleared

GetGenerate Cleared

RemoveComponentHelpersGenerate Cleared

RemoveGenerate Cleared

RemoveHelpersGenerate False

SetComponentHelpersGenerate Cleared

SetGenerate Cleared

SetHelpersGenerate From
Modifier

For classes
CG::Class InitCleanUpRelations Cleared
1022 User Guide

Miscellaneous reverse engineering options
Modeling classes as Rational Rhapsody types

Rational Rhapsody can either model certain classes as types or use the MFC type library.

1. On the Misc tab of the Reverse Engineering Advanced Options window, click Add to
open the Add (wild card expression) window for types.

2. Select the appropriate radio button:

� Add Type to add the class as a type
� Add Library to add the class as an MFC type definition

3. If you selected the Add Type radio button, type the name of a single class or a wildcard
expression to match the names of several classes to be imported in the Type box. For
example, OM* specifies that all classes that start with “OM” should be types.

Or, if you selected the Add Library radio button (applicable to Rational Rhapsody
Developer for C++ only), select MFC from the Library list, as shown in the following
figure.

Note: Currently, Rational Rhapsody Developer for C++ recognizes only one
predefined type library (MFC) with only one class (CString). You can add
more classes in the CPP_ReverseEngineering::MFC::DataTypes property of
the current configuration. Alternatively, you can create new library
metaclasses, like MFC, in the factory.prp and site.prp files.
Rational Rhapsody 1023

Reverse engineering
Modeling typedefs as user-defined types
Typedefs are read in as user-defined types under the corresponding package or class in the model.

Typedef example 1

Consider a source file that contains the following typedef:

typedef unsigned char CHAR;

The resultant type will have the name CHAR and have the following form:

typedef unsigned char %s

Typedef example 2

Consider a source file that contains the following enumerated type:

typedef enum {GOOD, INVALID, SWAPPED}image_file_status;

The resultant type will have the name image_file_status and have the following form:

typedef enum {GOOD, INVALID, SWAPPED} %s
1024 User Guide

Miscellaneous reverse engineering options
Modeling structures as types instead of classes
To have Rational Rhapsody model structures as types instead of classes, click the Add button on
the Misc tab of the Reverse Engineering Options window so that you can enter the names of the
structures or use a wildcard to apply the mapping to all structures.

For example, consider the following source file:

struct perf_log_block
{

int cassette_mounts;
};
struct perf_log_block blk_pos[FIVE];
another_block a_block[FIVE];

typedef struct _vanillaThing
{

char field1;
} vanillaThing_t, *vanillaThing_p, **vanillaThing_h;

typedef struct
{

int field4;
} obMethod_1_subType_2_t, *obMethod_1_subType_2_p,

**obMethod_1_subType_2_h;
Rational Rhapsody 1025

Reverse engineering
If you do not specify anything on the Misc tab, the structures are not modeled as types, as shown
in the following figure.

Note the following information:

� The first structure type is modeled as a class named perf_log_block with an attribute
named cassette_mounts.

� The array of structures is modeled as an instance of type perf_log_block with a
multiplicity of FIVE.

� The array is modeled as a variable named a_block, with the following form:
another_block %s[FIVE]

� The structure typedef is modeled as a class named _vanillaThing with an attribute
named field1.

� The types vanillaThing_t, *vanillaThing_p, and **vanillaThing_h are modeled as
types, as follows:

– typedef struct _vanillaThing %s
– typedef struct _vanillaThing * %s
– typedef struct _vanillaThing * * %s

� The types obMethod_1_subType_2_t, *obMethod_1_subType_2_p,
**obMethod_1_subType_2_h are modeled types.
1026 User Guide

Miscellaneous reverse engineering options
If you add the wildcard symbol (*) to the Types list so all structures are mapped to types, the
results are as follows:

Note the following information:

� The first structure type is modeled as a type named perf_log_block with the following
declaration:

struct %s
{

int cassette_mounts;
};

� The array of structures is modeled as a variable named blk_pos, of type perf_log_block
with a multiplicity of FIVE, as follows:

perf_log_block %s[FIVE]

� The array is modeled as a variable named a_block. Its declaration is as follows:
another_block %s[FIVE]

� The structure typedef is modeled as a type named _vanillaThing. Its declaration is as
follows:

struct %s
{

char field1;
};

� The types vanillaThing_t, *vanillaThing_p, and **vanillaThing_h are modeled as
types, as follows:

– typedef struct _vanillaThing %s
– typedef struct _vanillaThing * %s
– typedef struct _vanillaThing * * %s
Rational Rhapsody 1027

Reverse engineering
Reflect data members

When the Reflect Data Members check box is selected on the Misc tab of the Reverse
Engineering Options window, the Reverse Engineering tool imports all code data members as
private. The access level of data members in the code is imported into the Visibility property of
attributes.

When this option is not selected:

� Reverse engineering imports code data members as attributes with public visibility. All
attributes are listed as Public in the Features window. In generated code, they have the
correct visibility.

� Accessors and mutators are generated, as are the original, user operations.
When this option is selected:

� Attributes in the Features window have the “real” visibility, matching the imported code.
� Accessors and mutators are not generated.

For example, consider the following file, clock.h:

#ifndef CLOCK_H
#define CLOCK_H

#include <stdio.h>
class clock
{

int second;
int minute;

public:
clock();
void incTime(void);

protected:
int present_second(void) {return second;}
int present_minute(void) {return minute;}

};

#endif
1028 User Guide

Miscellaneous reverse engineering options
The file clock.cpp contains the following code:

clock.cpp

#include "clock.h"

clock::clock() : minute(0),second(0)
{
}

void clock::incTime(void)
{

if (second == 59)
{

second = 0;
minute ++;

}
else
{

second++;
}
cout << minute << ":" << second << endl;

}

If you reverse engineer these files with the Reflect Data Members check box cleared (the
equivalent of setting the
<lang>_ReverseEngineering::ImplementationTrait::ReflectDataMembers property to
None) and the input option Only from file list on the Input tab of the Reverse Engineering
Options window, the results are as shown in the following figure.

Note that the accessors and mutators are shown as public in the browser, but the actual visibility of
the attributes is private.
Rational Rhapsody 1029

Reverse engineering
If you select the Reflect Data Members check box and repeat the reverse engineering process, the
attributes are private and the accessors and mutators are not generated, as shown in the following
figure.

In this case, legacy code that already has these operations uses them instead of the Rational
Rhapsody default ones.
1030 User Guide

Reverse engineering error handling
Reverse engineering error handling
The Process tab, shown in the following figure, enables you to specify what to do when the
reverse engineering process encounters certain error conditions.

� Parsing Errors are errors encountered while parsing of the source file.
� Model Update Failure are failures that occur when Rational Rhapsody cannot update a

model.
For each error condition, there are possible actions:

� Continue & report means to continue importing the next construct and report the error
condition.

� Continue means to continue importing but do not report the condition.
� Abort & report means to stop importing and report the condition.
Rational Rhapsody 1031

Reverse engineering
Creating flow charts during reverse engineering
Rational Rhapsody provides an option of automatically creating flow charts for operations during
the reverse engineering of code. This feature can be used to create flow charts for all operations in
the code or for a subset of operations based on a number of possible criteria.

To have Rational Rhapsody automatically create flow charts during reverse engineering:

1. Open the Reverse Engineering window (choose Tools > Reverse Engineering).

2. If you want Rational Rhapsody to create flowcharts as well as other diagrams, select the
Populate Diagrams check box.

3. If you want Rational Rhapsody to create flow charts but not other diagrams, or you want
to tweak the criterion that Rational Rhapsody uses to determine which operations to
create flow charts for:

a. Click the Advanced button.

b. When the Reverse Engineering Advanced Options window is displayed, go to the
Model Updating tab and select the Create Flowcharts option.

c. Use the controls provided with the Create Flowcharts option to specify the criterion
for flowchart creation, such as number of control structures or number of lines of
code.

With these options set, when you click the Start button to initiate reverse engineering, flow charts
will be created as the code is imported.

The following properties correspond to the flow chart creation option and the criteria that can be
used for inclusion:

� CreateFlowcharts
� FlowchartCreationCriterion
� FlowchartMinControlStructures
� FlowchartMaxControlStructures
� FlowchartMinLOC
� FlowchartMaxLOC
1032 User Guide

Updating existing packages
Updating existing packages
The Model Updating tab, shown in the following figure, enables you to specify how to update
existing packages with imported constructs.

The tab contains the following controls:

� Overwrite existing packages means to replace existing packages (including diagrams)
with imported ones. For example, if an imported package contains one class and the
existing package contains three different classes, the single class being imported replaces
the three existing classes.

� Merge existing packages means to merge imported constructs into existing packages. All
existing diagrams will be overridden and new diagrams will be created according to the
imported packages. For example, if an imported package has a class that contains
different attributes than the same class in the existing package, the two classes are
merged. The existing package also retains any other classes it had prior to the import.
Rational Rhapsody 1033

Reverse engineering
� Populate Object Model Diagrams means to create object model diagrams (if there are
any) when importing. Note that you use Populate Object Model Diagrams in
conjunction with Overwrite existing packages and Merge existing packages. Note also
that when you select or clear the Populate Object Model Diagrams check box, this same
check box is automatically set the same way on the Reverse Engineering window.

Note: Your selection is stored in the
ReverseEngineering::Update::CreateDiagramsAfterRE property.

Command-line interface for populate object model diagrams

If you have set the ReverseEngineering::Update::CreateDiagramsAfterRE property to
Checked, when you run reverse engineering through the Rational Rhapsody command-line
interface, any object model diagrams being imported will be created in your Rational Rhapsody
model.

Populate object model diagrams limitations

Note the following limitations:

� You cannot merge an existing diagram with a new one.
� Diagrams can include a maximum of 256 elements.
1034 User Guide

Reverse engineering message reporting
Reverse engineering message reporting
The Log tab, shown in the following figure, enables you to specify which kinds of constructs the
reverse engineering utility should report on during the import. These options directly impact the
performance of the reverse engineering process. The more options you select, the slower the
process.

The tab contains the controls:

� Constructs Analyzed specifies which constructs to report. The possible choices are as
follows:

– Files only means to report only the files being analyzed.
– Files and classes means to report only the files and classes being analyzed.
– All constructs means to report all constructs being analyzed.

� Constructs added to Model specifies which constructs added to the model are reported.
The possible choices are as follows:

– None means no constructs.
– Classes only means to report only the classes being added.
Rational Rhapsody 1035

Reverse engineering
– All means to report all the constructs being added.
� Output Window specifies which output to display in the Output window. The possible

choices are as follows:
– Files only means to display file information only.
– Errors means to display errors only.
– All means to display all information.

To improve performance when you are reverse engineering large amounts of legacy code, you can
hide the Output window. To do this, set the following environment variable in your rhapsody.ini
file:

NO_OUTPUT_WINDOW=TRUE
1036 User Guide

Code respect and reverse engineering for Rational Rhapsody Developer for C and C++
Code respect and reverse engineering for Rational
Rhapsody Developer for C and C++

For Rational Rhapsody in C and C++ you can reverse engineer code into the Rational Rhapsody
model in a manner that “respects” the structure of the code and preserves this structure when code
is regenerated from the Rational Rhapsody model. Meaning that code generated in Rational
Rhapsody resembles the original. This means you have complete flexibility for using manually
written code or auto-generated code while receiving all the benefits of modeling. You can reverse
engineer code into a model in a manner that the model respects the order, location, and
dependencies of the global elements in the original code.

For more details about code respect and on how to activate it, see Code respect.

Reverse engineering for C++
You can reverse engineer C++ templates.

Reverse engineering for Rational Rhapsody in Java
There is JDK 1.5 support for generics, enumerations, and type-safe containers.

For more specific information about reverse engineering for Rational Rhapsody in Java, see the
following topics:

� Reverse engineering and Java 5 annotations

� Javadoc handling in reverse engineering and roundtripping

� Reverse engineering/roundtripping and static import statements

� Reverse engineering/roundtripping and static blocks
Rational Rhapsody 1037

Reverse engineering
Reverse engineering other constructs
This section describes how to reverse engineer these constructs: Unions, Enumerated types, and
Comments

Unions

Unions are read in as user types under the corresponding package in the model.

Consider the following source file:

unionbb32
{

int x;
char y;

}

The resultant type will be named bb32 and have the following declaration:

union%s
{

int x;
char y;

};

Enumerated types

Enumerated types are read in as user types under the corresponding package in the model.

Consider the following enum:

enum cc_buffer_modes
{

WRITE_MODE,
READ_MODE_FORWARD,
READ_MODE_BACKWARD

};

The resultant type will be named cc_buffer_modes and have the following declaration:

enum %s
{

WRITE_MODE,
READ_MODE_FORWARD,
READ_MODE_BACKWARD

};
1038 User Guide

Comments
Comments
During reverse engineering, a comment that comes immediately before the code for an element is
considered a comment for that element, and the comment text will be brought into Rational
Rhapsody as the description for that element.

You can use the <lang>_ReverseEngineering::ImplementationTrait::
PreCommentSensibility property to specify the maximum number of lines by which a comment
can precede the code for an element and still be considered a comment for that element. Any
comment that precedes an element by more than the number of lines specified will be considered a
floating comment. For example, a value of 1 means that a comment must appear on the line prior
to the code for an element to be considered a comment for that element. The default is 2.

If a C or C++ project has been reverse engineered, the comments are imported as text elements in
the relevant SourceArtifacts and are read in as whole blocks. (The comments that are not became a
description of some element that is imported.) Then when the code is generated or roundtripped,
the comment/text element is placed in its correct place based on its original location.

The following properties are set by default for this feature:

� <lang>_ReverseEngineering::ImplementationTrait::RespectCodeLayout property
is set to Ordering.

� <lang>_CG::Configuration:CodeGeneratorTool property is set to Advanced.
� <lang>_Roundtrip::General::RoundtripScheme property is set to Respect.

For information about respect and SourceArtifacts, see Code respect.

Note the following information:

� If a function has one comment in a .h file and another comment in a .cpp file then the
comment in the .cpp file is imported as a floating comment.

� When any reversed engineered file has a comment as its first element, then any file header
comment is turned off. The same is true for any file footer comment.

� Reverse engineering imports the first/last comment of the file as a regular comment (as a
text fragment). Reverse engineering disables generation of the auto-generated header/
footer by setting these properties to empty string values.

– <lang>_CG::File::ImplementationHeader
– <lang>_CG::File::SpecificationHeader
– <lang>_CG::File::ImplementationFooter
– <lang>_CG::File::SpecificationFooter
Rational Rhapsody 1039

Reverse engineering
Limitations for comments

Note the following limitations for comments:

� The following situation might cause comments to not get imported from open #IFDEF
branches: When an .h file is processed more than once and the #IFDEF is at one time
“open” and at another time “closed,” some comments inside the #IFDEF might be lost.

� Some comments, usually inside an element declaration (like comments on arguments),
change their place after code generation. They are generated below the element.
1040 User Guide

Macro collection
Macro collection

Note
The macro collection feature applies to C and C++.

Macro collecting allows Rational Rhapsody to automatically understand macros in code that will
be reverse engineered. This enhances the process for re-using legacy C and C++ code within
Rational Rhapsody, providing an easier adoption of Model-driven Development (MDD) while
enabling a more code-centric workflow.

During reverse engineering, Rational Rhapsody imports “include” files according to the options
selected on the Input tab of the Reverse Engineering Options window. “Include” files that do not
satisfy the specified criteria are not imported into the model.

This can lead to problems if there are files that use macros from “include” files that not will not be
imported into the model according to the reverse engineering options selected. To prevent any
such problems, Rational Rhapsody goes through all “include” files and collects any macros
defined in them.

Note
During reverse engineering, macro collection takes place before import of the files so the
macros are taken into account when the model is built.

Collected macro file

The collected macros become part of the model. They are stored in a controlled file called
CollectedMacros.h which displays in the browser under the configuration used.

Within this controlled file, macros are grouped by their file of origin.

Macros can be modified in or deleted from this file.
Rational Rhapsody 1041

Reverse engineering
Code Generation

Generated code is similar to the original code.

� Imported elements are generated into the original files.
� Order of elements is preserved.

When code is generated from the model, the content of the collected macros will be reflected in the
generated code (meaning the generated code will not contain references to the macros).

Controlling macro collection

The way that Rational Rhapsody collects these macros can be controlled using the
<lang>_ReverseEngineering::ImplementationTrait::CollectMode property, which is set at
the Configuration level.

This property can take the following values:

� None means that macros will not be collected from include files that are not on the reverse
engineering list. This is the default.

� Once means that macros will be collected only if the model does not yet include a
controlled file of collected macros.

� Always means that macros will be collected each time reverse engineering is carried out.
The controlled file that stores the macros will be replaced each time.
1042 User Guide

Code generation of imported macros
Code generation of imported macros

Note
This feature applies to C and C++.

Rational Rhapsody (through reverse engineering) imports macros unexpanded so that imported
macros can behave as calls to macros by default. This means that in subsequent code generation a
macro will be generated as is.

The following properties are set by default for this feature:

� <lang>_ReverseEngineering::ImplementationTrait::
RespectCodeLayout property is set to Ordering.

� <lang>_ReverseEngineering::ImplementationTrait::MacroExpansion property is
set to Cleared.

� <lang>_Roundtrip::General::RoundtripScheme property is set to Respect.
Note that the contents of a macro are not be shown in the model (meaning you will not see its
contents in the Rational Rhapsody browser).

For information about respect, see Code respect.

Limitations for imported macros

Note the following limitations for imported macros:

� The #define of a macro needs to be known (as if the file was being compiled).
� The macro call must occupy a line by itself, meaning that it does not have any other text

before or after it, as shown in the following example:

// a macro to declare a list of int’s
DECLARE_LIST_OF_TYPE(listName, int)

If there is text before or after a macro, as shown in the following example, the macro call
will be expanded, meaning that it will not be imported as a macro call:

DECLARE_LIST_OF_TYPE(listName, int) // a macro to declare a list of int’s
Rational Rhapsody 1043

Reverse engineering
Backward compatibility issues

When you open a model created before Rational Rhapsody 7.2, the product, by default, does not
import a macro as a call to the macro itself. Instead Rational Rhapsody imports the expanded
elements of a defined macro.

Results of reverse engineering
The results of reverse engineering are as follows:

� Recognized and supported constructs are added to the model.
� Existing features in a model are updated from the source file to match the source file

definition. For example, if the type of an attribute differs in an existing model and a
source file being imported, it is changed in the model to match the source file.

� With the code respect ability, the reverse engineered code in the Rational Rhapsody model
respects the structure of the original code and preserved this structure when code is
regenerated from the Rational Rhapsody model. The reverse engineered C++ code
respects the order, location, and dependencies of the global elements in the original code.

� Macro collecting allows Rational Rhapsody to automatically understand macros in code
that will be reverse engineered.

� Unresolved elements that are not resolved by the import process remain unresolved.
� New diagrams or statecharts are not synthesized using imported elements.
� New model elements found in a source file are added to the browser, but not to existing

diagrams.
� If you selected the Overwrite existing packages option on the Model Updating tab of

the Reverse Engineering Options window existing model elements not found in the file
being imported are deleted from the model.
1044 User Guide

Lost constructs
Lost constructs
Some design information might be lost during import if it cannot be represented internally by
Rational Rhapsody. Rational Rhapsody can approximate some information, such as non-public
inheritance, in which case the construct can be saved. However, if approximation is turned off for
a particular construct or if Rational Rhapsody cannot approximate it, the construct will be lost.
Subsequent code generation might cause compilation errors.

The following table lists the constructs that are lost on import.

C++ Construct Description

Anonymous types with members Enum, class.

Unions Mapped to an uninterpreted type rather than a
special kind of class.

Namespaces Will be lost if they are not mapped to packages.

Anonymous types with no
instances

Comments that cannot be
mapped to code constructs

The last comment, where comments are specified
as above the construct; the first comment, where
comments are specified as below the construct.

Vendor-specific language
extensions

MS DevStudio PASCAL.

Qualifiers const is shown in the browser as a C++
declaration (volatile).

Storage classes Auto, register, static, extern, mutable.

Function specifiers Inline definitions that are part of a function
declaration are marked as such, but definitions that
are separate from the declaration (even within the
same file) are not explicit.

Ellipses in function declarations
Rational Rhapsody 1045

Reverse engineering
1046 User Guide

Roundtripping
Roundtripping is an on-the-fly method used to update the model quickly with small changes
entered to previously generated UML code. You can activate a roundtrip in batch mode by
updating the code in the file system and then explicitly synchronizing the model. You can also
activate a roundtrip in an online, on-the-fly, mode by changing a model within one of the Rational
Rhapsody designated views. However, roundtripping should not be used for major changes in the
model that would require the model to be rebuilt.

With Rational Rhapsody Developer for C and C++ you can roundtrip code into the Rational
Rhapsody model in a manner that “respects” the structure of the code and preserves this structure
when code is roundtripped in the Rational Rhapsody model. This means the order of elements in
the original code can be preserved during code generation and you can freely change the order of
class members and globals and Rational Rhapsody respects the change.

When you have changed the order of elements in C and C++, roundtripping in “respect” mode
preserves the order of the following elements for the next code generation:

� Global elements
� Class elements
� #includes and forward declarations
� Auto-generated operations (excluding statechart and instrumentation code)

For more details about code respect and on how to activate it, see Code respect.

Note
Rational Rhapsody has properties that restrict or control how roundtripping changes the
model. See Roundtripping properties.
Rational Rhapsody 1047

Roundtripping
Supported elements
In general, you can roundtrip the following model elements:

� Classes and class aggregations (template class, types, nested classes)
� Class elements (attributes, bodies of primitive operations, arguments, types)
� Class member functions (name, return type, arguments)
� Operations (comments, name, arguments type/name, arguments addition/removal, return

type, visibility)
� Global elements (functions, variables, types, template functions)
� Relations (comments, name, other class association, multiplicity, visibility, static-

property)
� Events (comments, name, default argument value, arguments type, arguments addition/

removal, return type)
� Actions placed on transition labels
� Actions placed inside a state: on entry, on exit, or as a static reaction.
� Code within annotations
� #define-s.

Roundtripping limitations
Roundtripping is not supported for changes that are made to the following nor to data that are not
supported by Rational Rhapsody modifiers (for example, mutable or volatile):

� Stereotypes
� States
� Transitions
� Precompiled directives (#pragma, macros)
� Header/footer for files
� Text element for files, not supported by Rational Rhapsody modifiers
� Component / Configuration information (file mapping)
� Inline operations generated as #define
1048 User Guide

Dynamic Model-code Associativity (DMCA)
Dynamic Model-code Associativity (DMCA)
Dynamic model-code associativity (DMCA) changes the code of a model to correspond to the
changes you make to a model in the Rational Rhapsody UI. Conversely, when you edit the code of
a model directly, DMCA redraws the model to correspond to your edits. In this way, Rational
Rhapsody maintains a tight relationship and traceability between the model and the code; the code
represents another view of the model. The following Code > Dynamic Model Code Associativity
menu commands control the DMCA in the model:

� Code > Dynamic Model Code Associativity > Bidirectional changes are automatically
put through in both directions. That is, changes that are made to the model cause new,
updated code to be generated, and edits made directly to the code are automatically added
to the Rational Rhapsody model.

� Code > Dynamic Model Code Associativity > Roundtrip changes made directly to the
code are brought into the Rational Rhapsody model, but changes made to the model do
not automatically generate new code. You can roundtrip only code that has been
previously generated by Rational Rhapsody; that is, you can only edit code that has been
previously generated by Rational Rhapsody and incorporate those changes back to the
model. See The roundtripping process for more information.

� Code > Dynamic Model Code Associativity > Code Generation changes made to the
model automatically generate new code, but editing code does not automatically change
the model.

� Code > Dynamic Model Code Associativity > None means DMCA is disabled. The
online code view windows become simple text editors

You can also use the following two settings to control DMCA:

� ModelCodeAssociativityMode in the rhapsody.ini file
� The General::Model::ModelCodeAssociativityFineTune property allows you to

change the default DMCA mode. However, this is usually set through the menu
commands listed previously. (Default = Bidirectional)

Note
Dynamic model-code associativity is applicable to all versions of Rational Rhapsody
(meaning, Rational Rhapsody Developer for C, C++, Java, and Ada).
Rational Rhapsody 1049

Roundtripping
The roundtripping process
If you modify source files directly, then select Code > Generate Code, Rational Rhapsody
prompts you to roundtrip the code. This section specifies your options within the roundtripping
procedure.

Automatic and forced roundtripping

If you select automatic roundtripping (the Bidirectional or Roundtrip setting), the model is
automatically updated with code changes if one of the following occurs:

� You change the window in focus, away from the Code View window.
� You save the file that you are editing.
� You close the Code View window.

To force roundtripping, do one of the following actions:

� Select Code > Roundtrip. Code is roundtripped for modified elements.
� Select Code > Force Roundtrip. Code is roundtripped for all elements.

You can force roundtripping at any time. If you have set DMCA to None or Code Generation, the
only way to roundtrip modified code back into the model is by a forced roundtrip.

Roundtripping classes

1. In an OMD, left-click the classes.

2. Select Code > Roundtrip > Selected classes, or right-click the classes and select
Roundtrip.

Rational Rhapsody responds by listing messages of the form “Roundtripping class x” for every
class that is roundtripped. Note that if you attempt to roundtrip a class for which code was not
generated (or for which the implementation file was erased), Rational Rhapsody responds with an
appropriate error message and that class remains unchanged.
1050 User Guide

The roundtripping process
Modifying code segments for roundtripping

You can modify code segments for roundtripping that are procedural behaviors entered as
operations and actions in statecharts.

Every segment in the implementation code has the following format:

... generated code
//#[segment-type segment-identifier
C++ code you entered
//#]
... generated code continues

All these code segments are in the implementation files.

The only segments you can modify without losing the ability to roundtrip are as follows:

� Static reactions
 //#[reaction reaction-id
 // you can modify this code
 someReactionCode();
 // do not modify beyond the //#] sign
 //#]

� Exit action
 //#[exitAction ROOT.idle.(Entry)
 someExitAction();
 //#]

� Entry action
 //#[entryAction ROOT.idle.(Entry)
 someEntryAction();
 //#]

� Transition actions
 //#[transition transition-id
 someTransitionCode();
 //#]

� Primitive operations (procedural behaviors)
 //#[operation doit()
 someOperationCode();
 someMoreOperationCode();
 //#]
Rational Rhapsody 1051

Roundtripping
Recovering lost roundtrip annotations

To roundtrip your code, Rational Rhapsody uses special annotations inserted by the code generator
into the implementation file. The symbols are as follows:

Note
If you edit or delete these annotations, Rational Rhapsody cannot trace your code back to
the model.

To recover corrupted roundtrip annotations:

1. Rename the damaged file.

2. Regenerate code for this class. This should produce a new file with the correct
annotations.

3. Copy your changes from the damaged file into the newly generated file.

4. Try to roundtrip again.

If you have modified any of the files, the following message is displayed:

File <filename> has been modified externally. Do you want to roundtrip?

If you modified the file contents, you must roundtrip to add the modifications to the model.
Choose Yes to confirm the roundtrip. Rational Rhapsody updates the model and the generated
code reflects your manual modifications.

If you choose No, Rational Rhapsody overwrites the modified files and your changes will be lost.

Language Annotation Symbols

Ada Element:
--++ <ElementType> <ElementName>
Body:
--+[<ElementType> <ElementName> --+]

C Element:
/*## <ElementType> <ElementName> */
Body:
/*#[<ElementType> <ElementName> */ /*#]*/

C++ and Java Element:
//## <ElementType> <ElementName>
Body:
//#[<ElementType> <ElementName> //#]
1052 User Guide

The roundtripping process
Roundtripping classes

The following table lists the modifications that can be roundtripped in a class implementation file.

Note
Actions might appear in the code multiple times.

Rational Rhapsody roundtrips the first occurrence of the action code. If two or more occurrences
are modified, the first modified occurrence is roundtripped. One technique is to call an operation in
state, state action, and transition actions, thereby eliminating duplication of the action code and
possible roundtrip ambiguity.

Element Change

Constructors and operations • Change the name of an argument.
• When the name is changed, the argument

description is lost.
• You cannot change the argument type.
• Modify bodies between the //#[and //#] or
--+[and --+] delimiters.

State actions Modify state actions (transition, entry, exit, and
reactions in state) between the delimiters.

State-action actions Modify the state-action actions (in activity
diagrams) between the delimiters.

Static attributes Add or modify (but not remove) the initial value.
Rational Rhapsody 1053

Roundtripping
The following table lists the modifications that can be roundtripped in a class specification file.

Element Change

Arguments Add, remove, and change the type of constructors, operations, and triggered
operation arguments.
Note that changes to argument descriptions in the class specification file are
not roundtripped.

Association Add or remove association, directed association, or aggregation.
You must set the property CPP_ or
JAVA_Roundtrip::Update::AcceptChanges property value to All.

Attributes • Modify the descriptions.

If there is a blank line at the end of the description, the description is lost.
• Add or remove attributes.

You must set the property CPP_ or
JAVA_Roundtrip::Update::AcceptChanges property value to All.

• Modify the name, type, or access of existing attributes.

Classes • Modify the descriptions.

If there is a blank line at the end of the description, the description is lost.
• Modify the class name.

In the next code generation, the modified class will be generated to new
files, such as
<new name>.h and <new name>.cpp. When using DMCA, you must
close and reopen the class file to reassociate the class text with the proper
class in the model.

• Add a new class.

The addition will be reflected under the associated package in the model.

Constructors and
operations

• Modify the descriptions.

If there is a blank line at the end of the description, the description is lost.
• Add or remove constructors or operations.

You must set the property CPP_ or
JAVA_Roundtrip::Update::AcceptChanges property value to All.

• For the specification file, modify types for existing operation or constructor
arguments, but not their names. For specification and implementation files,
you can modify both the type and the name. However, if the change is only
in the implementation file, you can only change the name and not the type.

• Modify return types for existing operations.

Destructors Modify the descriptions.
If there is a blank line at the end of the description, the description is lost.

Nested classes Add, remove, or modify a nested class.
1054 User Guide

The roundtripping process
Roundtripping packages

Rational Rhapsody roundtrips function argument name changes in the package implementation
file; however, changes to argument types are not roundtripped. When the name is changed, the
argument description is lost.

Rational Rhapsody does not roundtrip changes to the initial values of variables.

The following table lists the modifications can be roundtripped in a package specification file.

Relations • Modify the descriptions.

If there is a blank line at the end of the description, the description is lost.
• Modify the role name for an existing relation.

Given a relation "Class_1* itsClass_1", you can modify the role
name itsClass_1. For directed associations, you can also modify the
related class Class_1 (for bidirectional association and aggregation, you
cannot modify the related class).

Standard operations Modify standard operations to inline, by adding “inline” to the declaration. Note
that the definition is generated automatically. The property
<lang>_CG::Operation::Inline is set to in_source. As a result, the
implementation of the function stays in the implementation file. (The “inline”
keyword is added to both, specification and implementation files.)

Triggered operations Modify the descriptions.
If there is a blank line at the end of the description, the description is lost.

User-defined types Add, remove, or modify user-defined types.

Element Change

Event • Modify the description.

Changes to argument descriptions are not roundtripped.
• Add or remove event “arguments.”

Event arguments are actually attributes of the
corresponding event class.

• Modify an event “argument” type and name.

When the name is changed, the argument description is
lost.

Function • Modify the description.

Changes to argument descriptions are not roundtripped.
• Add or remove a function.
• Modify the return type for an existing function.

Element Change
Rational Rhapsody 1055

Roundtripping
To remove a function, variable, or instance with DMCA active:

1. Remove the element from the .h or .cpp file.

2. Switch focus to the .cpp or .h file while pressing the Shift key.

3. Remove the element from the second file.

The Shift key prevents DMCA from firing before you have made the changes to the second file.

To remove a function, variable, or instance with DMCA set to None:

1. Remove the element from the .h or .cpp file, then save the file.

2. Remove the element from the .cpp or .h file, then save the file.

Function argument • Add or remove a function argument.
• Modify an argument type for an existing function.

Changes to argument names are not roundtripped.

Instance • Add or remove an instance.
• Modify a name or class type for an instance.

Variable • Modify description.

Changes to argument descriptions are not roundtripped.
• Modify a variable type or name.
• Add or remove a variable.

Element Change
1056 User Guide

The roundtripping process
Roundtripping deletion of elements from the code

Note
This feature applies to C and C++ in Respect mode and Java in Advanced mode.

You can manually delete elements in code and use roundtripping to update your Rational
Rhapsody model. You can delete variables, functions, types (Struct, Union, Enum, typedef), types’
members, attributes, operations, #define-s, #include-s, forward declarations, and associations.
Note that you cannot delete auto-generated #include statements to the Rational Rhapsody
framework files.

The roundtripping deletion of elements from the code feature involves the following properties:

1. Depending on whether you have Rational Rhapsody Developer for C, C++, or Java:

� For Rational Rhapsody Developer for C and C++: Set the
<lang>_Roundtrip::General::RoundtripScheme property (for example,
CPP_Roundtrip::General::RoundtripScheme) to Respect to turn on code
respect, which is required for this feature. See Activating the code respect feature.

� For Rational Rhapsody in Java: Set the
Java_Roundtrip::General::RoundtripScheme property to Advanced.

2. For C, C++, and Java: Because the <lang>_Roundtrip::Update::AcceptChanges
property is, by default, set to Default, the feature to roundtrip hand-edited deletion of
elements is available.

Note: Be aware of the following when the
<lang>_Roundtrip::Update::AcceptChanges property is set to Default:

� Deletion of the elements Classes, Actors, and Objects is disabled. In addition,
deletion of elements is disabled when Rational Rhapsody finds parser errors in
the roundtripped code.

Note: You can enable deletion of all elements (no exceptions) and even if there are
parser errors during roundtripping. To do so, set the
<lang>_Roundtrip::Update::AcceptChanges property to All. You should
consider the consequences of using the All value. For more information about
this property, see Update::AcceptChanges.

� Deletion of an element that has a prolog and/or epilog is disabled. (You enter
values for the prolog and/or epilog in the following properties:
ImplementationProlog, SpecificationProlog, ImplementationEpilog,
SpecificationEpilog.)
Rational Rhapsody 1057

Roundtripping
Roundtripping for C++

The following details apply to roundtripping in C++ only:

� You can perform a Advanced (Full) roundtrip for language types in Rational Rhapsody
Developer for C++.

� There is support of #includes and forward declarations.
� Roundtripping can convert auto-generated operations to user operations on modifying in

code through either of the following methods:
– By setting the CG::CGGeneral::GeneratedCodeInBrowser property to

Checked.

This works for all auto-generated operations shown in the browser except
constructors and destructors.

– If the above property is not used because there are no auto-generated
operations in the browser, then you can remove the “//##auto_generated”
annotation of the operation so that user operations will be added to the model.

� Roundtripping takes into account code changes made for all user-defined types.
� If you change the order of elements, the “code respect” option preserves the order of the

following elements for the next code generation:
– Global elements
– Class elements
– #includes and forward declarations
– Auto-generated operations (excluding statechart and instrumentation code)

� Position of <<friend>> dependency is preserved by roundtripping in code respect mode.
� You can roundtrip C++ templates.
1058 User Guide

The roundtripping process
Roundtripping for Java

The following details apply to roundtripping in Java only:

� Advanced (Full) roundtrip is supported for Java.
� You can add “import” statement in the code, which creates a dependency in the model.
� There is JDK 1.5 support for generics, enumerations, and type-safe containers.

For more information about roundtripping and Java, see the following topics:

� Javadoc handling in reverse engineering and roundtripping

� Reverse engineering/roundtripping and static import statements

� Reverse engineering/roundtripping and static blocks

Roundtripping properties

Rational Rhapsody includes many properties to control roundtripping. They are specified in
<lang>_Roundtrip, where <lang> is the programming language. For example, in Rational
Rhapsody in C, these properties are in C_Roundtrip; in Rational Rhapsody Developer for C++,
they are in CPP_Roundtrip.

A definition for each property is provided on the applicable Properties tab of the Features
window. The following table lists the properties that control roundtripping.

Property Description

General::NotifyOnInvalidatedModel Determines whether a warning window is displayed during
roundtrip. This warning is displayed when information might
get lost because the model was changed between the last
code generation and the roundtrip operation.
This property is available only in Rational Rhapsody
Developer for C and C++.

General::ParserErrors Specifies the behavior of roundtrip when a parser error is
encountered.

General::PredefineIncludes Specifies the predefined include path for roundtripping.
This property is available only in Rational Rhapsody
Developer for C, C++, and Java.

General::PredefineMacros Specifies the predefined macros for roundtripping.
This property is available only in Rational Rhapsody
Developer for C and C++.

General::ReportChanges Defines which changes are reported (and displayed) by the
roundtrip operation.
This property is available only in Rational Rhapsody
Developer for C, C++, and Java.
Rational Rhapsody 1059

Roundtripping
General::RestrictedMode The RestrictedMode property is a Boolean value
(Checked or Cleared) that specifies whether restricted-
mode roundtripping is available. This property can be
modified on the configuration level. (Default = Cleared)
Restricted mode of Advanced (Full) roundtrip enables you to
roundtrip unusual usage of Rational Rhapsody elements,
such as a class declaration in a user-defined type.
Restricted mode has more limitations, but preserves the
model from unexpected changes. The additional limitations
for restricted mode are as follows:

• User-defined types cannot be removed or changed on
roundtrip because Rational Rhapsody code generation
adds the “Ignore” annotation for a user-defined type
declaration.

• Relations cannot be removed or changed on roundtrip.
• New classes are not added to the model.

This property is available only in Rational Rhapsody
Developer for C and C++.

General::RoundtripScheme Specifies whether to perform a Basic, Advanced (for C,
C++, and Java only), or Respect (for C and C++ only)
roundtrip.
Basic is the default for Ada, Advanced for Java, and
Respect for C and C++.

Property Description
1060 User Guide

The roundtripping process
Update::AcceptChanges The AcceptChanges property is an enumerated type that
specifies which changes are applied to each code
generation element (attribute, operation, type, class, or
package).
You can apply separate properties to each type of code
generation element.
The possible values are as follows:

• Default means that all the changes can be applied to
the model element, including deletion. However, note
that deletion is disabled for classes, actors, and objects.
In addition, deletion is disabled if Rational Rhapsody
finds parser errors in the roundtripped code. This is the
default value.

• All means all of the changes can be applied to the
model element. There are no exceptions (as there are
for the Default value).

• NoDelete means all the changes except deletion can
be applied to the model element. This setting prevents
accidental removal of operations, constructors,
attributes, relations, variables, instances, and functions.

• AddOnly means to apply only the addition of an
aggregate to the model element. You cannot delete or
change elements.

• NoChanges means do not apply any changes to the
model element.

Note that the value of the property is propagated to all the
aggregates of an element. Therefore, if a package has the
property value NoChanges, no elements in that package will
be changed.
This property is available only in Rational Rhapsody
Developer for C, C++, and Java.

Property Description
Rational Rhapsody 1061

Roundtripping
1062 User Guide

Code respect
In Rational Rhapsody, code respect means that the order of elements in the original code is
preserved during code generation. This means that you can freely change the order of class
members and globals and Rational Rhapsody “respects” those changes. Code respect has these
additional features:

� Code generation regenerates text fragments to the correct place in file.
� Reverse engineering imports #ifdef-s to the model as a verbatim text.

– The branches of #ifdef-s that are seen by the compiler are modeled as logical
elements.

– The branches of #ifdef-s that are not seen by the compiler are modeled as a
verbatim text.

This means that code generated in Rational Rhapsody is similar to the original. This gives you
complete flexibility for using manually written code or auto-generated code while receiving all the
benefits of modeling. You can reverse engineer C++ and C code into a model in a manner that the
model respects the order, location, and dependencies of the global elements in the original code.
See Reverse engineering.

Note
The code respect feature applies to Rational Rhapsody in C and Rational Rhapsody in C++,
and the reverse engineering and roundtripping features in these products. As of Rational
Rhapsody 7.2, any new project you create has the code respect featured activated by default.
To activate code respect for an old project, see Activating the code respect feature.

In addition, you can set up Rational Rhapsody Developer for C++ and C so that you can roundtrip
code into the Rational Rhapsody model that respects the structure of the code and preserves this
structure when code is roundtripped in the Rational Rhapsody model.

When you have changed the order of elements in C++ and C, roundtripping in respect mode
preserves the order of the following elements for the next code generation:

� Global elements
� Class elements
� #includes and forward declarations
� Auto-generated operations (excluding statechart and instrumentation code)
Rational Rhapsody 1063

Code respect
See Roundtripping.

Activating the code respect feature
To activate the code respect feature for Rational Rhapsody in C++ and Rational Rhapsody in C:

1. Open the Features window.

2. On the Properties tab, select the View arrow and select All.

3. Expand <lang>_Roundtrip and then expand General.

4. For the RoundtripScheme property, select Respect.

5. Click OK.

Note that the code respect function is based on elaborating SourceArtifact files (previously known
as component files).

Note
As of Rational Rhapsody 7.2, any new project you create has the code respect featured
activated by default. Any old projects opened in Rational Rhapsody 7.2 or higher retain
their original roundtrip scheme.
1064 User Guide

Where code respect information is defined
Where code respect information is defined
Code respect information (such as mapping, ordering, and code snippets) of an element is defined
in a SourceArtifact element, which is typically created by reverse engineering or roundtripping.
The code respect feature applies to Rational Rhapsody C++ and Rational Rhapsody C.

Note that previous to Rational Rhapsody version 7.2, a SourceArtifact was referred to as a
component file. While component files still exist, they now refer to elements under the
Components category in Rational Rhapsody. When component files are located under packages
or classes, and so on, they are referred to as SourceArtifacts.

Note
For existing component files under a component (for example, created by a user or in old
models), their locations are not changed.

Because a SourceArtifact (for example, a .h file) is located under its applicable class/package/
object/block, a configuration management operation of the element includes any SourceArtifact.

By default the code respect feature is available. When active, the following properties have the
following values:

� <lang>_ReverseEngineering::ImplementationTrait::
LocalizeRespectInformation property set to Checked.

� <lang>_ReverseEngineering::ImplementationTrait::
RespectCodeLayout property set to Ordering.

� <lang>_Roundtrip::General::RoundtripScheme property (for example,
CPP_Roundtrip::General::RoundtripScheme) set to Respect. See Activating the code
respect feature.
Rational Rhapsody 1065

Code respect
Making SourceArtifacts display in the browser

By default, SourceArtifacts do not appear on the Rational Rhapsody browser as only advanced
Rational Rhapsody users might want to view or work with them in Rational Rhapsody. Letting
Rational Rhapsody and the reverse engineering/roundtripping process manipulate (that is, create
and edit) SourceArtifacts is typical.

To show SourceArtifacts on the Rational Rhapsody browser (after you have reverse engineered
code into Rational Rhapsody), choose View > Browser Display Options > Show Source
Artifacts. SourceArtifacts are filed in a SourceArtifacts folder, as shown in the following figure
where the folder displays under its class.
1066 User Guide

Where code respect information is defined
Manually adding a SourceArtifact

A SourceArtifact is created when you reverse engineer or roundtrip code in Rational Rhapsody,
which is the typical way to do so. Advanced users might also want to manually add a
SourceArtifact, which you can do through the Rational Rhapsody browser.

To manually add a SourceArtifact:

1. To enable the display of SourceArtifacts on the Rational Rhapsody browser, choose View
> Browser Display Options > Show Source Artifacts. See Making SourceArtifacts
display in the browser.

2. To add a SourceArtifact, right-click a class/package/object/block and select Add New >
SourceArtifact.

Reverse engineering and SourceArtifacts

Note the following rules for reverse engineering and locating a SourceArtifact under a class:

� If only one class is mapped to the artifact, the artifact is located under the class it is
mapped to.

� If more than one class is mapped, the artifact is located under the first class. Priority is
given to a class with the same of the file.

� If no class is mapped to the artifact, the artifact is located under the package.
� External files are imported under the component.

Roundtripping and SourceArtifacts

Note the following rules for roundtripping and locating a SourceArtifact, which are similar as the
ones for reverse engineering:

� New SourceArtifacts are added under classes.
� The order of elements is updated.
� For existing component files under a component (for example, created by a user or in old

models), their locations are not changed.
Rational Rhapsody 1067

Code respect
Code generation and SourceArtifacts

Note the following rules for code generation and locating a SourceArtifact:

� Only advanced code generation supports SourceArtifacts.
� If a class/package belongs to a scope of component, the artifacts under the class are

generated according to their code respect information, the same as other component files.
� If more than one class is mapped to a SourceArtifact, all classes are generated.
� Other elements mapped to the SourceArtifact are also generated.

Location of the generated files
Note the following rules in relation to the location of the generated files:

� According to folder hierarchy under component. If a class displays in the scope of the
component as an element of the folder, the class and its SourceArtifacts aggregates will be
generated according to the path of the folder.

� According to the “package as directory” policy, the package hierarchy determines the
folder hierarchy.

Configuration management and SourceArtifacts

Note the following configuration management considerations:

� A SourceArtifact under a class/object/block cannot be saved as a unit. Checking in/out the
class leads to automatically checking in/out its code respect information.

� The Corresponding Component File check box (on the Add to Archive Options window
for configuration management) will not appear unless the configuration management
operation is done for a class that is mapped to other’s class SourceArtifact. The same is
true for other the other configuration management operations (check in, check out, and so
on).
1068 User Guide

Code-centric mode
For projects that use a model-driven development approach, the basis of the software design is the
information in the model. When code is generated from Rational Rhapsody, this code simply
reflects the design information stored in the model.

Rational Rhapsody can also be used by projects that use a code-centric approach to development.
In this code-centric mode, Rational Rhapsody works on the assumption that the code serves as the
blueprint for the software, and that the visual modeling capabilities of Rational Rhapsody are
being used primarily to visualize the code.

This assumption that the code takes precedence over the model leads to different behavior on the
part of Rational Rhapsody with regard to its code-related features: code generation, reverse
engineering / roundtripping, animation.

Note
In terms of programming languages, code-centric mode can be used with C or C++.

When working in C, code-centric mode can only be used with file-based modeling, not
object-based modeling.

Entering code-centric mode
There are a number of ways to enter code-centric mode:

� Create a new model by reverse engineering your existing code.
� Creating a model from scratch after linking the new model to Rhapsody’s code-centric

settings.
� Creating a single component in a project that will use the code-centric settings.

If you are using Rational Rhapsody to visualize existing code:

1. Open the Rational Rhapsody Reverse Engineering window (choose Tools > Reverse
Engineering).

2. Select the files that should be reverse engineered.
Rational Rhapsody 1069

Code-centric mode
3. Start the reverse engineering process.

When reverse engineering is completed, Rational Rhapsody will automatically enter code-centric
mode.

If you are creating a new model and do not plan to import any existing code, but still want to take
advantage of the code-centric approach:

1. Open the New Project window (choose File > New).

2. Using the Project Settings drop-down list, select the code-centric settings.

If you want to create a single component in a project that will use the code-centric settings:

1. Use File > Add to Model to add the code-centric settings to the model
(CodeCentric75Cpp.sbs or CodeCentric75C.sbs)

2. Create a new component, and add a dependency from the component to the code-centric
settings.

3. Apply the AppliedProfile stereotype to the dependency.

4. Generate code using the new component. This code will then serve as the blueprint for
your model.

Regardless which of these methods you used to enter code-centric mode, you will notice the
following in the Rational Rhapsody browser:

� The code-centric settings will be displayed under the Settings category.
� The entire project or individual components will have a dependency upon the code-centric

settings with the AppliedProfile stereotype applied to the dependency.

Note
The dependency will be at the project level only if you entered code-centric mode by
selecting the code-centric settings in the New Project window.

Leaving code-centric mode
To switch from code-centric to model-centric mode:

1. Delete any dependencies upon the code-centric settings.

2. Highlight the code-centric settings in the browser, and open the pop-up menu.
1070 User Guide

Leaving code-centric mode
3. Select Delete from Model.

4. To prevent all your existing code from being overwritten the next time code is generated,
open the Features window for the active component and enter a different path for the
Directory field on the General tab.
Rational Rhapsody 1071

Code-centric mode
Roundtripping in code-centric mode
In the most extreme code-centric scenario, you could use Rational Rhapsody only to visualize your
code and not add any non-code-related elements to your model. In such a scenario, you could
theoretically use Rational Rhapsody to reverse engineer your entire code periodically and there
would be no reason to save this model in between such reverse engineering sessions.

The Rational Rhapsody code-centric mode is designed to combine this code-based focus with the
ability to add non-code-related elements to your model.

In code-centric mode, Rational Rhapsody will roundtrip into your model any changes you make to
your code, regardless of how drastic these changes are. At the same time, Rational Rhapsody
allows you to add non-code-related elements to your model, for example, requirements, and keeps
this information in your model permanently. The roundtripping of the changes to your code does
not affect in any way the non-code-related elements you have included in your model.

There are a number of ways to initiate the roundtripping of your code changes into your model:

� If you are using the DMCA feature, then when you change the focus from the code editor
to the browser, any changes you have made to your source files will be brought into your
model.

� Code > Roundtrip - Rational Rhapsody looks for changes only in the files modified since
the last time the model was updated from the code.

� Code > Force Roundtrip - Rational Rhapsody looks for changes in all the files, even
those not modified since the last update.

The most important distinction between roundtripping in code-centric mode and roundtripping in
model-centric mode is the following: In model-centric mode, code generation is always carried
out after the manual code changes have been imported into the model (hence the term
"roundtripping"). In code-centric mode, however, Rational Rhapsody never regenerates the code
after the changes have been imported into the model (it is only a one-way process).

If you create a new file in the folder that contains your source code, Rational Rhapsody will import
the contained elements into the model the next time you roundtrip.

Note
When you add a new file to the folder containing your source code, the contained elements
will be imported into the model only if you selected the folder at some point in the Reverse
Engineering window, as opposed to specifying individual files.

When you roundtrip code changes into the model, object model diagrams will be updated
accordingly. To turn off this default behavior, modify the value of the property
ObjectModelGe::AutoPopulate::EnabledOnUpdateModel.
1072 User Guide

Code generation in code-centric mode
Code generation in code-centric mode
When working in the Rational Rhapsody model-centric mode, if you select Code > Generate,
Rational Rhapsody generates completely new files for the files/classes you have specified,
whether it is selected classes, a specific configuration, or the entire project.

In code-centric mode, the code-generation behavior of Rational Rhapsody is based on the premise
that if you add any code-related elements to your model, you would prefer that Rational Rhapsody
make as few changes as possible to your code. So if you use the Generate option in code-centric
mode, Rational Rhapsody does not regenerate the entire file. Rather, it generates only the code
segments that represent the new elements that were added and inserts them in the appropriate
location in your code. The rest of your code remains exactly as it was.

This principle of minimal intrusion into your code results in a number of other differences in code
generation behavior, relative to code generation in model-centric mode:

� The generated code does not include Rational Rhapsody annotations.
� Auto-generated code, such as getters/setters and default constructors/destructors, is not

generated.
� If your code contains code elements that cannot be imported into a Rational Rhapsody

model, this code will remain even after you have used the Rational Rhapsody code
generation feature.

� In order to keep formatting as consistent as possible, the indentation used for Rational
Rhapsody-generated code elements is based on the indentation of the code preceding the
code that is being added.

Other code-generation behavior in code-centric mode:

� If you add a file in C or a class in C++ to your model, Rational Rhapsody will generate
new files for them when you use the Generate option.

� If you change an element name in the model, all references to it in your code will be
updated the next time you generate code.

� When you add a new element to a class, it will be added to the code following the last
element with the same visibility. If there are not elements with the same visibility, it will
be added at the end of the code for the class.

Note
Code-centric mode's selective code updating is only available when using the Rational
Rhapsody Advanced code generation setting. This means that code-centric mode cannot be
used with older models unless you change the CodeGeneratorTool property from Basic to
Advanced.
Rational Rhapsody 1073

Code-centric mode
Diagrams for which code not generated

When working in code-centric mode, code is not generated for statecharts or activity diagrams.

Code regeneration in code-centric mode

The Generate menu option starts the selective code generation process. However, the Regenerate
option will regenerate the entire file. If you use the Regenerate option to generate an entire file,
The Rational Rhapsody selective code update feature will not be used until you have roundtripped
the file.

Because source code files might contain elements that cannot be brought into a Rational Rhapsody
model, if you decide to delete your code and regenerate all the code from your model, the code will
not look the same as your original code and might not even compile. The same is true if you set a
new Directory for your component - in such a case Rational Rhapsody will regenerate all the code
and this code will not necessarily include everything that was in your original code, leaving open
the possibility that the code might not even compile.
1074 User Guide

Animation in code-centric mode
Animation in code-centric mode
The Rational Rhapsody animation feature is made possible due to instrumentation code that
Rational Rhapsody inserts when it generates code for configurations where Instrumentation Mode
has been set to Animation.

Because the underlying approach in code-centric mode is to minimize the intrusion into your code,
there is a difference in the way animation code is generated in code-centric mode, compared to
animation code generated in model-centric mode:

In code-centric mode, when code is generated for animation, only the files that contain animated
elements are generated, rather than all the files as is the case in model-centric mode.

As is the case with model-centric mode, animation code that is generated is framed within #ifdef
_OMINSTRUMENT blocks. If you make any changes to the code within these blocks, roundtripping
will ignore these changes.

Because code is not generated for diagrams such as statecharts and activity diagrams in code-
centric mode, the only type of diagram that can be animated is a sequence diagram.

To further minimize the intrusion into your code as the result of animation, you can use the
following Rational Rhapsody features when animating in code-centric mode:

� The Animate option in the context menu for Sequence Diagrams can be used to specify
that only certain sequence diagrams should be animated. (When you use this option, all
classes included in the diagram will be animated.)

� The Advanced Instrumentation Settings window (accessed from the Advanced button on
the Settings tab of the Features window for configurations) can be used to specify that
instrumentation code should only be generated for certain type of elements, such as
operations.

� The Advanced Instrumentation Settings window can be used to specify that
instrumentation code should only be generated for specific diagrams and/or classes.

While the instrumentation code is less intrusive in code-centric mode, it is important to keep in
mind the following when using animation:

� In ordinary code-centric code generation, code is generated only for modified elements
within a file. When using animation, however, files that contain any animated elements
will be regenerated in their entirety.

� If you are working with a single Rational Rhapsody configuration and change the
Instrumentation Mode to Animation, then the files generated by Rational Rhapsody will
overwrite those currently in your output directory.

� If a file has been generated for animation purposes, it will be generated in full each time
you generate code (selective code updating is not used) until the next time you roundtrip
Rational Rhapsody 1075

Code-centric mode
the code. This means that to restore selective code update behavior for files that contained
instrumentation code, you must:

– change the animation settings so that instrumentation code is not generated
– regenerate the code
– roundtrip the generated file

� Even though auto-generated code is not usually generated in code-centric mode, if you are
using animation there are cases where Rational Rhapsody might generate some
auto-generated elements, for example, generating a constructor if your code does not
contain one.

Scope for code-centric models
The scope defined for a component determines both the code generation scope and roundtripping
scope. Code is generated for modified elements only if the files that contain them are included in
the component scope, and changes to files are roundtripped into the model only if the modified
files are included in the component scope.

When you first reverse engineer files, all of these files are added to the scope. If you specified a
folder in the Reverse Engineering window, then any files you create in that folder will
automatically be added to the scope. Similarly, if you delete any files from that folder, the
corresponding elements will be removed from the model when you roundtrip.

If you add a file (in C) / class (in C++) to the model and update the code, the generated file will be
added to the scope. This is true even if you generate the file to a folder that is not defined as part of
the scope.

You can manually modify the scope by adding files/folders in the Roundtrip Settings window
(Code > Roundtrip/Forced Roundtrip > Settings).

When modifying the scope, it is important to keep in mind that in code-centric mode the package
structure in Rational Rhapsody following roundtripping will always be identical to the directory
structure of your source code. This rule has a number of implications:

� If you would like to reverse engineer files in increments, make sure that all the directories
containing your code are underneath a single directory that can be specified as the Root
Directory on the Mapping tab of the Reverse Engineering Advanced Options window.
You can then import any directories under this root directory, and Rational Rhapsody will
create a package structure that matches your directory structure. If you are using this type
of incremental approach, you should set the value of the property
UseCalculatedRootDirectory to Never prior to carrying out reverse engineering.

� If you change the root directory, the package structure in your model will be different
following roundtrip. It is possible that some packages will be removed from the model
and then recreated. If one of these packages contains elements not reflected in your code,
1076 User Guide

Properties modified by code-centric settings
for example requirements, then these elements will no longer exist in the model following
roundtripping since they do not have any representation in the code that was roundtripped.

Note: These consequences of changes to the package structure in Rational Rhapsody
apply also when you are just manually changing the hierarchy of the folders
that contain your source code. Before roundtripping code changes after such
folder adjustments, you should make similar changes to the package structure
in your Rational Rhapsody model to ensure that no code-less elements
disappear.
This “remove and recreate” approach is also used if you rename individual
elements in your code such as classes. Since classes in your model may contain
significant information that is not represented in your code, make sure that
such renaming is not going to result in loss of information from your model.

� If you are importing code from directories that do not have a common ancestor directory
directly above them, you will have to import them into different Rational Rhapsody
components.

Properties modified by code-centric settings
The different code-generation and roundtripping behavior in code-centric mode is the result of
new properties defined in the code-centric settings or the inclusion of property values that differ
from the default values used in model-centric mode. These properties / property overrides come
from the code-centric settings (sbs) file, and they include:

� [lang]_ReverseEngineering::ImplementationTrait::VisualizationUpdate - exists
only in code-centric settings, set to True, responsible for code-centric behavior of reverse
engineering / roundtripping

� [lang]_Roundtrip::Update::AcceptChanges - in code-centric mode, the code changes
that roundtrip imports are broader than in model-centric mode. In code-centric mode, the
value of AcceptChanges is All, meaning any additions, changes, or deletions will be
reflected in the model. In model-centric, Rational Rhapsody does not roundtrip the
deletion of classes or deletions that result in parser errors.

� [lang]_Roundtrip::Update::MergePolicy - this property determines the merge policy
Rational Rhapsody uses during roundtripping when comparing the model based on the
latest code to the saved model. In the code-centric settings, this property is set to
CodeDriven. This value means that Rational Rhapsody imports certain types of code
elements that it does not import when working in model-centric mode. This property
differs from the property AcceptChanges in that AcceptChanges deals with changes to
model elements (adding, deleting, modifying) while MergePolicy is used to indicate to
Rational Rhapsody that the code, rather than the model, should be given precedence when
it comes to merging changes.

� [lang]_CG::Configuration::CodeUpdate - exists only in code-centric settings, set to
True, responsible for the selective code generation used in code-centric mode
Rational Rhapsody 1077

Code-centric mode
� [lang]_CG::ModelElement::SimplifyAnnotations - value is set to
CodeUpdateAnnotations in order to minimize the Rational Rhapsody annotations
generated in code, limiting them to special cases such as animation.

In addition, a number of code generation property values are overridden to prevent generation of
auto-generated code. These include:

� for classes - properties such as CreateImplicitDependencies,
GenerateImplicitConstructors, ImplementStatechart,
ImplicitDependencyToPackage, GenerateDestructor

� for relations - properties such as AddComponentHelpersGenerate, AddGenerate,
ClearGenerate, CreateComponentGenerate, DeleteComponentGenerate,
GetEndGenerate, GetGenerate, RemoveComponentHelpersGenerate, RemoveGenerate,
RemoveHelpersGenerate, SetComponentHelpersGenerate, SetGenerate,
SetHelpersGenerate

� for attributes - properties such as AccessorGenerate and MutatorGenerate
� for events - Generate
� for ports - Generate
� MainGenerationScheme, which controls initialization code
� properties that control generation of headers and footers
� properties used for the inclusion of framework header files (such as IncludeHeaderFile),

for example, oxf.h
1078 User Guide

Animation
Rational Rhapsody animation is a key technology that enables model validation. You can validate
the analysis and design model by tracing and stimulate the executable model. In addition, the
Rational Rhapsody animator helps you debug your system at the design level rather than the source
code level by actually executing the model and animating the various UML design diagrams.
Rather than merely simulating the application and viewing values of variables and pointers, you
see actual values of instances of states and relations.

The animator enables you to juxtapose different views of an application while it is running. You
can watch the animated model executing in any of the following views:

� Sequence diagrams
� Statecharts
� Activity diagrams

� Browser
� Event Queue window
� Call Stack window
� Output window

Simultaneously viewing animated sequence diagrams, animated statecharts, animated activity
diagrams, and the animated browser in adjacent windows as the model is executing enables you to
verify that the design behaves as wanted. Highlighting in the animated diagrams helps you to
pinpoint the current state of execution.

While the model is running, you can use the Animation toolbar to step through the program, set
and clear breakpoints, and inject events to observe how the system reacts in quasi-real time. You
can observe the operation for the system either in the animated views or by generating an output
trace.
Rational Rhapsody 1079

Animation
Animation Overview
The animator is a design-level debugger, as well as a model validator. In other words, the animator
supports the standard functionality of a programming language debugger at the design level. The
objects you follow are design-level objects; that is, objects that are modeled in Rational Rhapsody.

Animation Features

During an animation session, you can perform the following activities:

� Inspect and modify the current status of the model:
– View current instances and the relationships between them.
– View the current state for reactive objects.
– View animated sequence diagrams depicting events and operations actually

sent or called.
– Generate events.

� Open or close animated views.
� Set breakpoints.
� Advance execution using the Go buttons on the Animation toolbar.

Preparing for Animation - General Procedure

The following procedure lists the general steps to prepare for and run animation, with references to
the more specific procedures.

1. If necessary, create a component. See Create a Component.

2. If necessary, create a configuration. See Creating a Configuration.

3. Set the Instrumentation mode for the configuration to Animation. See Setting the
Instrumentation Mode.

4. Set the active configuration. The active configuration is the one generated when you
generate code. See Setting the active configuration.

5. Generate code for the configuration. See Generating Code.

6. Build the animated component. See Building the Target.

7. Run the animated component. See Running the Animated Model.
1080 User Guide

Create a Component
Create a Component
A component is a physical subsystem in the form of a library or executable program. It plays an
important role in the modeling of large systems that contain several libraries and executables. Each
component contains configuration and file specification categories, which are used to generate,
build, and run the executable model.

Each project contains a default component, named DefaultComponent. You can use the default
component (you can rename it) or create a new component.

Creating a component

To rename the default component:

1. In the Rational Rhapsody browser, expand the Components category.

2. Double-click DefaultComponent to open the Features window.

3. In the Name box, replace the name DefaultComponent with another name.

4. Click Apply.

5. To set the features for this component, see Setting the Component Features

To create a new component:

1. In the Rational Rhapsody browser, right-click the Components category and select Add
New Component.

2. Type a name for your new component and press Enter.

3. To set the features for this component, double-click the new component to open its
Features window and see Setting the Component Features.
Rational Rhapsody 1081

Animation
Setting the Component Features

Once you have created the component, you must set its features.

To set the component features:

1. With the Features window open for your component, on the General tab, in the Type
group, select the Executable radio button if it is not already selected.

2. On the Scope tab, specify which model elements to include in the component.

� All Elements. Select this radio button if you want to select all available elements.
� Selected Elements. Select this radio button if you want to select only certain

elements and then use the check boxes next to each element to indicate which
model elements to include in the component. Notice that if you select check box
next to the parent element, all sub-elements are selected. If you only want certain
sub-elements, select the check boxes next to those sub-elements instead of the
parent element, as shown in the following figure:

3. Click OK.
1082 User Guide

Create a Component
Creating a Configuration

A component can contain many configurations. A configuration specifies how the component is to
be produced.

Each component contains a default configuration, named DefaultConfig. You can use the default
configuration (you can rename it) or create a new one.

To rename the default configuration:

1. In the Rational Rhapsody browser, expand the applicable component and its
Configurations category.

2. Double-click DefaultConfig to open the Features window.

3. In the Name box, replace DefaultConfig with another name.

4. Click Apply.

5. To enable animation, you must set the instrumentation mode. See Setting the
Instrumentation Mode.
Rational Rhapsody 1083

Animation
Setting the Instrumentation Mode
To set the Instrumentation mode for a configuration:

1. With the Features window open for your configuration, on the Settings tab, set the
Instrumentation Mode box to Animation, as shown in the following figure. This adds
instrumentation code, which makes it possible to animate the model.
1084 User Guide

Setting the Instrumentation Mode
2. Optionally, to instrument operations and set a finer scope on the instrumentation, click the
Advanced button to open the Advanced Instrumentation Settings window. For more
information, see Using selective instrumentation.

3. Click OK.
Rational Rhapsody 1085

Animation
Running the Animated Model
When running the animated model, you can use any of these animation methods:

� Run an executable application on the same machine as Rational Rhapsody (see Running on
the Host).

� Run an executable application on a different machine than Rational Rhapsody (see
Running on a Remote Target and Testing an Application on a Remote Target).

� Test a library built with Rational Rhapsody with a GUI built outside of Rational Rhapsody
(see Testing a Library).

For all of these animation methods, the process follows these steps:

1. The application auto-connects to Rational Rhapsody to run the animation.

2. The message “Initializing animation...” is displayed.

3. An operating system window opens to display console output from the application. You
can minimize this window, if wanted.

4. The Animation toolbar displays (see Animation Toolbar).

Running on the Host

To run the application on the host:

1. Open a command prompt window.

2. Type the DOS command ipconfig.

3. Copy the IP address of the host into the command and press Enter.

4. Open your Rational Rhapsody project.

5. Highlight your EXE for the host in the browser and right-click to display the Features
window.

6. Set the <Language>_CG::<Compiler>::UseRemoteHost property value to Checked.

7. Also in the properties list, locate the <Language>_CG::<Compiler>::RemoteHost
property and paste in the IP address of the host for its value. Click OK.

8. Generate and make the executable.
1086 User Guide

Running the Animated Model
Running on a Remote Target

You can inspect or debug animated code running on a remote target through these steps:

1. Copy the executable from the host to the target.

2. Run the executable.

3. Check to be certain that the animation is running on the host.

The animation views, shown on the host, are at the design level. The animation server
communicates with the target via a TCP/IP connection. Each animation connection requires its
own unique port number, which is set in the rhapsody.ini file. The framework inserts the same
port number into the connection port of the instrumented application.

The instrumented application can run on either the same machine as Rational Rhapsody (the host)
or a remote target. The following illustration shows the relationship of these components to each
other.

Rhapsody
Instrumented
ApplicationGenerates

TCP/IP

Animation
Port

Connection
Port
Rational Rhapsody 1087

Animation
Opening a Port Automatically

If you want Rational Rhapsody to locate an open port automatically for animation, change the
values of the following variables in the [General] section of the rhapsody.ini file:

� AnimationPortNumber defines the port to try first
� AnimationPortRange specifies the number of ports to test, in addition to

AnimationPortNumber, before giving up
These changes set up the search to start with the AnimationPortNumber and increment by one until
either an open port is found or until the number of tries equals the value of
AnimationPortRange + 1.

For example, if AnimationPortNumber = 5000 and AnimationPortRange = 100, Rational
Rhapsody first attempts to establish a connection on port 5000. If that fails, then it tries port 5001.
If that fails, then it tries port 5002. This search continues until either an open port is found or until
it finally tests port 5100. If port 5100 fails, then no animation can be performed for that instance of
Rational Rhapsody.

In addition to the animation ports, another rhapsody.ini file value needs to be manually set. In
the [General] section, change the EnableMultipleAnimation from FALSE (default) to TRUE.

Testing an Application on a Remote Target

To test an application running on a remote target:

1. Open a command window and change to the directory where the application is located.

2. At the command prompt, enter the command to run the application with the -hostname
option indicating the machine running Rational Rhapsody. For example, if your
application is named myapp.exe and Rational Rhapsody is running on a machine named
Julius, run your application using the following command:

myapp -hostname Julius
1088 User Guide

Testing a Library
Testing a Library
To test a Rational Rhapsody library:

1. Build the library inside Rational Rhapsody.

2. Build the application outside Rational Rhapsody and include the library built in Rational
Rhapsody.

3. Open a command window and change to the directory where the application is located.

4. At the command prompt, enter the command to run the application. For example, if your
application is named myapp.exe, use the following command:

myapp

Partially Animating a Model (C/C++)
Rational Rhapsody enables you to partially animate a model, to test selected elements without the
overhead of animating the entire project. This feature also enables you to animate projects that
contain non-animated components.

All elements in the model are generated and built, but only the animated elements are displayed in
the animation environment during run time. Animated and nonanimated elements, listed below,
are able to pass instances and events to one another, but only animated events can be generated
using the animation environment.

� Package
� Class (including nested classes)
� Statechart
� Activity diagram
� Relation
� Attribute
� Actor
� Operation
� Event

Note
Partial animation also applies to trace operations.
Rational Rhapsody 1089

Animation
Setting Elements for Partial Animation

1. Set the instrumentation of the active component to Animation.

2. By default, all elements are animated. Therefore, partial animation is a process of
elimination.

For each element that you do not want animated, set the
<lang>_CG::<type_of_element>::Animate property to False.

The <type_of_element> metaclass can be Package, Class, Statechart, Relation,
Attribute, Operation, Event, or Actor.

3. Save the model.

4. Generate, make, and run the project.

Note: You can specify partial animation per configuration using the Advanced
Instrumentation Settings window. For more information, see Using selective
instrumentation.

Partial Animation Considerations

� Animation for components should be set at the configuration level.
� If any element in the executable is animated, the instrumentation should be set to

Animation in the Configuration setting for the executable component. The component,
which creates the executable, is linked with the instrumented OXF libraries if at least one
part of the model (aggregate, library, and so on) is animated.

� If an operation is animated, its arguments are also animated. When setting animation for
arguments, it is active or unavailable for all arguments. Arguments cannot be animated
individually.

� The animation setting of a class affects all of its instances, even if the package they belong
to is not animated.

� Only animated events can be injected using the animation environment.
� Only animated events appear in the event queue.
� Elements that are not animated are not shown in any animated view.
� Only animated attributes or relations are shown for an animated instance.
� Only animated operations, timeouts, and events are displayed in the animated sequence

diagram and the call stack.
� If a model contains an active class that is not animated, its thread is considered a foreign

thread. This thread displays in the thread list, but is named by its operating system handle
(not by the name of the active object).
1090 User Guide

Partially Animating a Model (C/C++)
� When using Rational Rhapsody-generated DLLs, the OXF libraries should also be a DLL.
This DLL should be animated if any of the Rational Rhapsody-generated DLLs are
animated.

Partially Animated Sequence Diagrams

Instances that are not animated are not displayed in animated views. However, Rational Rhapsody
does display messages passed between animated and nonanimated instances.

If a nonanimated instance (A) sends a message, it is shown originating from the system border.

If an animated instance (B) sends a message to a nonanimated instance (A), it is shown being sent
to the system border.

A message sent from a nonanimated class is shown coming from its call stack predecessor, if
present. Messages sent from a nonanimated class whose call stack predecessor is absent are shown
originating from the system.

Messages sent from one nonanimated class to another are not shown.
Rational Rhapsody 1091

Animation
Ending an Animation Session
To end an animation session, use any of the following methods:

� In the Animation toolbar, click the Quit Animation tool.
� Select Code > Stop.
� Allow the application to terminate.
1092 User Guide

Animation Toolbar
Animation Toolbar
When you run an executable model with instrumentation set to Animation, Rational Rhapsody
displays the Animation toolbar. This toolbar automatically appears during an animation session.
To display or hide this toolbar during an animation session, select View > Toolbars > Animation.

The Animation toolbar contains the following tools.

Tool
Button Button Name Description

Go Step Advances the application a single step (until the next Rational Rhapsody-level
occurrence, such as the calling of an operation).

Go Advances the application until it terminates or reaches a breakpoint.

Go Idle Advances the application until the next timeout or event for the focus thread. If there
are no timeouts or events waiting in the event queue, nothing happens.

Go Event Advances the application until the next event is dispatched or the executable
reaches an idle state.

Animation
Break

Interrupts a model that is executing and suspends the clock.

Command
Prompt

Opens the Animation Command window where you can type animation and trace
commands.

Quit Animation Ends the animation session and terminates the executable.

Thread Opens the thread view.

Breakpoints Opens the Breakpoints window, where you can control breakpoints. When a
breakpoint is encountered in any thread, the animator switches control from the
application to you. The last thread to reach a breakpoint becomes the focus thread.

Event
Generator

Opens the Events window, where you can generate events using the Event
Generator.

Operation Calls Opens the Operations window. Lets you start operation calls during animation and
tracing to validate parts of the design model.
Rational Rhapsody 1093

Animation
Note that all the Go commands cause the tracer to execute immediately, even if it is in the middle
of reading commands from a file. The subsequent (unread) lines are used as commands the next
time the tracer stops execution and searches for commands. If the model reaches a breakpoint,
control can return to you before a Go command is complete.

Creating Initial Instances
It is a good idea to issue a Go Idle command immediately after starting an executable model so all
initial instances are created.

To create instances, click Go Idle after starting the model. The initial instances are created (as well
as any instances created by those instances) and are listed under the Instances category for the
class in the browser.

The instance name is in the format class[n], where n is the number of instances, beginning with
0, that have been created since the model began executing. It is not possible to change this number.

Silent/Watch Toggles between Silent and Watch mode at any break or when the executable is
idle.
Silent mode enables you to perform design-level debugging and display animation
information only at breakpoints. In contrast, Watch mode enables you to continually
update animation information in normal step-by-step operation via the Go buttons.

Tool
Button Button Name Description
1094 User Guide

Break Command
Break Command
To interrupt a model that is executing, click the Break tool.

The Break command enables you to regain control immediately (or as soon as possible). Issuing a
Break command also suspends the clock, which resumes with the next Go command.

Note
For simple applications, there might be a backlog of notifications. Although the model stops
executing immediately, the animator can accept further input only after it has cleared this
backlog and displayed any pending notifications.

The Break command cannot stop an infinite loop that resides within a single operation. For
example, issuing a Break cannot stop the following while() loop:

while(TRUE) j++;

However, it can stop the following code if increaseJ() is an operation defined within Rational
Rhapsody:

while(TRUE) increaseJ();

Command Prompt
To issue an animation command, for example, to manually inject an event into the model, click the
Command Prompt tool.

The Animation Command bar displays, as shown in the following figure:

You can also generate events using the Event Generator tool. See Event Generator.

Generating Events Using the Animation Command Bar

Before you can inject an event into the model, the instance to which you are sending the event
must already exist. See Event Generator.

To generate an event:

1. In the Animation Command bar, type a GEN() command using either of the following
formats:
Rational Rhapsody 1095

Animation
� instance->GEN(event)

� instance->GEN(event())

2. Press Enter.

If the event is one that the instance is able to receive, the event is entered into the call
stack (see Call Stack) in the following format:

instance->event()

If the instance is not able to receive the event, or no such event is defined in the
package, the message “Invalid event name or non-existing event class
<event>” is displayed.

3. To process the event, click one of the Go tools.

Events with Arguments

If the event has arguments, the GEN command is as follows:

instance->GEN(event(parameter[, parameter]*))

In this command:

� instance specifies the name of the instance to which you are sending the event (using the
format class[n])

� event specifies the name of the event you want to generate
� parameter specifies the values of the actual arguments to be passed to the event

When the event is generated, the actual argument names and their values appear in the call stack in
the following format:

instance->event(argument = parameter[,
argument = parameter]*))

If an event has arguments, you should provide the GEN command with the correct number of
parameters and the correct types. For example, if event X is defined as X(int, B*, char*) where
B is a class defined in Rational Rhapsody, to generate an event you can enter either of the
following commands:

A[1]->GEN(X(3,B[5],"now"))

A[1]->GEN(X(1,NULL,"later"))

Event arguments must be either pointers to classes defined in Rational Rhapsody, or of a type that
can be read from a string, such as int or char*. If you want to generate an event of a user-defined
type that you have defined either inside or outside of Rational Rhapsody, you must either overload
its I/O stream operator>>(istream&), or instantiate the template string2X(T& t) so Rational
Rhapsody can interpret the characters entered.
1096 User Guide

Command Prompt
The command A[1]->GEN(Y(1)) works because the >> operator automatically converts the
character "1" to the integer 1. On the other hand, the command A[1]->GEN(Y(one)) would not
work because the >> operator cannot convert the characters “one” to an integer.

Note
If you pass complex parameters (such as structs) and use animation, you must override the
>> operator. Otherwise, Rational Rhapsody generates compilation errors.

Generating Events Using the Command History List

The Animation Command bar has a list of commands previously issued in the same animation
session. You can select a previous command from this list, rather than retyping it.

To select a previous command from the history list:

1. Click the down arrow to the right of the command-entry box.

2. From the list, select the command you want to reissue.
Rational Rhapsody 1097

Animation
Threads
Classes that are both active and reactive run on their own threads. In animated applications with
multiple threads, the thread view enables you to control the execution of threads. The animator
always maintains one thread in focus. All thread-related operations are performed with respect to
the focus thread:

� The call stack view displays the call stack of the focus thread (see Call Stack).
� The event queue view displays the event queue of the focus thread (see Event Queue).
� The Go buttons on the Animation toolbar affect the execution only of the focus thread.

A Go Step advances the focus thread one step. While the focus thread is executing, all other
threads execute as much as they can until the moment the focus thread finishes executing this step.
It is impossible to predict how far non-focus threads will advance, because their behavior depends
on how the operating system scheduler behaves during run time.

Thread View

To start the thread view, click the Thread tool.

The Threads window opens, listing all threads that currently exist in the model, their status (Active
or Suspended), and their operating system IDs (in hex).

Setting the Thread Focus

The focus thread has an asterisk in the first column. In the figure, the main thread has focus. This
means that the call stack and event queue views will display information for this thread only.

1. Select a thread that does not currently have focus. The Set Focus button becomes active.

2. Click Set Focus.
1098 User Guide

Threads
To suspend an active thread, select an active thread and click Suspend.

Note
The Animator cannot advance the application if the focus thread is suspended.

To resume a suspended thread, select a suspended thread and click Resume.

Names of Threads

The first thread of your application is called the mainThread. The mainThread is also the system
thread, and objects that have sequential concurrency run on this thread.

Threads associated with active objects are named according to their object names:

� Threads associated with active objects are denoted by @objectName. For example, if A is
an active class, @A[0] is the name of a thread on which an instance of A might run.

� Threads associated with active objects that are targets of relations are denoted by
@objectName->roleName. For example, if A is an active class that is related to B as itsA,
@B[3]->itsA is the name of a thread on which an instance of A might run.

You can register external threads that you have manually created (using an operating system API
call rather than the Rational Rhapsody OMThread wrapper) by assigning your own names to them.
The registering of an external thread introduces it to Rational Rhapsody and adds it to the list of
threads associated with active objects displayed in the Threads window.

During the course of execution, additional external threads can appear that interact with Rational
Rhapsody-defined objects. These external threads are denoted by an ID that the operating system
automatically assigns to them.

Notes on Multiple Threads

Go commands speak explicitly to the focus thread and send an implicit Go to all other threads. For
example, in a multithreaded environment with three threads named @T1, @T2, @T3, and @T2 having
focus, a Go Step command would advance @T2 a single step. During this time, threads @T1 and @T3
might advance one or more steps depending on the scheduling policy of the underlying operating
system. In any case, when control returns to you, all three threads have executed a whole number
of steps (execution does not stop in the middle of a step).

Only active (not suspended) threads are advanced in a Go command. If the focus thread is
suspended, the execution does not advance and you are prompted to either set the focus to another
thread or resume the focus thread. If the focus thread dies during a Go Step, Go Event, or Go Idle
command, the application immediately stops.
Rational Rhapsody 1099

Animation
Active Thread Properties

For the VxWorks and pSOSystem environments, you can assign a name to an active thread by
modifying the CG::Class::ActiveThreadName property for the class. The default value of this
property is the empty string. The active thread name is used only by the external source debugger,
(for example, the Tornado debugger), and is not the same as the thread name that is used for
Rational Rhapsody animation.

For all environments, you can set the thread priority by modifying the ActiveThreadPriority
property for the class. The default priority for all threads is taken from the
DefaultThreadPriority static class member of the OMOSThread framework class (defined in
Share\oxf\os.h).

For all environments, you can set the initial size of the thread stack by modifying the
ActiveStackSize property for the class. This property helps provide support for static memory
architectures. The default size for thread stacks is taken from the DefaultStackSize static class
member of the OMOSThread framework class.
1100 User Guide

Threads
Creating Breakpoints

When a breakpoint is encountered in any thread, the animator switches control from the
application to you. The last thread to reach a breakpoint becomes the focus thread.

You can control breakpoints by either issuing breakpoint commands in the Animation Command
bar or using the Breakpoints tool.

1. Click the Command Prompt tool in the Animation toolbar.

2. In the Animation Command bar, enter Show #Breakpoints (not case-sensitive).

Note: Alternatively, you can control breakpoints using the Breakpoints window. To
activate this window, click the Breakpoints tool in the Animation toolbar.

The Breakpoints window opens, as shown in the following figure:

Using this window, you can define, delete, enable, and disable breakpoints.
Rational Rhapsody 1101

Animation
Defining Breakpoints

To define a new breakpoint:

1. In the Breakpoints window, click New. The Define Breakpoint window opens.

2. Click Select to select the object for which you want to define the breakpoint, or type the
name of the instance directly into the Object field. The Instances Selection window
opens.

3. Select the instance for which you want to define the breakpoint from the list, then click
OK.

The Instances Selection window is dismissed and the selected object displays in the
Object box of the Define Breakpoint window.

Note: In general, entering a class name for the object causes the breakpoint to operate
on any instance of the class, whereas entering an instance name causes the
breakpoint to operate on a particular instance.

4. Click the down arrow to the right of the Reason box to view a list of possible reasons for
the breakpoint. Select the appropriate reason.
1102 User Guide

Threads
Some reasons might require additional data. For example, if you want to regain control when an
object enters a particular state, you must provide the state name. If a state name is not provided, the
break occurs when the object enters any state.

The following table shows the possible reasons for breakpoints and what, if any, optional data you
can provide for each breakpoint.

Reason for
Break Object Data Description

Instance Created Class None Break when any instance
of the class is created.

Instance Deleted Class or instance None Break when an instance
of the class is deleted.

Termination Class or instance None Break when an instance
reaches a termination
connector in its
statechart.

State Entered Class or instance State name Break when an instance
enters a state.

State Exited Class or instance State name Break when an instance
exits a state.

State Class or instance State name Break when an instance:
• Enters a state
• Exits a state

Relation
Connected

Class or instance Relation name Break when a new
instance is connected to
a relation.

Relation
Disconnected

Class or instance Relation name Break when an instance
is removed from a
relation.

Relation Cleared Class or instance Relation name Break when a relation is
cleared for an instance.

Relation Class or instance Relation name Break when:
• A new instance is

connected to a
relation.

• An instance is
deleted from a
relation.

• A relation is cleared
for an instance.
Rational Rhapsody 1103

Animation
Enabling and Disabling Breakpoints

The first column of the breakpoints list shows the status of all breakpoints. By default, new
breakpoints are available. The active breakpoints are at the top of the list, whereas disabled
breakpoints are at the bottom.

Attribute Instance None Break when any attribute
of the instance changes
value. A copy of the
attribute values is stored
and current values are
compared to this copy.
When a break occurs,
the copy is updated with
the latest values.

Got Control Class or instance None Break when an instance
gets control by:

• Starting to execute
one of its user-
defined operations

• Responding to an
event

• Regaining control
after an operation
that the instance has
called on another
object finishes
executing

Lost Control Class or instance None Break when an instance
loses control by:

• Finishing execution
of one of its
operations

• Finishing a reaction
to an event

• Calling an operation
of another object

Operation Class or instance Operation name Break when an instance
starts executing a user-
defined operation.

Operation
Returned

Class or instance Operation name Break when an instance
returns from executing a
user-defined operation.

Event Sent Class or instance Event name Break when an instance
sends an event.

Event Received Class or instance Event name Break when an instance
receives an event.

Reason for
Break Object Data Description
1104 User Guide

Threads
To disable a breakpoint, select an enabled breakpoint and click Disable. The breakpoint is disabled
and moved to the bottom of the list.

To enable a breakpoint, select a disabled breakpoint and click Enable. The breakpoint is enabled
and moved below the last enabled breakpoint and above the first disabled breakpoint in the list.

Deleting Breakpoints

To delete a breakpoint, select the breakpoint and click Delete. The breakpoint is removed from the
list.
Rational Rhapsody 1105

Animation
Event Generator
You can generate events to inject into the model using either the Event Generator tool or the
Animation Command bar (see Generating Events Using the Animation Command Bar).

To generate events using the Event Generator, click the Event Generator tool in the Animation
toolbar. The Events window opens, as shown in the following figure:

This window enables you to select an object as the target of the event and define the event you
want to send to that object. If events have previously been generated during the same animation
session, those events appear in the Events History list and you can simply select an event from the
history list.

Generating Events

1. In the Events window, click Select. The Instances Selection window opens (see Defining
Breakpoints).

2. Select an instance from the list, then click OK.

3. Click the down-arrow to right of the Event box to display a list of events that the object is
capable of receiving and select an event from the list.

If the event takes arguments, they are displayed in the arguments list.
1106 User Guide

Event Generator
4. You must assign actual values to arguments to successfully generate events with
arguments. To assign a value to an argument, select the argument from the Arguments
list, then click Edit. The Argument Value window opens.

5. Enter a value for the argument, then click OK. The value is displayed next to the argument
in the Events window.

6. Click OK.

Note that the Events window stays open after sending the event.

Events History List

Successfully generated events are stored in an Events History list that is displayed in the Events
window.

Every time you save a project, events are stored in the history list, along with active and inactive
breakpoints, to a file named <projectname>.ehl in the project directory. The following example
shows an .ehl file:

[Events]
A[0]->GEN(evCount())`Default::A
A[0]->GEN(evOn())`A
A[0]->GEN(evDeep())`Default::A
A[0]->GEN(evOn())`Default::A
[Active Breakpoints]
[Inactive Breakpoints]

Resending Events
To resend an event from the events history list:

1. In the Events window, select an event from the Events History list.

2. Click OK The event is entered into the Event Queue.

To clear the events history list, click Clear.
Rational Rhapsody 1107

Animation
Calling Animation Operations

Using Rational Rhapsody Developer for C++ and C, you can start operation calls during animation
and tracing to validate parts of the design model. To call an operation, it must be instrumented; by
default, instrumentation is set to None (you cannot call operations). To enable operation calls,
either set the property <lang>_CG::Operation::AnimAllowInvocation or use the Advanced
Instrumentation Settings window (opened by click the Advanced button on the Settings tab for
the configuration). To call an operation, click the Call operations tool in the Animation toolbar.
1108 User Guide

Event Generator
This window contains the following fields:

� Object specifies the object (or class) that contains the method you want to start. Click
Select to open the Instances Selection window, as shown in the following figure:

This window displays the classes and instances that have operations that you can
call.

Select the appropriate instance, then click OK. You return to the Operations window.

� Method specifies the operation to call.

If you selected a class in the Instances Selection window, only static methods
instrumented for operation calls are listed in the Operation window. The Operation
window displays all the available operations for invocation, including the ones specified
in the base classes.

� Arguments displays the arguments used by the specified operation. If necessary, click
Edit to modify the arguments for the operation.

To start an operation, all the arguments must be animated. If the data type is complex, you
must specify the unserialization routine for the type and force its instrumentation.

� History shows the history of all the operations called in the animation session. As with
events, the history of operation calls is stored in a log file.

Click Clear to delete the history.
Once you have set the appropriate values, click OK to launch the method call. The results are
displayed in the output window (animation) or console (tracing).

Note that the Operations window stays open after sending the operation.
Rational Rhapsody 1109

Animation
Scheduling and Threading Issues
The method is launched by the application thread currently in focus. The workflow is as follows:

1. If needed, set the focus to be the thread that should execute the operation.

2. Send the command to the animator. If several commands are sent to the same thread, the
application will execute them one after the other in the calling order. In addition, you can
switch focus threads and send start requests to different threads to simulate concurrent
calls.

3. Continue execution of the application (by one of the “go” commands).

4. The operation is displayed in the callstack of the thread and relevant sequence diagrams,
and is carried out.

5. Once the operation returns, its return value is displayed in the output window (animation)
or in the console (tracing).

Note
The operation call is synchronous where the thread executes the operation, then returns to its
last previous position in the interrupted control flow.

Using Partial Animation

By default, operations are not instrumented for calls. To enable operation calls, set the property
<lang>_CG::Operation::AnimAllowInvocation. See the property definitions in the Properties
tab for more information.

Note that if an operation is not animated (either the Animate property for the operation is set to
FALSE, or the class of the operation is not in the configuration's instrumentation scope),
instrumentation for the invocation is disabled.

Scheduling and Threading Restrictions

Note the following restrictions and limitations:

� Only an animated Rational Rhapsody (non-foreign) thread can call an operation.
� You can launch an operation only if all its argument types are animated and have

unserialization routines (as with events).
� The following aspects are not supported:

– Constructor and destructor invocations
– Global functions
1110 User Guide

Scheduling and Threading Issues
– Overloaded operators (such as ++, <<, and so on)
– Templates

� You must specify all arguments (default arguments are not supported).
� Once the operation actually starts, the sent request is shown (not the message) and the

operation is shown in the callstack.
Rational Rhapsody 1111

Animation
Animation Modes
Silent mode enables you to perform design-level debugging and display animation information
only at breakpoints. In contrast, Watch mode enables you to continually update animation
information in normal step-by-step operation via the Go buttons. You can toggle between the two
modes at any break, or when the executable is idle, using the Silent/Watch tool in the Animation
toolbar.

Note
Watch mode is the default animation mode. If you are in Watch mode, the text “Watch -
Display Continuous Update” is displayed in the tooltip when you move the cursor over the
Silent/Watch tool. If you are in Silent mode, the text “Display on Breakpoint Only” is
displayed.

Silent Mode

In Silent mode (also known as Update-on-Break mode), the model runs at near production speeds
and the animated views are not updated until you hit a breakpoint. Execution speeds can be up to
100 times faster in Silent mode than in Watch mode.

To activate Silent mode:

1. When the model is idle and in Watch mode, click the Silent tool. The animated views are
immediately updated, but the event queue is not.

2. To update the event queue after a break, click the Command Prompt tool.

3. In the Animation Command bar, type refresh and press Enter.

Alternatively, you can use View > Refresh (or press F5). The next time the model reaches a
breakpoint, the event queue immediately updates.

Watch Mode

Watch mode is the normal mode of operation in which all animated views and the event queue are
continually updated with each Go. Watch mode is preferable for unit testing or pinpoint
debugging.

To activate Watch mode, click the Watch tool when the model is idle and in Silent mode.
1112 User Guide

Viewing the Model
Viewing the Model
This section describes how to view and inspect components of a model during animation. The
ability to inspect an executable model is a key feature of animation and a major debugging aid
during model design.

You can watch the active execution for an application in any of the following views:

� Output window
� Call Stack window
� Event Queue window
� Animated browser
� Animated sequence diagrams
� Animated statecharts
� Animated activity diagrams
� Thread view (multithreaded applications only)

During animation, you can access:

� The model as a whole
� Objects that make up the model and relations between them
� Internal information about specific objects

Accordingly, you are provided with three types of views:

� Application-wide status views, available only in animation:
– Call stack view
– Event queue view
– Threads view

� Multiobject views provided by animated versions of multiobject design tools:
– Animated sequence diagrams, which depict messages actually passed between

instances during the execution of the application.
– The animated browser, which enables you to inspect instances currently alive

in the application
� Object-specific view provided by the animated version of single-object design tools:

– Animated statecharts, which describe the current states and latest transitions
of the object

– Animated activity diagrams
Rational Rhapsody 1113

Animation
Call Stack

The call stack view describes the current stack of calls for the focus thread. To open the call stack
view, select View > Call Stack.

� startBehavior initiates the behavior of a reactive object
� takeEvent initiates the response of a reactive object to the reception of events

For C++ and Java, each line in the call stack view depicts a single function using the following
member pointer notation:

<instance>-><operation>

If the operation does not belong to any particular instance (for example, top-level function calls) or
is a constructor, only the operation name is displayed. Operations are added and removed from the
stack in LIFO (last-in, first-out) order. The most recent operation is always pushed onto and
popped off the top of the stack.

Event Queue

The event queue view describes the current state of the event queue for the focus thread. To open
the event queue view, select View > Event Queue.

Each line in the display depicts a single event in the format:

<name of event destination> -> <event name> (<parameters>=
value{,<parameter>=value})

For example:

A[1]->Start(priority=3)
B[3]->NewGame(score = (5,0), time = 3)

The top-most event is the next to be dispatched.
1114 User Guide

Viewing the Model
Animated Browser

During animation, the browser displays instances (objects instantiated) for each class participating
in the execution. Typically, instances are deep blue in color. However, an instance that currently
has control (is currently executing) is light blue. Selecting an instance in the animated browser
displays a window that shows:

� A list of its attributes for the instance and their current values.
� A list of its relations. Selecting a relation displays a list of the items in this relation.

From the browser, you can open an animated statechart for an instance (see Animating Statecharts).

Animated Sequence Diagrams

A sequence diagram displays the passing of messages between instances that participate in the
chart. Sequence diagrams are a concise and popular way to represent the communication between
interacting objects.
Rational Rhapsody 1115

Animation
Opening Animated Sequence Diagrams
To open an animated sequence diagram (ASD), use either of the following methods.

� With a nonanimated sequence diagram already open in Rational Rhapsody, start the model
running. When the model starts executing, an animated version of the currently open
sequence diagram opens along with the original, nonanimated version.

� Select Tools > Animated Sequence Diagram.

The Open Sequence Diagram window opens (as shown in the following figure), listing
the nonanimated sequence diagrams that currently exist in the model. Select a
nonanimated sequence diagram from the list. The animated version opens in a new
window.

Adding and Deleting Instance Lines
To add an instance line to an ASD, create an instance line using the Instance Line tool and name
the instance, or drag an instance from the browser.

Each line has a label. If the label refers to an instance that currently exists in the executing model,
the line is connected to that object.

To delete an instance line, do one of the following actions:

� Click the Delete button.
� Press Ctrl+Delete.
1116 User Guide

Viewing the Model
Auto-creating Animated Instances
You can make it so that animated instance lines on sequence diagrams are auto-created so that you
can see the run-time instance appear in the animated sequence diagram when they are actually
created. (Typically during an animation session, you have to drag the created instance from the
Rational Rhapsody browser onto the animated sequence diagram to see the operation of that
instance getting called.) However, with added notation to an instance line name on a sequence
diagram, you can have Rational Rhapsody auto-create the animated instances when you run
animation. This capability means that you can mark a specific class to auto-create any sequence
diagram instances at run time on the animated sequence diagram.

To auto-create animated instances for a sequence diagram:

1. Make sure you have the active configuration set for Animation. See Setting the
Instrumentation Mode.

2. Create a sequence diagram and make sure it is open (or open a current sequence diagram
for which you want to auto-create animated instances).

Note: You can set the SequenceDiagram::General::AutoLaunchAnimation
property to Always to make the diagram open automatically when animation
starts.

3. Depending on what you did in the previous step:

– From the Rational Rhapsody browser, drag a class that you want to auto-
create instances for on your sequence diagram and add an asterisk (*) to the
beginning of the name. For example: *:Dishwasher. Or,

– On the diagram, change the name of an instance by adding an asterisk (*) to
the beginning of the name. To do this, click the name to focus the pointer on
it. Once the name is highlighted, use your keyboard arrow keys or the mouse
to position your mouse pointer to the beginning of the name and add * to it.
For example: *:Dishwasher, as shown in the following figure:

4. On the Code toolbar, click the GMR button generate, make, and run your model.

5. On the Animation toolbar, click the Go button to start the animation session.
Rational Rhapsody 1117

Animation
6. Notice that Rational Rhapsody creates an animated sequence diagram that has all auto-
generated instances of type <class_name>, as shown in the following figure:

Limitations

Note the following limitations:

� There is no auto-creation of derived classes.
� This feature is unavailable for Rational Rhapsody in Ada.
1118 User Guide

Viewing the Model
Showing State Transitions in Animated Sequence Diagrams
An animated sequence diagram can cross reference an animated statechart by showing the event of
an object entering a state. In Rational Rhapsody, the Condition Mark indicates that an object is in a
certain condition or state at a particular point in a sequence. For more information about condition
marks, see Creating a condition mark.

The following figure shows an animated statechart:

The following figure shows the animated sequence diagram. Notice the transition states (for
example, idle).
Rational Rhapsody 1119

Animation
Display Considerations

The following display considerations apply for showing state transitions in animated sequence
diagrams:

� States are displayed in the order of their notifications.
� When an inner state changes, all of its and-states are listed again, even if unchanged.
� When re-entering the same state in a self loop, the entry displays again.
� And-states are listed with a pipeline character (|) in-between.
� In the case of sub-states, only the most inner current state is listed.
� The SequenceDiagram::General::ShowAnimStateMark property determines whether or

not state transitions are displayed in an animated sequence diagram. Its default is
Checked.

State Transition Limitations

The following limitations apply for showing state transitions in animated sequence diagrams:

� Condition marks are not realized with model states.
� The DiffMerge tool and Sequence Diagram Compare tool do not support condition marks.
1120 User Guide

Viewing the Model
The System Border
The system border, if present, is connected to all instances participating in the execution that do
not have a special line of their own. In other words, a message is drawn between two instance lines
if both the sending and receiving instances have instance lines in the ASD.

If either the sending or receiving instance does not have a line, messages can be displayed between
the instance that has a line and the system border:

� If the ASD includes a system border, the message is drawn between the instance that has a
line and the system border.

� If the ASD does not include a system border, the message is not displayed in the diagram.
In other words, removing the system border prevents the display of messages to or from
instances that are not explicitly part of the execution sequence.

Messages
ASDs automatically create the following message arrows while the model is executing:

� Operation calls
� Self-operation calls (from an instance to itself)
� Events sent, but not yet received
� Events sent and received
� Timeouts sent (matured), but not yet received
� Timeouts sent and received
� Constructors
� Destructors

The y-axis of a sequence diagram indicates both flow of time and steps. No scale is given on this
axis, but synchronization is maintained.

When you remove an instance line, all messages sent to and from the instance are also removed.
Future arrows relating to the removed instance will be associated with the system border, if the
diagram has one.

When you add an instance line, messages to or from the newly added instance are displayed only
from the moment the line is added. Messages sent or received by an instance before it was added to
the diagram are associated with the system border.

Note
Do not create more than one line referring to the same instance. Otherwise, message arrows
will connect to only one of these instance lines in an arbitrary manner.
Rational Rhapsody 1121

Animation
When you quit animation, you can either save or delete animated sequence diagrams that have
been generated by the execution. Saving them creates a record of the execution.

Limiting Message Display in Animated Sequence Diagrams
When running an animation of a sequence diagram containing a very large number of messages,
your system might run low on virtual memory. You can use the
SequenceDiagram::General::MaxNumberOfAnimMessages and
SequenceDiagram::General::OnReachedMaxAnimMessages properties to prevent such problems
by limiting the number of messages displayed at any one time.

Use the MaxNumberOfAnimMessages property to specify the maximum number of messages that
should be displayed in the sequence diagram at any one time during animation.

Use the OnReachedMaxAnimMessages property to determine how Rational Rhapsody should
behave when the maximum number of messages has been reached. The property can take the
following values:

� Stop where Rational Rhapsody stops displaying animated messages in the diagram after
the maximum number has been reached.

� KeepLast where after the maximum number of messages specified has been reached,
Rational Rhapsody erases the first messages displayed. It will continue erasing displayed
messages in this manner so that the number of messages displayed on the diagram at any
one time does not exceed the maximum specified.
1122 User Guide

Viewing the Model
Suppressing Animated Sequence Diagram Messages
To control the appearance of Create, Destroy, Timeout, and Cancel Timeout messages in an
animated sequence diagram, use the following properties in SequenceDiagram::General:

� ShowAnimCreateArrow. This property specifies whether to show Create messages in
animated sequence diagrams.

� ShowAnimDataFlowArrow. This property specifies whether to show dataflow messages in
animated sequence diagrams.

� ShowAnimDestroyArrow This property specifies whether to show Destroy messages in
animated sequence diagrams.

� ShowAnimTimeoutArrow This property specifies whether to show Timeout messages in
animated sequence diagrams.

� ShowAnimCancelTimeoutArrow This property specifies whether to show Cancel Timeout
messages in animated sequence diagrams.

By default these properties are set to Checked (so that these messages appear in animated sequence
diagrams). To suppress these messages, set the above properties to Cleared.

Note that the sequence diagram cloned during animation will use the above properties also.

Dataflows
Rational Rhapsody animation also uses dataflow arrow notation to represent data flow between
flowports. For more information about dataflows and flowports, see Creating a dataflow and Flow
ports.

Animating Return Values
To learn how to instrument return types so that you can see them as reply messages on animated
sequence diagrams, see Animation of the return value for an operation.
Rational Rhapsody 1123

Animation
Animating Statecharts

To open an animated statechart, right-click an instance in the browser and select Open Instance
Statechart.

Alternatively, you can:

1. Select Tools > Animated Statechart. The Open Animated Statechart window opens.

2. Select an existing instance from the list, then click OK.

Note that animated statecharts operate in full behavioral steps. This means that you see all of the
final effects of a behavioral step at once (not one-by-one as they occur).

Animation Highlighting
You can change how animation is displayed by right-clicking the project in the browser and
selecting Format.

The types used for animation highlighting are as follows:

� AnimatedTransition specifies how animated transitions are displayed. By default, an
animated transition is displayed using olive, 3-point, solid lines.

� AnimatedInState specifies how an In state is displayed. By default, an In state is
displayed using magenta, 3-point, solid lines.

� AnimatedPrevState specifies how the previous state is displayed. By default, the
previous state is displayed using olive, 3-point, solid lines.

For detailed instructions on using the Format window, see Changing the format of a metaclass.
1124 User Guide

Instance Names
Instance Names
The building blocks of a model are its classes and relations. The building blocks of the execution
of a model are instances of these classes and relations, which are created during execution. This
section describes how the animator names these instances.

Names of Class Instances

During execution, the instances of a class A are referred to as A[0], A[1], A[2], and so on. The
name A[0] is given to the first instance of class A, the name A[1] to the second, and so on.

An instance gets a name only after its construction is completed. An item whose chain of
constructors has started but not yet completed is referred to as in construction.

An instance retains its name only until its destruction. An item whose chain of destructors has
started but not yet completed is referred to as in destruction.

An instance that no longer exists is referred to as non-existent. This can happen if an instance was
deleted, but some other instance still points to it via an attribute or relation.

An instance retains its name, unchanged, during its entire lifetime. For example, an instance
assigned the name A[5] at its creation continues to be called A[5] even if instances A[0] to A[4]
no longer exist.

Names of Component Instances

Instances of a component use the following naming scheme, where the composite is the whole and
the component is the part:

whole[n]->part[m]

For example, for a component class A inside a composite class B, the fifth instance of the
component A is referred to as follows:

B[3]->itsA[4]

The name B[3]->itsA[0] is assigned to the first instance of class A as a component of B[3],
itsA[1] to the second, and so on.

A similar naming scheme is used for relations. In this case, the composite (whole) is considered
the source of the relation, and the component (part) is the target.

Because of the chain of construction, a component is typically created first as a class instance and
only then as a component. This is reflected in the name of the instance. First, it is created as A[x]
(for example, A[4]), and then as
B[y]->itsA[z] (for example, B[2]->itsA[3]).
Rational Rhapsody 1125

Animation
Navigation Expressions

Instances can be referred to by the following navigation expressions:

� If A is a class, A[#j] denotes the (j+1)th instance of the class currently in existence. For
example, A[#4] can denote the fifth instance of the class. This is consistent with the C/
C++ convention of calling the first element A[0].

� If A is a class, A can denote the first instance of the class. This is the same as A[#0].

You can use a class name instead of an instance name only in places where there is no
ambiguity as to whether it refers to the class or its first instance. For example, A->GEN(E)
generates an event E for an instance A[#0]. However, the animation command “Show A
relations” displays relation information about class A and all of its instances.

� If B is a name or navigation expression that refers to an instance and that instance has a
relation itsA, B->itsA denotes the first element in B’s relation with A and B->itsA[#i]
denotes the (i+1)th element.

The same navigation expression can refer to different instances during the course of the execution.
For example, if instances A[0] to A[5] have been created and then A[3] is deleted, the expression
A[#5] refers to A[4] before the deletion and to A[5] after the deletion.

Names of Special Objects

Besides classes and instances, the animator keeps track of a few other special objects such as
breakpoints, call stacks, and event queues. You can reference all these from the command prompt
using tracer commands. For detailed information about tracer commands, see Tracing.

Animation Scripts
You can create scripts to automate animation sequences using tracer commands. The syntax of
these commands is described in detail in Tracer Commands.

Note
To get a list of available scripting commands, type help or ? in the Animation Command
bar.
1126 User Guide

Animation Scripts
Sample Script

Scripts can use these command types:

The following example of a script tests the behavior of a chamber unit in the pacemaker demo:

//***
// file: utChamber.txt
// description: chamber unit test script
//***// run until we
enter the sensing state

Command Type Command

Breakpoint break <object> <op> <breakPointType> <data>

Call [Object name]->CALL([operation call] [signature])

Comments // the comment goes here

Display • display

• watch

Generate event <instanceName>->GEN(<eventName>(<parameterName>
[, <parameterName>]*))

<instanceName>->GEN(<eventName>())
<instanceName>->GEN(<eventName>)

Go • go
• go event

• go idle

• go step

Help • help

• ?

I/O • input [+] <destination>

• output <+/–> <destination>

Quit quit

Resume • resume threadName

• resume #Thread threadName

Set focus • set focus <threadName>

• set focus #Thread <threadName>

Show show <object> <interest-list>

Suspend • suspend threadName
• suspend #Thread threadName

Time stamp timestamp <option>

Trace trace <object> <interest-list>
Rational Rhapsody 1127

Animation
break ut2Chamber->theChamber stateEntered sensing
go
break ut2Chamber->theChamber -stateEntered sensing

// Trace ... and capture to file utChamber.log
trace #CallStack method
trace #CallStack +timeout
output +test.log

// give several heart beats
ut2Chamber->theChamber->GEN(evHeartBeat)
go idle
ut2Chamber->theChamber->GEN(evHeartBeat)
go idle
ut2Chamber->theChamber->GEN(evHeartBeat)
go idle

// absence of a heartbeat should cause a pace
go idle
break ut2Chamber->theChamber stateEntered sensing
go
break ut2Chamber->theChamber -stateEntered sensing

// regenerate heartbeats
ut2Chamber->theChamber->GEN(evHeartBeat)
go idle
ut2Chamber->theChamber->GEN(evHeartBeat)
go idle
ut2Chamber->theChamber->GEN(evHeartBeat)
go idle

// stop logging to file
output -test.log

Running Scripts Automatically

To run a script automatically when an executable starts:

1. Within a component, create a file named omanimator.cfg.

2. Give the file the following parameters:

� Path where you type “..” so the file is generated to a directory one level higher.
� File Type where you select Other.

When animation starts, if Rational Rhapsody finds a file named omanimator.cfg, it executes the
file. This can be useful for large projects (or those with a GUI), because a script similar to the
following could be written and automatically executed:

//==
// Switch off the animation before starting
watch
// Run with animation off to create all objects
go idle
// Switch animation back on
display

// Run continuously
1128 User Guide

Animation Scripts
go
//==
Rational Rhapsody 1129

Animation
Black-Box Animation
Rational Rhapsody includes extended animation for sequence diagrams. Animated instance lines
(classifier roles) can represent run-time objects and their internal structure (their parts) as opposed
to a single, run-time object (as in previous versions). This enables you to validate higher-level
sequence diagrams specified prior to the elaboration of the internal structure of the classes.

Note
By default, animated instance lines in Rational Rhapsody are mapped to single objects. To
activate this feature, you must modify the property settings of the instance lines, as
described in Animation Properties.

You can map any instance line on a sequence diagram to one of the following items:

� A single object
� An object and its parts
� An object and all the objects derived from its reference sequence diagram

In addition, you can specify that during animation, messages sent from the instance line to itself
are not displayed.

Animation Properties

Two properties support this functionality:

� Animation::ClassifierRole::DisplayMessagesToSelf determines whether messages-
to-self are displayed during animation. The possible values are as follows:

– None which means do not display any messages-to-self.
– All which means to display all messages-to-self.

� Animation::ClassifierRole::MappingPolicy specifies how to map instance lines
during animation. The possible values are as follows:

– Smart where Rational Rhapsody decides the mapping policy.
If the instance line has a reference sequence diagram, the mapping will be equivalent
to ObjectAndDerivedFromRefSD; otherwise, the mapping is equivalent to
ObjectAndItsParts (which, for an object without any parts, is the same as
SingleObject).

– ObjectAndItsParts where the instance line is mapped to an object and all its
parts (recursively), excluding parts that are explicitly shown in the diagram.

– SingleObject where the instance line is mapped to a single, run-time object.
1130 User Guide

Black-Box Animation
– ObjectAndDerivedFromRefSD where the instance line is mapped to an object
by its role name (if it exists) and to all derived objects from the reference SDs
(according to their mapping rules).

Note
If you change the values of these properties after the sequence diagram has been initialized,
the changes will not take effect until you close and reopen the animated SD.

Example

The following figure shows a design sequence diagram that describes a door with keycard access:
Rational Rhapsody 1131

Animation
The following figure shows an SD for model analysis:

The following figures show some of the ASDs used for black-box testing of the model, and the
effects of setting the animation properties to different values.
1132 User Guide

Black-Box Animation
The following figure shows the resultant ASD when the Prototype1 instance line uses a mapping
policy ObjectAndItsParts; the other two instance lines are set to SingleObject. Note that the
Prototype1 instance line reflects the messages for the CardReader, Keypad, EmployeeDatabase,
and DoorController classes.
Rational Rhapsody 1133

Animation
The following figure shows another view of the model (the instance line uses
ObjectAndItsParts). Note that messages for other parts of the model are reflected on this
instance line because the Prototype1 instance line can “see” them (because of the policy setting).

Using the Properties for Black-Box Testing

The following scenarios show the effects of the new animation properties on the ASD:

� If you are using an animated sequence diagram (ASD), which is a clone of the existing
sequence diagram, the mapping relies on the property settings of the original diagram.

� While animating the model, if you create a new ASD and drag animated objects on it, the
mapping is done as if the MappingPolicy property is set to ObjectAndItsParts. This
mapping cannot be changed.

� While still animating the model, if you create a new, non-animated SD and set the
DisplayMessagesToSelf and MappingPolicy properties, then start animating the new
SD; the ASD will map its instance lines according to the property settings.
1134 User Guide

Black-Box Animation
Instance Line Menu

When you right-click a instance line during animation, the menu contains the following new
options:

� Open Animated Statechart or Open Animated Activity Diagram displays the
appropriate animated diagram for selected object.

� Generate Event opens the Event window so you can generate an event. For more
information, see Event Generator.

� Add Breakpoint opens the Breakpoint window, described in Creating Breakpoints.
If the instance line represents more than a single object, these commands are applied to the root
object (the object that would have been mapped to the instance line in SingleObject mode).

Behavior and Restrictions

Note the following information:

� If any object is added explicitly to a sequence diagram, messages it receives will be shown
as being received by it (rather than shown as going to the “owner”).

� A instance line that is mapped to an object and its parts will not represent parts that have
their own instance lines in the same diagram.

� A single runtime occurrence such as sending a message will be viewed only once in the
case of a message relayed to a part via its owner’s ports. For example, if a message is sent
to a part via the port of its owner, the message to a instance line that represents the owner
and its parts is shown once. In other words, the fact that the message was relayed via the
owner’s port is not displayed because logically this is a single occurrence.
Rational Rhapsody 1135

Animation
Animation Hints
The following sections provide some hints on some of the fine points of using the animator.

Exception Handling

Exceptions can be thrown within operations and caught within operations. However, if you want to
affect some set of objects’ state machines, you should catch the exception and GEN events for the
appropriate objects and rethrow the exception, if necessary (for example, if you want the exception
to be resolved by an operation higher in the call tree).

If Animation and Application are Out of Sync

Rational Rhapsody assumes that you are following a certain programming style, outlined in the
following notes. You are not forced to follow this style, but if you choose not to, be aware that the
animation might get out of sync with the model. For example, at times, it might be convenient to
define a static attribute and use it directly for all class instances. Although it is not the most
effective programming approach, it is a quick way to solve a number of problems. You can work
this way if you prefer. However, be aware that the value of that attribute might not be updated
properly during animation.

The following are standard style guidelines:

� All internals of an object are private or protected; that is, other objects cannot change the
attributes, relations, or states directly for an object. They must use some operation of the
object.

� States and relations can be changed only through a predefined set of mutators.
� Invoking self-triggered operations is allowed only between and-state components.

Note
On recovery, if you do not follow these guidelines and suspect that a view of a given object
is inconsistent with its actual state, try closing the suspect view and reopening it. This
should refresh the view and synchronize it with the actual state of the object.
1136 User Guide

Animation Hints
Passing Complex Parameters

If you pass complex parameters (such as structs) and use animation, you must override the >>
operator. Otherwise, Rational Rhapsody generates compilation errors.

Combining Animation Settings in the Same Model

It is possible to build libraries with animation on for part of an application, with animation off for
another part, and then link both parts (the different libraries) into a single executable.

In Rational Rhapsody Developer for C, the architecture was changed from a user object being an
animation object to a user object being associated with an animation object. As a result, the
memory layout of animated and nonanimated objects is the same so, in principle, they can mix.
Each class or object type is either completely instrumented or completely noninstrumented.

To create a combined application, you can link:

� Some instrumented user code
� Some noninstrumented user code
� Instrumented framework libraries (oxfinst.lib, aomanim.lib, and so on)

When some user object calls a user-defined method, the animation recognizes this, as the
framework and the call stack are animated. The animation looks in a table for the animation
associate of the user object (the me parameter in the method call). If it finds one, an animation
message is sent to Rational Rhapsody with respect to this action. Otherwise, it ignores this action
(the action is taken, but not animated).

Animation Feature Limitations

The animation feature cannot provide animation for classes that are nested in template classes.
Rational Rhapsody 1137

Animation
Guidelines for Writing Serialization Functions
When you define a complex type, it is not understood by the Rational Rhapsody animator and
therefore cannot be animated. To write serialization functions in order to animate such types, you
can use the following properties:

� <lang>_CG::Type::AnimSerializeOperation

� <lang>_CG::Type::AnimUnserializeOperation

AnimSerializeOperation

The AnimSerializeOperation property enables you to specify the name of an external function
used to animate all attributes and arguments that are of that type. Compare with
AnimUnserializeOperation.

Rational Rhapsody can animate (display) the values of simple types and one-dimensional arrays
without any problem. To display the current values of such attributes during an animation session,
open the Features window for the instance.

However, if you want to animate a more complex type, such as a date, the type must be converted
to a string (char *) for Rational Rhapsody to display it. This is generally done by writing a global
function, an instrumentation function, that takes one argument of the type you want to display, and
returns a char *. You must disable animation of the instrumentation function itself (using the
Animate and AnimateArguments properties for the function).

For example, you can have a type tDate, defined as follows:

typedef struct date {
 int day;
 int month;
 int year; } %s;

You can have an object with an attribute count of type int, and an attribute date of type tDate. The
object can have an initializer with the following body:

me->date.month = 5;
me->date.day = 12;
me->date.year = 2000;

If you want to animate the date attribute, the AnimSerializeOperation property for date must be
set to the name of a function that will convert the type tDate to char *. For example, you can set
the property to a function named showDate. This function name must be entered without any
parentheses. It must take an attribute of type tDate and return a char *. The Animate and
AnimateArguments properties for the showDate function must be set to Cleared.
1138 User Guide

Guidelines for Writing Serialization Functions
The implementation of the showDate function might be as follows:

showDate(tDate aDate) {
 char* buff;
 buff = (char*) malloc(sizeof(char) * 20);
 sprintf(buff,"%d %d %d",
 aDate.month,aDate.day,aDate.year);
 return buff;

}

When you run this model with animation, instances of this object will display a value of 5 12 2000
for the date attribute in the browser.

If the showDate function is defined in the same class that the attribute belongs to and the function
is not static, the AnimSerializeOperation property value should be similar to the following
example:

myReal->showDate

This value shows that the function is called from the serializeAttributes function, located in
the class OMAnimated<classname>.

Note
The showDate function must allocate memory for the returned string via the malloc/
alloc/calloc function in C, or the new operator in C++. Otherwise, the system will
crash.

The default for this property is an empty string.
Rational Rhapsody 1139

Animation
AnimUnserializeOperation

The AnimUnserializeOperation property converts a string to the value of an element (the opposite
of the AnimSerializeOperation property). Unserialize functions are used for event generation or
operation invocation using the Animation toolbar to convert the string (received from the user) to
the value of the event or operation before the event generation or operation invocation.

For example, your serialization operation might look similar to the following example:

char* myX2String(const Rec &f)
{

char* cS = new char[OutputStringLength];
/* conversion from the Rec type to string */
return (cS);

}

The unserialization operation would be:

Rec myString2X (char* C, Rec& T)
{

T = new Trc;
/* conversion of the string C to the Rec type */
delete C;
return (T);

}

The default for this property is an empty string.
1140 User Guide

Running an Animated Application Without Rational Rhapsody
Running an Animated Application Without Rational
Rhapsody

An animated Rational Rhapsody application will always try to connect to Rational Rhapsody.
However, if the application cannot connect to Rational Rhapsody, you can still run it outside of
Rational Rhapsody via the command line, as shown in the following figure:

In addition, you can use the -noanim flag to run the application without animation even though
Rational Rhapsody is on.
Rational Rhapsody 1141

Animation
1142 User Guide

Tracing
The tracer is a stand-alone text version of the animator. In the tracer, you type commands at a
command prompt and receive messages detailing the status of the model as it executes.

Note

Tracing is not supported in code generated for Windows CE™.

You can use the tracer from within Rational Rhapsody, or as a stand-alone application outside of
Rational Rhapsody.

Tracer Capabilities
Tracing enables you to monitor and control the application without having the Rational Rhapsody
GUI in the loop by providing a text-based, console-like application. However, all tracing
commands are also available in animation.

Using tracing, you can:

� Inspect and trace the status of the executing application:
– Inspect the application via show commands.
– Identify items to trace with trace commands.

� Set and remove breakpoints with break commands.
� Generate events or call operations with the GEN macro or CALL command (CALL applies to

Rational Rhapsody Developer for C++ only).
� Return control to the Tracer for one or more steps using the go commands.

The tracer:

� Advances execution according to the go commands or until a breakpoint occurs.
� Displays messages describing what happens to traced objects as the model executes.
Rational Rhapsody 1143

Tracing
Starting a Trace Session
To prepare your application for tracing:

1. Select a configuration, right-click, and select Features.

2. In the Settings tab, set the Instrumentation Mode to Tracing and click OK.

3. In the browser, right-click the configuration and select Set as Active Configuration.

4. To generate code for the configuration, select Code > Generate > <configuration>. The
generation messages are displayed in the Log tab of the Output window.

5. To build the component, select Code > Build <configuration>. Build messages are
displayed in the Output window.

6. To run the component, select Code > Run <configuration>.

A command prompt window opens ready for you to enter a tracer command.
1144 User Guide

Controlling Tracer Operation
Controlling Tracer Operation
Use tracer commands to control the tracer’s operation. The tracer reports on the status of instances
as the application executes. Enter tracer commands at the command prompt when using the tracer
as a stand-alone application or in the Animation Command Bar during animation. The tracer
displays a variety of messages depending on the commands that you enter.

Accessing Tracer Commands

To see a brief description of tracer commands, type help at the command-line. See also Tracer
Commands.

To place comments in a tracer command, precede the comment text with two forward slashes. The
portion of the line from the slashes to the end of the line is considered a comment. For example:

trace B[5] relations // Displays a message whenever a
 // relation of B[5] is modified.

Tracer Commands and an Input File

Rather than typing commands at the command prompt, you can give the tracer commands from an
input file.

By default, the tracer looks for commands in a file named OMTracer.cfg in the configuration
directory. If the file does not exist, or the tracer has reached the end of the file, the tracer looks for
commands entered at the prompt. You can specify a different input file using the input command
(see input).

By default, the animator looks for tracing commands in the OMAnimator.cfg file. It is stored in the
same directory as the project file.

Note
Because the tracer generates numerous messages, you might want to use the output
command to send results to a file (see output).

Sending Commands in the Default Input File
To send commands to the tracer using the default input file:

1. Create a text file that contains each tracer command as you would type it at the command
prompt, in the order that you want the commands to execute.

2. Save the file in the configuration directory under the name OMTracer.cfg.

3. Generate, make, and run your application using the Tracing instrumentation mode.
Rational Rhapsody 1145

Tracing
Sending Commands to the Animator in the Input File
To send tracer commands to the animator using an input file:

1. Create a text file that contains each tracer command as you would type it at the command
prompt, in the order that you want the commands to execute.

2. Save the file in the project directory under the name OMAnimator.cfg.

3. Generate, make, and run your application with Animation instrumentation.
1146 User Guide

Threads in Tracing
Threads in Tracing
During a tracing session, you can suspend, resume, or set focus on a thread.

Each application starts with a single thread named mainThread.

Whenever an instance of an active class is created, a new thread is created with it. During
construction of the instance, the name of the thread is
@<in construction>; from then on, the name is @<instanceName>.

When an instance of an active class is deleted, its thread dies with it and cannot be referenced
anymore.

When you register an external thread, you give it a name that is used to identify it in tracer or
animation. This is an advanced feature needed in special cases.

When an unregistered external thread calls on an instrumented operation, that thread is identified
by the handle the operating system gives it. This happens typically if you connect your
instrumented code with a GUI engine that does not use events. (This is an advanced feature needed
in special cases.)

For more information, see Notes on Multiple Threads.
Rational Rhapsody 1147

Tracing
Tracer Commands
The following sections document the tracer commands. For ease-of-use, the commands are
presented in alphabetical order.

The commands are as follows:

� break

� CALL

� display
� GEN
� go
� help
� input
� LogCmd
� output
� quit
� resume
� set focus
� show
� suspend
� timestamp
� trace
� watch

break

Description

The break command enables you to add or remove a breakpoint on a given occurrence.

Syntax

break <object> <op> <breakPointType> <data>

Arguments

object
1148 User Guide

Tracer Commands
Specifies the object. This must be #All, a valid class name, or a valid instance name.

Setting a breakpoint on a class implies setting a breakpoint on all its instances and
subclasses.

op

Specifies the operation. The possible values are +, –, add, or remove. The default
value is add.

breakPointType

Specifies the type of breakpoint. The possible values are as follows:

� instanceCreated means with class only. Breaks when a new instance of this class (or a
subclass of it) is created.

� instanceDeleted means breaks when the instance (an instance of the class) is deleted.
� termination means breaks when the instance (an instance of the class) reaches a

termination connector. Does not break if the instance is deleted in a way other than by
entering a termination connector.

� stateEntered <state name> means if a state name is specified, it breaks when the
instance (an instance of the class) enters that state. If the state name is omitted, it breaks
when instance enters any state.

� stateExited <state name> means if a state name is specified, it breaks when the
instance (an instance of the class) exits the given state. If the state name is omitted, it
breaks when instance exits any state.

� state <state name> means if a state name is specified, it breaks when the instance (an
instance of the class) enters or exits the given state. If the state name is omitted, it breaks
when instance exits or enters any state.

� relationConnected <relation name> means if a relation name is specified, it breaks
when a new instance is connected to the given relation for this instance (an instance of
this class). If the relation name is omitted, it breaks when a new instance is connected to
any relation.

� relationDisconnected <relation name> means if a relation name is specified, it
breaks when an instance is removed from the given relation for this instance (an instance
of this class). If the relation name is omitted, it breaks when an instance is removed from
any relation.

� relationCleared <relation name> means if a relation name is specified, it breaks when
the given relation for this instance (an instance of this class) is cleared. If the relation
name is omitted, it breaks when any relation is cleared.

� relation <relation name> means if a relation name is specified, it breaks when a new
instance is connected to the relation, an instance is deleted from the relation, or the
relation is cleared for this instance (an instance of this class). If the relation name is
Rational Rhapsody 1149

Tracing
omitted, it breaks when a new instance is connected to any relation, an instance is deleted
from any relation, or any relation is cleared

� attribute means instance only. Breaks when any of the attributes of the given instance
changes. When the breakpoint is set, a copy of the attribute values of the instance is
stored. When any of the attribute values change with respect to this copy a break occurs.
After the break, a copy of the new (modified) values is kept as the reference.

� gotControl means breaks when the instance (an instance of the class) gets control. This
happens when the instance starts executing one of its user-defined operations, the instance
responds to an event, or an operation the instance called from another object has finished
and now it resumes executing.

� lostControl means breaks when the instance (an instance of the class) loses control; that
is, either it has finished executing an operation and it now returns, it finished responding
to an event, or it calls an operation of another object.

� operation <operation name> means if an operation name is specified, it breaks when
the instance (an instance of the class) starts executing the named operation. If the
operation name is omitted, it breaks when the instance starts executing any of its user-
defined operations.

� operationReturned <operation name> means if an operation name is specified, it
breaks when the instance (an instance of the class) returns from executing the named
operation. If the operation name is omitted, it breaks when the instance returns from
executing any of its user-defined operations.

� eventSent <event name> means if an event name is specified, it breaks when the
instance (an instance of the class) sends the named event. If the event name is omitted, it
breaks when the instance sends any event.

� eventReceived <event name> means if an event name is specified, it breaks when the
instance (an instance of the class) receives the named event. If the event name is omitted,
it breaks when the instance receives any event.

� all indicates all break points. This keyword can be used only to remove all breakpoints.

For example, the following command removes all breakpoints on B[5]:
break B[5] - all

The following command removes all breakpoints from the animation:

break #all - all

data

Is context-dependent. See breakPointType. Breakpoints that take data are shown with the data
parameter in angle brackets.

Setting a breakpoint on some occurrence causes execution to stop when that occurrence
happens. For example, the following command causes execution to stop when B[2] enters
state ROOT.S1:
1150 User Guide

Tracer Commands
break B[2] stateEntered ROOT.S1

Saving Breakpoints

To save breakpoints, write them to a file (for example, myBreakPoints.cfg). After you have
saved them, you can reinsert them next time you run the application by typing the following
command:

input myBreakPoints.CFG

CALL

Description

The CALL command starts an operation call in animation or tracing. TestConductor can use
this command to launch operations.

See Calling Animation Operations for more information on calling operations during animation.

Syntax

[Object name]->CALL([operation call]
[, signature (optional)])

Arguments

operation call

If the operation is static, this is the class name. Otherwise, it is the name of the object that
performs the call. The format is as follows:

[method name]([list of argument values])

signature

Specifies the signature of the operation. This optional argument is used to distinguish between
overloaded functions. For example:

a->CALL(f(5, "Hello"),f(int,char*))

Examples

A[0]->CALL(f(5))

Invokes f(5) on the object A[0]

A->CALL(g("Hello, World!"))

Invokes g(char*) on the object A

Notifications

The following table lists sample notifications.
Rational Rhapsody 1151

Tracing
Action Message Format

The operation will
be called when the
application
resumes.

Message: <CALL command> sent.

For example:

Message: Utility->CALL(sq(2)) sent.

The operation
returned, and there
is a return value.

<CALL command> returned <return value>

For example:

Utility->CALL(sq2)) returned 1.41421.

No matching
operation is found.

Unable to perform <CALL command>, no matching operation
found.

For example:

Unable to perform a->CALL(f()), no matching operation
found.

More than one
matching operation
is found.

Unable to perform <CALL command>, more than a single
matching operation found.

For example:

Unable to perform a->CALL(f(5)), more than a single
matching operation found.

Note that this can happen only if you use the command-line interface and do
not specify the signature. If you use the window, this message will never be
displayed because the window always fills in the signature.
1152 User Guide

Tracer Commands
display

Description

The display command switches the animation mode to “silent.”

Syntax

display

GEN

Description

The GEN command enables you to generate an event to an object in the executable. The
command can be executed with or without parameters.

Syntax

<instanceName>->GEN(<eventName>(<parameterName>
[, <parameterName>]*))

<instanceName>->GEN(<eventName>())

<instanceName>->GEN(<eventName>)

Arguments

instanceName

Specifies the canonical name of an instance or a navigation expression.

A canonical name can be:

� The name of the class, if the class is a singleton class (for example, A)
� The name of the class followed by a subscript, if the class has multiple instances

(for example, B[2])
� instanceName->CompositeRelation (for example,

B[2]->itsC[3])
A navigation expression can be:

� ClassName[#multiplicity] for a non-singleton class (for example, B[#2])
� instanceName->Relation[#multiplicity] (for example, B[2]-

>itsC[#3])
A canonical name always refers to the same instance. A navigation expression can refer to
different instances at different times. For example, B[#0] might refer to instance B[4] if
instances B[0] to B[3] are deleted.
Rational Rhapsody 1153

Tracing
eventName

Specifies the name of the event to be generated. If the event requires parameters, include them
in the GEN command.

If an event has parameters, the GEN command provides the event with the correct number of
parameters and the correct types. For example, to generate an event, X where X is defined as
X(int, B*, char*), and B is a class defined in Rational Rhapsody, enter:

A[1]->GEN(X(3,B[5],"now"))

or

A[1]->GEN(X(1,NULL,"later"))

When the parameters of an event are not pointers to classes defined in Rational Rhapsody (for
example int, char*, or userType (where userType is a user-defined type defined outside
Rational Rhapsody), the tracer relies on the C++ operator >> (istream&) or the template
string2X(T& t) to interpret the characters you type in correctly. A[1]->GEN(Y(1)) works
because the operator >> converts the character 1 to the integer 1, but
A[1]->GEN(Y(one)) does not work because the operator >> does not convert the characters
“one” to an integer. Similarly, if you use a type you defined outside Rational Rhapsody, you
should provide an operator >> operation for it if you want to generate events to it via the tracer.

go

Description

In Rational Rhapsody, go commands advance the application one or more steps. In the tracer,
use go commands at the command-line. From the animator, you can type go commands at the
command-line or use the Animation toolbar.

A go command causes the tracer to execute immediately, even in the middle of reading
commands from a file. The remaining (unread) lines are used as commands the next time the
tracer stops the execution and searches for commands.

If the application reaches a breakpoint, control might return to you before a go command is
complete.

There are four go commands:

� go executes your application until it terminates or reaches a breakpoint
� go step executes your application for a single step (that is, until the next Rational

Rhapsody-level occurrence)
� go next executes your application until the next Rational Rhapsody-level

occurrence
1154 User Guide

Tracer Commands
� go event executes your code until the next dispatching of an event, or until the
executable is idle

� go idle executes your application until it reaches an idle state where it is waiting
for timeouts or events from GUI threads

See also Notes on Multiple Threads.

Syntax

go

go step

go next

go event

go idle

help

Description

The help command displays a brief description of tracer commands.

Syntax

help

input

Description

The input command causes the tracer to read its next command from the specified
destination. Once the tracer reaches the end of an input file, it looks to standard input for
commands. However, specifying a “+” in the command causes the tracer to resume taking
commands from the destination file after it reaches the end-of-file.

Syntax

input [+] <destination>

Arguments

destination

Specifies the destination, either standard input (for example, cin) or a file name.

Only standard input or the name of the current file can appear without the plus sign (+).
Rational Rhapsody 1155

Tracing
LogCmd

Description

Traces an animation session and saves the sequence of actions for reuse. Note that this
command is not case-sensitive.

Syntax

LogCmd [+/-] <filename>

Arguments

filename

The name of the file to which to write the commands

Example

To write the commands to the file myScript.txt, use the following command:

 LogCmd + myScript.txt

To stop writing commands to the file, use the following command:

 LogCmd -
1156 User Guide

Tracer Commands
output

Description

The output command directs tracer output to the specified destination.

Syntax

output <+/–> <destination>

Arguments

+

A plus sign (+) adds the specific destination to a list of destinations. Output goes to all items
specified on this list.

-

A minus sign (–) removes the destination from the list of destinations. Messages will no longer
be sent to this destination.

destination

Specifies the destination, either standard output (for example, cout) or a file name.

If the specified file cannot be opened, the tracer displays an error message and does not add the
file to the list of destinations.

The default destination list contains standard output only.

quit

Description

Ends the tracer session.

Syntax

quit
Rational Rhapsody 1157

Tracing
resume

Description

The resume command resumes the specified thread, if it has been suspended. It has no effect
if the thread is already active.

Syntax

resume threadName

resume #Thread threadName

Arguments

threadName

Specifies the thread to resume

set focus

Description

The set focus command sets the specified thread to be the focus thread.

By default, tracing starts with mainThread in focus. The focus changes in the following
cases:

� You enter a set focus command.
� A thread encounters a breakpoint and stops the application, in which case it

becomes the current thread.
� The focus thread died (the active instance to which it belonged was deleted). In

this case, the tracer set focus on one of the remaining threads. The selection is
random, but if there are nonsuspended threads, one of these is selected.

Syntax

set focus <threadName>

set focus #Thread <threadName>

Arguments

threadName

Specifies the new focus thread
1158 User Guide

Tracer Commands
show

Description

The show command enables you to view the current status of an object. It enables you to view
the status of the object by subject. Subjects include existence, attributes, methods and events.

For example, the following command displays a list of all B[5] attributes and their current
values:

show B[5] attributes

Syntax

show <object> <interest-list>

Arguments

object

Specifies the object to be traced. It can be one of the following items:

� The name of a class appearing in code, such as A. The trace command is applied to
all instances of class A.

� The name of an instance that currently exists in the execution, such as A[3]. You
cannot refer to instances before their construction or after their destruction.

� A navigation expression, such as A[3]->itsB[2]. See Navigation Expressions
for more information.

� The name of a package appearing in the code. The tracer will report on all classes
in the package.

� A keyword understood by the tracer. These keywords are not case sensitive. The
possible keywords are as follows:

– #All means all classes appearing in code.
– #Breakpoints means the list of all breakpoints.
– #CallStack means operations currently on stack; that is, operations started

but not yet terminated, including behavior operations defined on transitions.
– #EventQueue means a queue of all pending events; that is, events sent but

not yet received.
– #Thread threadName->#CallStack means the call stack of the thread
threadName. (All operations that started on this thread but have not yet
terminated, including behavior operations defined on transitions).

– #Thread threadName->#EventQueue means the queue of all pending
events of the thread name threadName. (Events sent but not yet received.)

interest-list
Rational Rhapsody 1159

Tracing
Specifies the list of subjects, separated by a commas. The interest list determines what
information about the object is reported to you.

This list is optional; if you do not enter any subjects, the tracer reports on the existence of the
object only, as if you had executed the following command:

show <object> existence

The possible subjects are as follows:

The subject existence reports on the existence of the object.

The subject subclasses applies the trace commands to all of a class’s subclasses. It is
relevant only to class objects.

The following keywords can be used to define which objects to show (they are not case-
sensitive):

� #All shows the subjects in the interest list for all classes in code.
� #All events displays all the events recognized by the system. This is useful if you

forget the exact name of an event.
� #Thread threadName->#CallStack / #CallStack shows all operations currently

on stack on the thread threadName on the focus thread.
� #Thread threadName-># EventQueue/# EventQueue shows all events currently in

queue on the thread threadName on the focus thread.
� #Threads shows the status of all threads. Each live thread is displayed as either reactive

or suspended. One of the threads has an asterisk by its name, indicating it is the active
thread.

� #Breakpoints shows a list of currently active breakpoints.

existence constructors

relations destructors

attributes timeouts

states parameters

controls subclasses

methods threads

events
1160 User Guide

Tracer Commands
Examples

show A[0] states

Shows the current states of A[0].

show #all all

Displays all information about all instances.

show #Breakpoints

Shows all breakpoints.

show #Threads

Shows all threads.

Show MyClass relations

Shows all relations of all instances for every instance of MyClass.

Special Cases

Consider the following special cases when using the show command:

� Instance objects means only the relation, attribute, and state subjects are relevant.
� Class objects means showing a class displays a list of all instances belonging to that class.

If the interest list includes subclasses, the tracer also displays instances of subclasses. If
the interest list contains subjects relevant for instance objects, each displayed object also
displays itself with respect to these subjects.

For example, the command show A states results in the following code:

A[1]
A[2]
A[3]
A[1] currently in states
 ROOT
 ROOT.S1
 ROOT.S1.S2
A[2] currently in states
 ROOT
 ROOT.S7
 ROOT.S8
A[3] currently in states
 ROOT
 ROOT.S1
 ROOT.S1.S2
Rational Rhapsody 1161

Tracing
suspend

Description

The suspend command suspends the specified thread. It has no effect if the thread is already
suspended.

Syntax

suspend threadName

suspend #Thread threadName

Arguments

threadName

Specifies the thread to suspend

timestamp

Description

The timestamp command adds a timestamp to the output of a tracer session.

Syntax

timestamp <option>

Arguments

no <option>

A timestamp with no option formats the timestamp as HH:MM:SS.

-

The minus sign (–) option disables the timestamp.

raw

The raw option enables the timestamp as a cumulative counter, in milliseconds.

trace

Description

The trace command enables you to specify which subjects to trace for a given object (class,
instance, or keyword). Subjects include existence, attributes, methods, and events. You can
choose to trace all objects by one subject, one object by all subjects, or anything in between.
1162 User Guide

Tracer Commands
By default, the tracer traces all classes and instances, and does not trace system items (such as
call stacks and event queues), as though you had executed the following command:

trace #all all

In animation, by default, no items are traced, as though you had executed the following
command:

trace object nothing

Syntax

trace <object> <interest-list>

Arguments

object

Specifies the object to be traced. It can be one of the following items:

� The name of a class appearing in code, such as A. The trace command is applied to all
instances of class A.

� The name of an instance that currently exists in the execution, such as A[3]. You cannot
refer to instances before their construction or after their destruction.

� A navigation expression, such as A[3]->itsB[2]. See Navigation Expressions for more
information.

� The name of a package appearing in the code. The tracer will report on all classes in the
package.

� A keyword understood by the tracer. These keywords are not case sensitive. The possible
keywords are as follows:

– #All means all classes appearing in code.
– #CallStack means operations currently on stack; that is, operations started

but not yet terminated, including behavior operations defined on transitions.
– #Thread threadName->#CallStack means the call stack of the thread
threadName. (All operations that started on this thread but have not yet
terminated, including behavior operations defined on transitions).

– #EventQueue means a queue of all pending events; that is, events sent but
not yet received.

– #Thread threadName->#EventQueue means the queue of all pending
events of the thread name threadName. (Events sent but not yet received.)

– #Breakpoints means the list of all breakpoints.
interest-list

Specifies the list of subjects, separated by a commas. The interest list determines what
information about the object is reported to you.
Rational Rhapsody 1163

Tracing
The possible subjects are as follows:

The keywords all and nothing indicate all or none of these subjects.

Precede a subject with a plus (+) or minus (-) sign to add or subtract subjects from the current
interest list. If there is neither a + nor -, the subjects typed become the current interest list,
replacing any subjects previously selected.

The subject existence reports on the existence of the object.

The subject subclasses applies the trace commands to all of a class’s subclasses. It is
relevant only to class objects.

Command Semantics

You set or modify the interest list for a given object with the subjects that you list following
the name of the object.

Example 1

The following command sets the interest list of B[5] to relations:

trace B[5] relations

The tracer will now display a message every time a relation of object B[5] is modified. For
example:

OMTracer B[5] item A[7] added to relation itsA

Note that only messages regarding relations are displayed for B[5].

Example 2

The following trace command adds relations to the interest list of B[5]:

trace B[5] +relations

Other messages regarding B[5] are displayed or not depending on the value of the interest list
before the subject addition command was given.

Example 3

existence constructors

relations destructors

attributes timeouts

states parameters

controls subclasses

methods threads

events
1164 User Guide

Tracer Commands
The following trace command removes relations from the interest list of B[5]:

trace B[5] -relations

The effect of this command is that no message is displayed about the relations of object B[5].
Other messages regarding B[5] are displayed or not depending on the value of the interest list
before the command was given.

For the full list of messages by subject, see Tracer Messages by Subject.

Example 4

If all subjects in the interest list appear with a + or - sign, the interest list of the object is
modified. For example, the following command adds the subject relations to the interest list of
B[5] and removes the subject states:

trace B[5] +relations, -states

In contrast, the following command sets the interest list of B[5] to include exactly the
subject’s relations and states:

trace B[5] relations, states

Special Cases

Consider the following special cases when using the trace command:

� Class objects means class objects propagate their interest lists to all their current and
future instances. For example, the following command adds the relation subject to all
instances of class A:

trace A +relations

New instances of class A created after you execute this command also have relations added to
their interest list.

The subject subclasses is relevant only for class objects. It propagates the interest list in the
given command to all subclasses (recursively).

� #All means setting the interest list for the keyword #All sets the interest lists for all
classes in the executable. Modifying the interest list of #All modifies the interest lists of
all classes in the executable.

� #Thread <threadName>-># CallStack / #CallStack means for call stack objects, only
the parameter, method, constructor, and destructor subjects are relevant. Adding these to
the interest list will display method (operation), constructor, and destructor calls, with or
without parameters, even if the called item is not set to be traced.

� #Thread threadName->#EventQueue / #EventQueue means for event queue objects,
only the parameter, timeouts, and method subjects are relevant. Adding these to the
interest list will display events sent and received, with or without parameters, even if the
sending or receiving item is not set to be traced.
Rational Rhapsody 1165

Tracing
watch

Description

The watch command displays all information as changes occur.

Syntax

watch
1166 User Guide

Tracer Messages by Subject
Tracer Messages by Subject
The following table lists the possible tracer messages for each subject.

Subject Messages

Attributes XXX[1] Attribute Values:
J = 1
k = 3.4
b = 0x55f00b
myFoo = testA[12]

XXX[1] Attribute Values changed - new Values
J = 1
k = 3.5
b = 0x55f00b
myFoo = testA[12]

The following message can appear anywhere a piece of code has changed the
values of the attributes:
 State
 XXX[1] Entered state testA
 XXX[1] Exited state Kuku
All attribute values are displayed.
The sending and receiving of events by XXX[1] is determined by the interest list
of state or operations.

Constructors XXX[1] invoked YYY()

main() invoked YYY()
YYY() returned

Destructors XXX[1] invoked ~YYY()

main() invoked ~YYY()
~YYY() returned

Existence class XXX new instance XXX[1] created

instance XXX[1] deleted

Instances get their names from their class (X[1], X[2], and so on). Names are
unique. Once a name is used, it is not used by a new instance even if the original
instance no longer exists.
Instances with a No for existence are not traced for any other subject, and appear
in the tracer messages as untraced.

Instance Kuku[4] renamed testA[2].myKuku
This message displays only when Kuku[4] is connected via the composite
relation myKuku to testA[2].
Rational Rhapsody 1167

Tracing
Methods XXX[1] invoked YYY[2]->doIt(j=3, k = 4.3)

XXX[1] invoked YYY[2]->doIt(int, float)

main() invoked Kuku[1]->testA()
YYY[2]->doIt(j=3, k=4.3) returned

YYY[2]->doIt(int, float) returned
XXX[2] sent YYY[8] event start(
 starter = Kuku[8], times = 2)

XXX[2] sent YYY[8] event start(Kuku *, int)

Kuku[8] sent to itself Event
wakeup(time=10.5)

Kuku[8] sent to itself event tm(200)
 at ROOT.testA
YYY[8] received from XXX[2] event
 start(starter = Kuku[8], times = 2)

YY[8] sent XXX[2] event start(Kuku *, int)

Kuku[8] itself Event wakeup(time=10.5)

Kuku[8] received from itself event tm(200)
 at ROOT.testA

Parameters These messages indicate whether methods and events are displayed via their:
• Parameters

 For example:
 (doIt(j=3, k = 4.3),
 start(starter = Kuku[8], times = 2)

• Signature
 For example:
 (doIt(int, float), start(Kuku *, int))

When A sends something to B, the parameters in the send message depend on A
and the parameters in the receive message depend on B.

Subject Messages
1168 User Guide

Ending a Trace Session
Ending a Trace Session
End a tracing session by doing one of the following actions:

� Type quit and press the Enter key at the command-line.

� Click the Stop Make/Execution button on the Code toolbar.
� Select Code > Stop Execution.

Otherwise, the trace session ends automatically when the application terminates.

Relations A report on the status of all relations displays together with the notification
message on the creation of the new instance:
Relation itsFoo - Empty
Relation itsKuku - Kuku[1], Kuku[4], Kuku[2]
...
XXX[1] instance Kuku[7] added to relation
 itsKuku

XXX[1] relation itsFoo set to testA[2]
XXX[1] instance Kuku[7] removed from
 relation itsKuku
XXX[1] relation itsKuku cleared

Timeouts XXX[1] set tm(tttt) at ROOT.sss
XXX[1] cancelled tm(tttt) at ROOT.sss

Subject Messages
Rational Rhapsody 1169

Tracing
1170 User Guide

Managing Web-enabled devices
This section describes the process of managing Rational Rhapsody-built embedded software via
the Internet. It examines how, in the development process, to set components as Web-enabled, and
how, in the maintenance process, to monitor, control, and make changes to embedded software.
This section also includes how to specify preferences in the automatically generated Web pages,
which serve as an interface for updating or changing Rational Rhapsody-built software.

Note
The Webify Toolkit is supported only on Internet Explorer Version 5.0 or higher. See the
IBM Rational Rhapsody Readme file for the list of currently supported environments.

Use of Web-enabled Devices
Web-enabled devices contain Rational Rhapsody-built embedded software that you can monitor
and control remotely, in real-time, from the Internet. After assigning Web manageability to a
model’s elements and running the code for that model, Rational Rhapsody automatically generates
and hosts a Web site that accesses the application’s components through a built-in Web server. The
Web pages created by running Web-enabled Rational Rhapsody code serve as a graphical interface
for the management of embedded applications. By using the interactive functionality of this
interface, you can remotely control the performance of devices.

Although Web-enabling requires no knowledge of Web hosting, design, or development,
development teams that want to refine the capability or appearance of their Web interface can do
so using their favorite authoring tools.

Besides its ability to manage devices remotely, Web-enabling a device offers the following
benefits to the development process:

� Web browser serves as a window into the device, through which you look into the model
to see how a device will perform, eliminating the time-consuming development of writing
protocol and attaching hooks that report performance information.

� Graphical interface provides additional testing on-the-fly and debugging through visual
verification of the state of a device before shipping to a manufacturer.
Rational Rhapsody 1171

Managing Web-enabled devices
� Easily created interfaces, exposed via the Internet, serve as visual aids in collaborative
planning and engineering and provide a vehicle for rapid prototyping of an application
during development.

� Filtered views can focus customer-specific aspects of a model.
� Capability to refresh continuously only the changed values and statuses does not overtax

device resources.
To Web-enable software, you must perform several tasks from both the server side (in Rational
Rhapsody) and the client side (from the Web GUI). In Rational Rhapsody, you select which
elements of a model to control and manage over a network, and assign Web-enabling properties to
those elements, then generate the code for the model.

To manage the model from the Web GUI, navigate to the URL of the model. Pages viewed in a
Web browser act as the GUI to remotely manage the Rational Rhapsody-built device. You can
control and manage devices through the Internet, remotely invoking real-time events within the
device. Teams can use the Web-enabled access as part of the development process (to prototype,
test on-the-fly, and collaborate) or to demonstrate the behavior of a model.

Setting Model Elements as Web-Manageable
The first step in Web-enabling a working Rational Rhapsody model is to set elements of the model
for Internet exposure. Within a working Rational Rhapsody model, select which elements of the
device’s application that you want to control or manage remotely through a Web browser, and
assign Web-managed properties to those elements.

Note
You cannot webify a file-based C model.
1172 User Guide

Setting Model Elements as Web-Manageable
Limitations on Web-Enabling Elements

At the design level, you might find workarounds for building Web-managed models around
elements currently not supported by Web-enabling. The following table lists Rational Rhapsody
elements and whether they can be Web-enabled.

Note the following restrictions:

� You are limited to 100 Web-enabled instances per model. Depending on the element type,
enabling one element might enable multiple instances.

� Code generation for Web management is unavailable in Rational Rhapsody in Ada.
� C-style strings (char*) and RiCString types might cause memory leaks. Setting new

values for this type of string from the Web interface assigns newly allocated strings to the
attribute. Be sure to properly deallocate this memory. Note that OMString will not cause
memory leaks.

� C unions, bit fields, and enumerations are not supported.
� C++ templates and template instantiations are not supported.

Element Type Support and Restrictions

Attributes Supported types include char, bool, int, long, double, char *,
OMBoolean, OMString, RiCBoolean, and RiCString.
Arrays are not supported.
Attributes must have either an accessor or mutator, or both.

Classes Selected objects within classes must be set as Web-enabled. Web-
enabling a class does not Web-enable all the child objects of the class.

Native types Short and all unsigned types (unsigned char, unsigned int,
unsigned short, and unsigned long) are supported.

User-defined types Not supported.

Global variables Not supported.

Global functions Not supported.

Packages, components
and diagrams

Not supported.
Rational Rhapsody 1173

Managing Web-enabled devices
Selecting Elements to Expose to the Internet

The first step in Web-enabling a working Rational Rhapsody model is to set its components and
elements as Web-manageable. When considering which elements to Web-enable within a model,
keep in mind the current restrictions and limitations (see Limitations on Web-Enabling Elements).

To expose your model to the Web:

1. In the browser, navigate to Components > (component name) > Configurations. Choose
an active configuration belonging to an executable component.

2. In the Features window, click the Settings tab.

3. Select the Web Enabling check box. This enables Web-enabled code generation for the
configuration.

Note: You cannot webify a file-based C model.

4. Optionally, click the Advanced Settings button to set the Webify parameters. Rational
Rhapsody opens the Advanced Settings window.

This window contains the following controls:

� Home Page URL specifies the URL of the home page. The default value is as
follows:
cgibin?Abs_App=Abstract_Default

� Signature Page URL specifies the URL of the signature page. The default value
is sign.htm.

� Web Page Refresh Period specifies the refresh rate for the Web page, in
milliseconds. The default value is 1000 milliseconds.

� Web Server Port specifies the port number of the Web server. The default value
is 80.

Each of these parameters corresponds to a property under
WebComponents::Configuration. This enables you to save your updated settings
with every model, or change them by editing the property values.

5. Repeat Steps 1–4 for all the library components that contain Web-enabled elements.

6. Navigate to the elements within a package that you have decided to Web-enable.

7. Double-click the element to open its Features window.

8. Set the stereotype to «Web Managed». Do this for each element you want to view or control
from the Internet.
1174 User Guide

Setting Model Elements as Web-Manageable
If the element already has an assigned stereotype, you need to Web-enable it through a
property, as follows:

a. Right-click the element and select Properties.

b. Select WebComponents as the subject, then set the value of the WebManaged property
within the appropriate metaclasses to Checked.

Currently, the supported metaclasses for the WebComponents subject are Attribute,
Class, Configuration, Event, File, Operation, and WebFramework.

9. Generate the code for the model, build the application, and run it.
Rational Rhapsody 1175

Managing Web-enabled devices
Connecting to the Web Site from the Internet
Rational Rhapsody comes with a collection of default pages that serve as a client-side GUI to the
remote model. When you run a Web-enabled model, the Rational Rhapsody Web server
automatically generates a Web site, complete with a file structure and interactive capability. This
site contains a default collection of generated on-the-fly pages that refreshes each element when it
changes.

Navigating to the Model through a Web Browser

After generating, making, and running a Rational Rhapsody model with Web-enabled objects,
open Internet Explorer (version 5.0 or higher).

For Applications Running on Your Local Machine
In the address box, type the following URL:

http://<local host name>

In this URL, <local host name> is the “localhost,” machine name, or IP address of your
machine.

If you changed the Web server port using the Advanced Settings window, type the following URL:

http://<host name>:<port number>

By default, the Objects Navigation page loads in your Web browser.

For Applications Running on a Remote Machine or Server
In the address box, type the following URL:

http://<remote host>

In this URL, <remote host> is the machine name or IP address of the machine running the
Rational Rhapsody model.

If you changed the Web server port using the Advanced Settings window, type the following URL:

http://<remote host name>:<port number>

By default, the Objects Navigation page loads in your Web browser.
1176 User Guide

Connecting to the Web Site from the Internet
Troubleshooting Problems
If you have trouble connecting to a model through the Internet, verify the following items:

� You have IP access to the server you are trying to access.
� You have Web-instrumented the active component.
� You have Web-enabled the individual elements.
� By default, Web-enabled Rational Rhapsody models listen on port 80. Make sure you are

currently not running another HTTP protocol application listening on the same port,
including another Web-enabled Rational Rhapsody model, or personal Web server. Note
that several operating systems (for example, Solaris) do not allow access to port 80.
Assign a different port to the Rational Rhapsody model using either the Advanced
Settings window or the WebComponents::Configuration::Port property.

� A specific setting of Internet Explorer might cause the following behavior:

The right frame of the “Objects Navigation” page is empty, when it should show the
selected object.

To resolve this, in Internet Explorer, go to Tools > Internet Options > Advanced and
clear the Use Java2 for <applet> (Requires Restart) check box.

Connecting to Filtered Views of a Model
If you know the HTTP address of a filtered view of a model, you can initially connect to a model
through that view. If you want to monitor or control only certain behaviors of a device from one
tailored Web GUI page, you go directly to that page using this method. Rational Rhapsody does
not yet support access controls, so providing access to filtered views should be done for the sake of
convenience only, because it is not secure.

For information on filtering Web GUI views, see The Define Views Page.
Rational Rhapsody 1177

Managing Web-enabled devices
The Web GUI Pages

The default Rational Rhapsody Web server comes with a collection of pages, served up on-the-fly.
These pages populate dynamically and contain the status of model elements and present different
capabilities and navigation schemes.

The GUI includes the following pages:

� The Objects Navigation Page
� The Define Views Page
� The Personalized Navigation Page
� The Upload a File to Server Page
� The Statistics Page
� The List of Files Page

The Objects Navigation Page
The Objects Navigation page provides easy navigation to Web-exposed objects in a model by
displaying a hierarchical view of model elements, starting from top-level aggregates. By
navigating to, and selecting, an aggregate in the left frame of this page, you can monitor and
control your remote device in the aggregate table displayed in the right frame.

This page serves as an explorer-like GUI wherein aggregates appear as folders and correspond to
the organization of objects in the model. For information on reading and using aggregate tables,
see Viewing and Controlling of a Model via the Internet.

When you select an object in the browser frame, it is displayed in the right frame. The status and
input fields of objects in the selected aggregate populate the table dynamically. The left column of
the table lists the name of the Web-enabled object; the right column lists the corresponding
real-time status, input field, activation button, or folder of child aggregates. For information on
controlling a model through an aggregate table, see Customizing the Web Interface.
1178 User Guide

Connecting to the Web Site from the Internet
The following figure shows the Objects Navigation page.

The bottom frame in this page contains links to the other automatically generated pages of the Web
GUI to manage embedded devices. These links appear at the bottom of all subsequent pages of the
default Web GUI and can be customized with your corporate logo and links to your own Web
pages.
Rational Rhapsody 1179

Managing Web-enabled devices
The Define Views Page
The Define Views page, shown in the following figure, provides a GUI for filtering views into the
Rational Rhapsody model. These views can simplify monitoring and controlling maintenance and
help you focus on key elements of your models.

The Define Views page enables you to create and name a view of selected elements. The page
includes a list of check boxes beside all the available elements that can be included in the view,
1180 User Guide

Connecting to the Web Site from the Internet
and their corresponding element types. Click each element or aggregate to drill down to a
graphical representation of the element value, or its aggregate collection of name-value pairs.

To design a view:

1. Check the boxes beside each element you want to include in your view. To include all
elements, click Select All.

2. Type the name of your view in the Name of view box.

The Reset button clears the name you entered and all of your selections.

3. Click Submit.

The new view name displays at the bottom of the element table, next to its check box, with “view”
as its type.

Note
All views created from the Design View page store in memory and will not be saved when
you close Rational Rhapsody. See the example and readme file provided in <Rational
Rhapsody installation path>\MakeTmpl\Web\BackupViews.

The Personalized Navigation Page
The Personalized Navigation page, shown in the following figure, enables you to customize your
Web interface and add links to more information about your model. This page, conveniently
provided as an HTML page, can be opened and viewed for design testing.

Using this page, you can add hyperlinks to the bottom navigation of your Rational Rhapsody GUI,
such as a link to e-mail comments to a customer support mailbox. By default, the file includes two
links (to the Objects Navigation and Define Views pages) whose addresses are displayed within
anchor tags.
Rational Rhapsody 1181

Managing Web-enabled devices
To customize the bottom frame of the Web GUI:

1. If you need a general template to edit, right-click the bottom of the Rational Rhapsody
Web GUI, and grab the source code.

2. Design the page to your liking, adding your logo and links and adjusting the table structure
in the file to accommodate your changes.

3. Rewrite the default file with your own by uploading it to the Rational Rhapsody Web
server, either through the Rational Rhapsody interface or through the Upload a File to the
Server page. For more on uploading files to the Web server, see The Upload a File to
Server Page.

If you do not want to overwrite the default sign.htm file, do one of the following actions:

� Change the signature page using the Advanced Settings window or the property
WebComponents::Configuration::SignaturePageURL. This is the preferred method.

� Upload your own .html file to the Rational Rhapsody Web server and call your new file
from within the Rational Rhapsody Web configuration file by adding the following
function call:

SetSignaturePageUrl(<name of your new file>)
1182 User Guide

Viewing and Controlling of a Model via the Internet
Viewing and Controlling of a Model via the Internet
Controllers manage Rational Rhapsody-built devices through the Internet, remotely invoking real-
time events within the device. After Web-enabling, running a Rational Rhapsody model, and
connecting to the device in a Web browser, controllers can view and control a device through the
Rational Rhapsody Web GUI, using aggregate tables.

Aggregate tables contain name-value pairs of Rational Rhapsody Web-enabled elements that are
visible and controllable through Internet access to the machine hosting the Rational Rhapsody
model. Navigate to aggregate tables in the Rational Rhapsody Web GUI by browsing to classes
selected on the Objects Navigation page.

The following figure shows an example of the name-value pairs as they appear in an aggregate
table. This table shows the name of each element within the aggregates, and whether the values are
readable or writable.

You can monitor a device by reading the values in the dynamically populated text boxes and
combo-boxes. When a string value extends beyond the width of the text field, position the mouse
arrow over the text field to display a tooltip, as shown for the sendstring element.

You can control a device in real-time by clicking the Activate button, which initializes an event, or
by editing writable text fields (the text boxes that do not have a gray background). Note that an
input box displays a red border while being edited, indicating that its value will not refresh until
you exit the field.

The Web GUI uses different fields and folders to indicate types of values and their read and write
permissions. The following table lists the way name-value pairs are displayed.
Rational Rhapsody 1183

Managing Web-enabled devices
Customizing the Web Interface
You can customize the Web interface for a model by creating your own pages to add to their
Rational Rhapsody Web GUI, or by referencing the collection of on-the-fly pages that come with
Rational Rhapsody. In addition, you can configure the Rational Rhapsody Web server, giving it
custom settings appropriate for your management of a Web-enabled device.

Adding Web Files to a Rational Rhapsody Model

You can add your own HTML, image, multimedia or script files to the Rational Rhapsody Web
server file system from within the Rational Rhapsody application.

To upload the files to the Web server:

1. In the browser of a working Rational Rhapsody model, navigate to Components >
<Component Name> > Files.

2. Right-click the Files category.

3. Select Add New File. Type the name of the new file.

4. In the browser, right-click the file and select Features. Set the following controls:

� Name. Type in the name of your HTML file.

Name-Value Read/Write Indication

Numeric values Readable values dynamically populate the text box.
Write-protected values display in a text box with a gray background;
otherwise, the value is writable.
To send a changed value, type the value in the text box and either press
Enter or exit the box by clicking outside of it.

String values Readable values dynamically populate the text box.
Write-protected values display in a text box with a gray background,;
otherwise, the value is writable.
To send a changed value, type the value in the text box and either press
Enter or exit the box by clicking outside of it.

Boolean variable Writable values display in a combo-box containing True and False values.

Activation buttons Clicking these buttons initializes the corresponding event in the model.

Tan folders Denote child aggregates; clicking a folder displays the selected aggregate
within.

Blue folders Denote user-created views nested within aggregates; clicking a folder
displays the selected contents within.
1184 User Guide

Customizing the Web Interface
� Path. Type in, or browse to, the file you want to upload to the Web server.
� File Type. Set to Other.

5. Select the Properties tab.

6. Set the WebComponents::File::WebManaged File property to Checked.

7. Click OK.

8. Generate the code. Code generation converts the file to a binary format, and embeds it into
the executable file generated by Rational Rhapsody.

You can view Web files you have added to your model by going to the following URL:

http://<ip_address>/<filename>

Accessing Web Services Provided with Rational Rhapsody

Rational Rhapsody comes with a collection of generated on-the-fly Web pages for you to add to
your Web interface to help in the development process. At run time, these pages provide useful
functionality in the development process; however, easy access to them in deployment of devices
is not appropriate.

Note
If you need to generate the Web Services libraries for your target, see the IBM Rational
Rhapsody Readme file for your version of Rational Rhapsody to see the list of currently
supported environments for the Webify Toolkit. If the libraries you need do not exist in your
$OMROOT\lib directory, contact IBM customer support.

The following sections describe how to use, access, and link to each of these pages.
Rational Rhapsody 1185

Managing Web-enabled devices
The Upload a File to Server Page
You can upload your own HTML, image, multimedia or script files to the Rational Rhapsody Web
server through the Internet from the Upload a File to Server page.

Note
To enable this functionality, you must first add the RegisterUpload() call to the
webconfig.c file.

To navigate directly to the page, use the following URL:

 http://<ip_address>/cgibin?Abs_App=Abstract_Upload

To add this page into your Personal Navigation page, its open anchor tag should read as follows:

The following figure shows the Upload a File to Server page.

To upload a new file, or overwrite a file, to the Rational Rhapsody Web server using this page:

1. Type in the path, or browse, to the file.

2. Click Upload.

Note: This page should only be used by developers who understand the impact of
their uploads. The collection of on-the-fly services provided with the Rational
Rhapsody Web server are intended to assist as a development tool; easy access
to them in deployment of devices is not appropriate.
1186 User Guide

Customizing the Web Interface
For an example of the server settings for using this page, see <Rational Rhapsody installation
path>\Share\MakeTmpl\web\WebServerConfig\AddUploadFunctionality.

The Statistics Page
The Statistics page, shown in the following figure, tabulates page and file requests (“hits”) from
each machine accessing the model.

You can navigate directly to the page by going to the following URL:

http://<ip_address>/cgibin?Abs_App=Statistic

To add this page into your Personal Navigation page, its open anchor tag should read as follows:

Rational Rhapsody 1187

Managing Web-enabled devices
The List of Files Page
This List of Files page, shown in the following figure, lists all the text and graphic files that come
with the default Web GUI that generates automatically when running a Web-enabled Rational
Rhapsody model.

You can navigate directly to the page by going to the following URL:

http://<ip_address>/cgibin?Abs_App=Abstract_DIR

To add this page into your Personal Navigation page, its open anchor tag should read as follows:

The list includes the size, in bytes, and type of each file, and displays the total size of all included
Web GUI files.
1188 User Guide

Customizing the Web Interface
Files labeled as “RES” denote code segments; files labeled “FS” denote those stored in the file
system.

To use the signEnhanced.htm navigation page, rename the page sign.htm.

Adding Rational Rhapsody Functionality to Your Web Design

You can completely change the layout and design of the Web interface to your Rational Rhapsody
model and still have all the functionality provided, by default, when running a Web-enabled
Rational Rhapsody model. You can create an interface that refreshes changed element values in
real time, and provide the same interactive capabilities to remotely control and monitor a device.

Calling Element Values
After designing a static version of your HTML page, using placeholders for element values, you
can overwrite each placeholder text with script that will call the values of each element
dynamically from your uploaded page.

1. If you want to design the layout of your page first, design your Web page, leaving static
text as a placeholder for a dynamic value.

2. Edit your HTML file, including the manage.inc file in the header of the HTML file in
script tags before the </head> tag:

<head>
<title>Your Title Here</title>
<script src='manage.inc'></script>

</head>

The manage.inc file includes a collection of JavaScript files that control client-side
behavior of the Rational Rhapsody Web interface.

3. Edit your HTML file, substituting function-calling script for each static value placeholder.

For example:

<body>value of evStart</body>

This becomes:

<body><script>show(‘nameOfElement’)</script></body>

In this sample code, nameOfElement is the element name assigned to the element by
Rational Rhapsody, visible in the default Web interface. Be sure to use the full path
name of the element in the show function, as in the following example:

 show('ProcessController[0]::OMBoolean_attribute');

4. Save the file and upload it to the Rational Rhapsody Web server (see Adding Web Files to
a Rational Rhapsody Model).
Rational Rhapsody 1189

Managing Web-enabled devices
You can link to this file in your Web interface from your new design scheme. If you want to make
a page the front page of your Web GUI, see Setting a Home Page. Keep in mind that Rational
Rhapsody does not yet support a hierarchical file structure, so HTML and image files are at the
Web server’s root directory.

Binding Embedded Objects to Your Model
Using this design method, you embed graphical elements in your Web page as JavaScript objects,
then bind those objects to the Rational Rhapsody model’s real-time values. By binding embedded
graphics and mapping them to the values of Web-enabled elements, you can create a page where
an image is displayed in the Web interface when a process has stopped (for example, a stop sign),
whereas another indicates that the process is running (such as a green light).

One approach to making such pages is to design a page with all your static elements, then add
script to your HTML:

1. Edit your HTML file, including the manage.inc file in the header of the HTML file in
script tags before the </head> tag:

<head>
<title>Your Title Here</title>
<script src='manage.inc'></script>

</head>

The manage.inc file includes a collection of JavaScript files that control client-side
behavior of the Rational Rhapsody Web interface.

2. To embed model elements in the page, create JavaScript objects of the WebObject type
and bind each object with the elements of the device you are managing and controlling
through the Internet, using the bind function.

The following sample code displays a yellow lamp when a Boolean element’s value is true, and a
red lamp when the value is false:

<html><head><title>Page Title</title>
<script src='manage.inc'></script>
<script>
function updateMyLamp(val)
{

if (val == 'On')
{

document.getElementById(‘myImage’).src = 'redLamp.gif';
}
else
{

document.getElementById(‘myImage’).src = 'yellowLamp.gif';
}

}
</script>
</head>
<body>
<script>
var lamp = new WebObject;
bind(window.lamp,
1190 User Guide

Customizing the Web Interface
 'ProcessController[0]::OMBoolean_attribute');
lamp.update = updateMyLamp;
</script>

<hr noshade>
<i>Rotate the bool values here<i>
<script>show('ProcessController[0]::rotate');</script>
</body>
</html>

The declaration of the object and binding takes place in the header of the document, between the
second pair of script tags.

The bind function serves as a bridge between the element values in the model and the Web
interface. It takes two arguments, the variable name of the JavaScript object (lamp in the example)
and the name of the model element in Rational Rhapsody (ProcessController[0]::rotate in
the example).

In the example, the following line refreshes updated model values in the Web GUI:

lamp.update = updateMyLamp;

This update function accepts one argument, which is the new value of the element.

If a GUI control in the page needs to pass information to the device, call the set method of the
corresponding object. The set method accepts one argument, the newly set value.

Calling Model Functions
In addition to the ability to display attribute values on your custom Web pages, you can add to Web
pages the ability to call functions in your model.

To allow a Web page to call a function from your model, make the following changes to the page:

1. Declare a new variable as a WebObject.

2. Call the bind function, providing the variable name and the name of the function from
your model as parameters.

3. Add a link or other control to call the set() function for the new variable.

The following code snippets reflect these steps:

<script>

var play = new WebObject;

bind(window.play, 'CDPlayer[0]::playCD');

</script>

<p></p>
Rational Rhapsody 1191

Managing Web-enabled devices
In this example, CDPLayer[0] represents the relevant object in the model, and playCD is the name
of the operation that is to be called.
1192 User Guide

Customizing the Web Interface
Customizing the Rational Rhapsody Web Server

You can customize the Rational Rhapsody Web server in two ways:

� Using the Advanced Settings window
� Editing the webconfig.c file

To customize the Rational Rhapsody Web server, you can modify the webconfig.c file and add
that file to your Web-enabled Rational Rhapsody model. The webconfig.c file is located within
your Rational Rhapsody installation directory in Share\MakeTmpl\Web. The file is clearly
commented before each function. To change the Web server settings, edit the argument of the
function to the appropriate setting.

Because other models will use this file to configure Web server settings, copy the file to another
directory within your Web-enabled project, for example, and edit that copy of the webconfig.c
file. In the process of customizing your Web server, be sure to add it to the configuration of your
active component from within the Rational Rhapsody interface.

To add the modified webconfig.c file to your Web-enabled model:

1. In the browser of a working Rational Rhapsody model, navigate to Components >
<Component Name> > Configurations. Select the active configuration.

2. On the Features window, on the Settings tab, in the Additional Sources box, type the
location of the modified webconfig.c file.

The kit includes examples in the <Rational Rhapsody installation
path>\Share\MakeTmpl\web\WebServerConfig directory.

Note
If you customize your Web server using the webconfig.c file, your changes will overwrite
the properties set in the Advanced Settings window.

Setting a Device Name
To change the name of a device, modify the argument to the SetDeviceName method.

For example, to change the setting of the device name to “Excellent Device”, modify the call as
follows:

SetDeviceName("Excellent Device");

See <Rational Rhapsody installation path>\Share\MakeTmpl\web\WebServerConfig\
ChangeDeviceName for an example.
Rational Rhapsody 1193

Managing Web-enabled devices
Setting a Home Page
To change the setting of the home page to index.htm, the function and argument should read as
follows:

SetHomePageUrl("index.htm");

Setting a Personalized Bottom Navigation
There are two ways to personalize the bottom navigation page:

� Overwrite the sign.htm file with your changed design and upload it to the Rational
Rhapsody Web server (see The Personalized Navigation Page).

� Use a function in the webconfig.c files to use another file for personalized bottom
navigation.

For example, to change the page name of the bottom navigation page to navigation.htm,
the function and argument should read as follows:

SetSignaturePageUrl("navigation.htm");

Setting a Port Number
By default, the Rational Rhapsody Web server listens on port 80. To change the port number,
change the argument to the SetPropPortNumber method.

For example, to change the port number to 8000, use the following call:

SetPropPortNumber(8000);

Setting an Automatic Refresh Rate
To change how frequently the Rational Rhapsody Web server refreshes changed values, use the
SetRefreshTimeout function. The argument to this function holds the refresh rate, in
milliseconds.

For example, to change the refresh interval to every 5 seconds, use the following call:

SetRefreshTimeout(5000);

See <Rational Rhapsody installation path>\Share\MakeTmpl\web\WebServerConfig\
ChangeRefreshRate for an example.

Enabling File Upload
To enable the file upload capability, add the RegisterUpload function to the webconfig.c file.
This function takes no arguments.

See <Rational Rhapsody installation path>\Share\MakeTmpl\web\WebServerConfig\
AddUploadFunctionality for an example.
1194 User Guide

Reports
Rational Rhapsody offers two ways to generate reports from the models, charts, the generated
code, and other items:

� A simple and quick internal RTF report generator, described in The internal reporting
facility.

� A more powerful reporting tool, Rational Rhapsody ReporterPLUS

ReporterPLUS
ReporterPLUS produces reports that are suitable for formal presentations and can be output in any
of these formats:

� HTML page

� Microsoft Word
� Microsoft PowerPoint
� RTF (.rtf)
� text (.txt)

You can save the file and view it in any program designed to display the report’s format. See
Viewing reports online for more information.

ReporterPLUS creates documents using these techniques:

� Extracting text and diagrams from a model created in Rational Rhapsody.
� Adding text and diagrams from the model and images to the document. (Note that text files

do not include diagrams.)
� Adding boilerplate text specified in the ReporterPLUS template to the document.
� Formatting the document according to the formatting commands in the ReporterPLUS

template, as well as the specifications in a Word template (.dot file), a PowerPoint
template (.pot file), or an HTML style sheet (.css file). Using a .dot, .pot, or .css file
is optional. You can also use HTML tags to format HTML documents.
Rational Rhapsody 1195

Reports
Launching ReporterPLUS

To start ReporterPLUS from inside of Rational Rhapsody, select Tools > ReporterPLUS. This
menu displays options for printing the model currently displayed in Rational Rhapsody.

The Report on selected package option is unavailable from this menu unless a package in the
model is highlighted in the Rational Rhapsody browser. If one of the first two items is selected, a
report can be generated using a predefined template without displaying the main ReporterPLUS
GUI. If the last option is selected, ReporterPLUS starts with no model elements imported.

To start ReporterPLUS from outside of Rational Rhapsody, from the Windows Start menu, select
All Programs > IBM Rational > IBM Rational Rhapsody version number > Rational
Rhapsody ReporterPLUS version number > Rational Rhapsody ReporterPLUS version
number.

ReporterPLUS templates

Rational Rhapsody includes numerous pre-fabricated report templates that you might want to use
as they are or customize to meet your needs.

Note
These files are stored in the Rational Rhapsody\reporterplus\Templates directory.

Using the ReporterPLUS interface
Rational Rhapsody models can be loaded into the ReporterPLUS interface and used to create
generic or model-specific templates. This interface allows you to create and modify templates
graphically using a drag-and-drop method.

To use the ReporterPlus templates with your model:

1. Start Rational Rhapsody if it is not already started and display the project for which you
need a report.

2. Select Tools > ReporterPLUS > Create/Edit template with ReporterPLUS.

3. The ReporterPLUS interface opens with a Tip of the Day window. Close it.

4. Then the ReporterPLUS Wizard window displays. Click Cancel.

5. The project model’s details are listed in ReporterPLUS’ upper left corner as shown in this
example.
1196 User Guide

ReporterPLUS
6. Highlight an item in the model and the detailed description of that item displays to the
right, as shown in this example.
Rational Rhapsody 1197

Reports
Examining pre-fabricated templates
To examine the pre-fabricated Rational Rhapsody templates:

1. From the ReporterPLUS menu, choose File > Open Template. This displays all of the
existing Rational Rhapsody report templates.

Note
The GetStarted.tpl is a simple template to use when you are becoming familiar with this
reporting tool.

2. Select a template from the list. The structure of the selected template displays in the lower
left corner. This structure uses a standard Windows tree design.

3. Highlight an item in the tree structure and view the details of that item in the window to
the right.
1198 User Guide

ReporterPLUS
Customizing templates
To customize an existing template for your Rational Rhapsody project:

1. Display your Rational Rhapsody model in ReporterPLUS.

2. From the ReporterPLUS menu, choose File > Open Template.

3. Select the template from the list that most closely resembles the type of report you want to
generate. The structure of the selected template displays in the lower left corner.

4. An easy method for customizing the generic template for your project is to drag an item
from your model down to the template area and drop it in the intended location.

5. You might also want to add standard headings and text to an existing template. To add this
“boilerplate” material, highlight a section of the template in the lower left window and
click the Text tab in the lower right window. Type text in the Heading and Body sections
as wanted.

6. For more complex changes, study the Q Language that ReporterPLUS uses to define
report expressions. This language is defined in a PDF file accessed from ReporterPLUS
Help Topics.
Rational Rhapsody 1199

Reports
Generating reports using existing templates

To generate reports quickly from the Rational Rhapsody interface using templates you have
examined or created previously in ReporterPLUS:

Note
If you are going to generate a report in Microsoft Word or PowerPoint, be certain that Word
and PowerPoint are closed before you start this procedure to avoid a conflict between
ReporterPLUS and the Microsoft program.

1. With your project open in Rational Rhapsody, choose Tools > ReporterPLUS.

2. From the next menu, select one of these two options:

� Report on all model elements
� Report on selected package

3. Rational Rhapsody displays the ReporterPLUS Wizard that allows you to select the
intended output format and on subsequent windows, the template, and directory location
and name for the finished report.

Note
However, if your project model is very large, you should generate the report from
ReporterPLUS interface for a more rapid generation.
1200 User Guide

ReporterPLUS
Viewing reports online

After creating reports using ReporterPLUS templates and facilities, follow these guidelines for
viewing the reports online:

� For reports generated in Linux, view the HTML reports in Mozilla Firefox and the RTF
reports in Open Office 2.0 or higher.

� For reports generated in Windows, view HTML reports in any standard browser available
on the PC and for the other report formats, the appropriate programs for viewing these
reports launch when the report files are clicked to launch.

Generating a list of specific items

If during development you want to generate a list of items, such as all of the ports using an
interface, you can focus the generated report on that section of the model.

To generate a list of specific items in a model:

1. Display the model in Rational Rhapsody.

2. In the browser, select the section of the model containing the specific items that you need
in a list.

3. Select Tools > ReporterPLUS > Report on selected package.

4. Select the template you want to use for the report and generate and save the report.

Using the system model template

ReporterPLUS includes a template designed for systems engineering called SysMLreport.tpl. To
use this template for your report:

1. With your model displayed in the Rational Rhapsody interface, select Tools >
ReporterPLUS from the menu.

2. From the next menu, select Create/Edit template with ReporterPLUS.

3. Your model displays in the upper left corner of the ReporterPLUS interface.

4. Choose File > Open Template.

5. Select the SysMLreport.tpl and use it to produce a report for your model. You might
want to change the template to meet your specific needs.
Rational Rhapsody 1201

Reports
Report layout
The main elements of each section are shown along with their page locations and are hyperlinked.
The generated report contains the following sections covering the complete SysML profile:

� Requirements diagrams
� Use case diagrams
� Sequence diagrams
� Structure diagrams
� Object model diagrams
� Internal and External block diagrams
� Parametric diagrams
� Data dictionary
� Model configuration

The report template uses the standard SysML features built into your model when you select the
SysML project Type when you first created your project. This selects the SysML profile with the
predefined diagrams needed for systems designers.

Requirements diagrams
For any requirements diagrams, the SysMLreport.tpl supplies hyperlinks to the location of the
definition of any use cases, actors, packages, classes or blocks shown in the diagram. Each
requirement must have a Stereotype setting so that the reporting feature can extract the
requirements data.
1202 User Guide

The internal reporting facility
The internal reporting facility
The internal reporting facility is particularly useful for quick print-outs that the developer needs to
use for debugging the model. The reports are not formatted for formal presentations.

Producing an internal report

To create a report using the simple, internal reporter, select Tools > Report on mode. The Report
Settings window opens, as shown in the following figure.

The window contains the following fields:

� Report Options specifies which elements to include in the report. The possible values are
as follows:

– Include Relations include all relationships (associations, aggregations, and
compositions). By default, this check box is selected.

– Include Subclasses list the subclasses for each class in the report. By default,
this check box is selected.

� Scope specifies the scope of the report. The possible values are as follows:
– Selection includes information only for the selected elements.
– Configuration includes information for all elements in the active component

scope. This is the default value.
Rational Rhapsody 1203

Reports
� Operations specifies which operations to include in the report. The possible values are as
follows:

– All includes all operations. This is the default value.
– Public includes only the public operations.

� Attributes specifies which attributes to include in the report. The possible values are as
follows:

– All includes all attributes. This is the default value.
– Public include only the public attributes.

� Include Statechart means if the project has a statechart, this option specifies whether to
list the states and transitions in the report. By default, this check box is selected.

� Include Method’s Body specifies whether to include the code for all method bodies in the
report. By default, this check box is selected.

� Include Types specifies whether to list the types in the report.By default, this check box is
selected.

� Include Use Case specifies whether to list the use cases in the report. By default, this
check box is selected.

� Include Actors specifies whether to list the actors in the report. By default, this check box
is selected.

� Include Diagrams specifies whether to include diagram pictures in the report. By default,
this check box is cleared.

� Include Components specifies whether to include component information
(configurations, folders, files, and their settings) in the report. By default, this check box
is cleared.

� Include Derived Operations specifies whether to include generated operations (when the
property CG::CGGeneral::GeneratedCodeInBrowser is set to Checked). By default, this
check box is cleared.

� Include Overridden Properties specifies whether to include properties whose default
values have been overridden. By default, this check box is cleared.

To generate the report, select the appropriate values, then click OK to generate the report. The
report is displayed in the drawing area with the current file name in the title bar.
1204 User Guide

The internal reporting facility
Setting the RTF character set

For RTF output from the Rational Rhapsody internal reporter, you can define the necessary
character set using the General::Report::RTFCharacterSet property.

This character set is used in the RTF multi-language and description styles for the Name Label
and Description fields of the report. The RTF file created by the Rational Rhapsody internal
reporter must be included as a specific character set for each language. For example, set this
property can be set to \fcharset128 for Japanese.

The default value (an empty string) preserves the current behavior.

Using the internal report output

When you generate a report in Rational Rhapsody using Tools > Report on model, the initial
result uses the internal RTF viewer. To facilitate the developer’s research, this output can be used
in the following ways:

� To print the initially generated report, choose File > Print.
� To locate specific items in the report online, choose Edit > Find and type in the search

criteria.
� The initially generated report is only a view of the RTF file that the facility created. This

file is located in the project directory (parallel to the.rpy file) and is named
RhapsodyRep<num>.rtf. If you want, open the RTF file using a word processor that
handles RTF format, such as Microsoft Word.
Rational Rhapsody 1205

Reports
1206 User Guide

Java-specific issues
This section covers Java-specific issues including Javadoc and the Rational Rhapsody
JavaDocProfile.

Generation of Javadoc comments
Rational Rhapsody provides a mechanism for including Javadoc comments when code is
generated for models developed in Rational Rhapsody for Java.

In general, the Javadoc generation mechanism is based on the following items:

� Rational Rhapsody properties called DescriptionTemplate for elements such as classes
and operations. The content of these properties determines the appearance of the
generated Javadoc comments.

� Automatic retrieval of Rational Rhapsody element fields that correspond to Javadoc tags,
such as descriptions and operation arguments

� Special tags and corresponding keywords that can be used for standard Javadoc tags that
do not have corresponding Rational Rhapsody elements, for example, @version.

Including Javadoc comments in Rational Rhapsody-generated code

Javadoc comment generation is available, by default, for Java developers’ Rational Rhapsody
projects.

To have Javadoc comments included, just generate code as you normally would.

In the generated code, you should see Javadoc comments based on the descriptions you have
provided for model elements. Comments for operations will also include any descriptions you
have provided for operation arguments.

If you do not see such comments in your code, open the Features window for the configuration you
are using, and verify that the Generate JavaDoc Comments check box on the Settings tab is
selected. If this option is selected, and you still do not see Javadoc comments in your generated
code, read the suggestions listed in Javadoc troubleshooting.
Rational Rhapsody 1207

Java-specific issues
In addition to generating these basic Javadoc comments, you can have Rational Rhapsody include
the following standard Javadoc tags: author, deprecated, return, see, since, version. To include
these Javadoc tags in your generated code:

1. Open the Features window for a model element that you want to document.

2. Add Javadoc content by providing values for the various tags displayed on the Tags tab.

3. Repeat this process for each model element you want to document.

4. Generate the code.

Once your code includes Javadoc comments, you can generate a Javadoc report using the standard
Javadoc process (see Javadoc Tool home page).

Changing the appearance of Javadoc comments in generated code

The appearance of Javadoc comments in the generated code is determined by the documentation
templates defined using the various DescriptionTemplate properties.

To change these templates:

1. Examine the content that JavaDocProfile provides for the various DescriptionTemplate
properties.

2. Modify the values of these properties to match the appearance you would like.

When making changes to these properties, keep in mind the following items:

� Use new lines to indicate where you would like Rational Rhapsody to begin a new line.
You can only see such line breaks by using the .. button to open the text editor for the
property.

� As you will notice in the default content that JavaDocProfile provides for the
DescriptionTemplate properties, you can use the characters [[]] in your template
definitions. If you enclose part of the definition in these brackets, Rational Rhapsody will
only generate the relevant Javadoc tag, for example, @version, if content has been
provided for that tag for the element in question.

Enabling/disabling Javadoc comment generation

For new Java projects, Javadoc comments are generated automatically.

To disable Javadoc generation:

1. Open the Features window for the relevant configuration in your model.

2. On the Settings tab, clear the Generate JavaDoc Comments check box.
1208 User Guide

http://java.sun.com/j2se/javadoc/index.jsp

Generation of Javadoc comments
Note
When you clear/select the Generate JavaDoc Comments check box, it changes the value
of the boolean property CG::Configuration::UseDescriptionTemplates.

To enable the generation of Javadoc comments for existing projects:

1. Open the project in Rational Rhapsody.

2. Add the JavaDocProfile to your project.

"Built-in" keywords

The content that JavaDocProfile provides for the DescriptionTemplate properties contains the
following keywords that do not have corresponding Rational Rhapsody tags in the profile.

� $Description represents the description of the corresponding model element.
� $Name represents the name of the corresponding model element.
� $Arguments represents the Javadoc content generated for operation arguments on the basis

of the property JAVA_CG::Argument::DescriptionTemplate.

Description templates in JavaDocProfile

JavaDocProfile provides Javadoc templates for the following properties:

� JAVA_CG::File::Header

� JAVA_CG::Package::DescriptionTemplate

� JAVA_CG::Class::DescriptionTemplate

� JAVA_CG::Event::DescriptionTemplate

� JAVA_CG::Attribute::DescriptionTemplate

� JAVA_CG::Relation::DescriptionTemplate

� JAVA_CG::Operation::DescriptionTemplate

� JAVA_CG::Argument::DescriptionTemplate

Multiple appearance of Javadoc tags

You might want to have certain Javadoc tags appear a number of times for a single element. For
example, you might want to have @author appear a number of times for a single class that was
written by a number of individuals.

In such a case, when assigning a value to the relevant Rational Rhapsody tag, add @author before
each name except for the first.
Rational Rhapsody 1209

Java-specific issues
Adding new Javadoc tags

The Javadoc generation mechanism allows you to define new Javadoc tags that you would like to
use. To define a new Javadoc tag:

1. Create a writable copy of the JavaDocProfile profile by selecting File > Add to Model,
and then selecting the file <Rational Rhapsody installation path>\Share\
Profiles\JavaDoc\JavaDocProfile.sbs (When Rational Rhapsody indicates that the
profile already exists in the model, select the Replace Existing Unit option.)

2. Create a new Rational Rhapsody tag in your profile. When you create the new tag, select
the appropriate item from the Applicable To list.

3. Modify the value of the DescriptionTemplate property for the relevant type of element.
Use $<tagname> to have Rational Rhapsody include the tag text in the Javadoc comment.

4. Open the Features window for specific elements of the relevant type, and on the Tags tab
provide a value for the new Rational Rhapsody tag you have added.

Example:

1. Create under your profile a new tag called codeReviewer. From the Applicable to list,
select Class.
1210 User Guide

Generation of Javadoc comments
2. For the JAVA_CG::Class::DescriptionTemplate property, add the following to the
property value: [[* @codeReviewer $codeReviewer]]

3. For one or more of the classes in your model, open the Features window, and on the Tags
tab, enter Steve for the value of the tag codeReviewer.

When you generate code for your model after these changes, the Javadoc comments for these
classes will include @codeReviewer Steve.

Javadoc handling in reverse engineering and roundtripping

When code with Javadoc comments is reverse engineered, all of the Javadoc comments will be
made part of the description of the element.

The Rational Rhapsody roundtripping feature does not support changes to Javadoc comments.

Javadoc troubleshooting

If the Generate JavaDoc Comments check box on the configuration Settings tab is selected and
you still do not see Javadoc comments in your generated code:

1. Verify that the JavaDocProfile is loaded in your model.

2. Confirm that the relevant properties are not overridden at some level
(JAVA_CG::File::Header, the DescriptionTemplate properties, and
CG::Configuration::UseDescriptionTemplates).
Rational Rhapsody 1211

Java-specific issues
Static import
The static import construct was introduced in J2SE 5.0 in order to allow unqualified access to
static members of a class. Beginning with version 7.2, Rational Rhapsody is capable of modeling
static imports and generating appropriate code. In addition, the reverse engineering feature can
handle static imports in Java code, and the roundtripping feature can handle changes to static
import statements.

Rational Rhapsody allows you to model both static import of individual class members (import
static java.lang.Math.PI) and static import of all static members of a class (import static
java.lang.Math.*).

Modeling of static imports is based on use of the StaticImport stereotype in the
PredefinedTypesJava package. The StaticImport stereotype inherits from the Usage stereotype.

Adding static imports to a model

To add a static import to your model:

1. Create a dependency in the browser or by drawing a dependency in an object model
diagram. The dependency can be from a class to a class or from a class to an individual
static attribute or operation.

2. Open the Features window for the dependency you created, and apply the StaticImport
stereotype to it.

When you next generate code, the code for the dependant class will contain the appropriate static
import statement.

Reverse engineering/roundtripping and static import statements

If you reverse engineer code that contains static import statements, Rational Rhapsody will create
dependencies that have the StaticImport stereotype applied to them.

The roundtripping feature can handle the addition of static import statements to your code, as well
as changes to static import statements, including switching regular import statements to static
import statements, and vise versa.

If you delete static import statements from your code, the roundtripping behavior will depend upon
the value of the property JAVA_Roundtrip::Update::AcceptChanges.
1212 User Guide

Static blocks
Code generation checks

If you create a StaticImport dependency between a class and an attribute/method that is not static,
Rational Rhapsody will generate the corresponding static import statement but it will issue a
warning that you have specified a static import for a non-static class member.

Static blocks
Java allows you to define blocks of code as static. Code within static blocks is executed only once,
when the class is first loaded.

Rational Rhapsody allows you to add static blocks to classes in your model, and generates
appropriate code for such blocks.

Adding static blocks to classes in a model

To add a static block to a class:

1. Right-click the class in the browser and select Add New > StaticBlock. (Alternatively,
right-click the class in an object model diagram and select New StaticBlock.)

2. Open the Features window for the newly created static block, and on the Implementation
tab enter the code for the body of the block.

Changing a static block to an operation

Rational Rhapsody makes it easy to switch a static block to an operation, and vise versa.

To change a static block to an operation, right-click the static block in the browser and select
Change To > Primitive Operation.

Note
When you change a static block to an operation, the operation created will be a static
operation.

To change a primitive operation to a static block, right-click the operation in the browser and select
Change To > Static Block.
Rational Rhapsody 1213

Java-specific issues
Reverse engineering/roundtripping and static blocks

If you reverse engineer code that contains static blocks, Rational Rhapsody recognizes these
blocks and adds them to the class in the model.

The roundtripping feature can handle the addition of new static blocks to your code, as well as
changes to the body of a static block.

When making changes directly to code within a static block, keep in mind that when adding code
to the body of a static block, the new code will be roundtripped into the model only if you placed
the code between the Rational Rhapsody annotations inside the block.

If you delete static blocks from your code, the roundtripping behavior will depend upon the value
of the property JAVA_Roundtrip::Update::AcceptChanges.

Generating JAR files
In Rational Rhapsody for Java developers, you have the option of specifying that Rational
Rhapsody should generate a JAR file when you build your project.

To specify that a JAR file should be created as part of the build process:

1. Open the Features window for the relevant configuration.

2. On the Settings tab, select the Generate JAR File option.

The JAR file generation mechanism is controlled by the following properties (under
JAVA_CG::Configuration):

� JarFileGenerate is a Boolean property that determines whether or not a JAR file will be
generated as part of the build process. The value of this property is controlled by the
Generate JAR File option on the Settings tab of the Features window for configurations.

� JarFileGeneratorCommand specifies the jar command that should be carried out if the
property JarFileGenerate has been set to Checked.
1214 User Guide

Java 5 annotations
Java 5 annotations
Rational Rhapsody for Java developers supports the concept of the Java 5 annotation through
modeling and code generation. Java users can use Java annotations to model and generate code for
all key Java 5 concepts. You can create annotations within the Rational Rhapsody environment and
then generate the annotations within the generated code.

Note the following about Java annotations:

� They provide data about the program but do not affect the program itself.
� They can be used by:

– compilers
– documentation tools
– code analysis tools
– deployment tools
– run-time analysis tools

� They can be applied on any kind of program element (for example, class, field, method,
enum, and so on).

To add a JavaAnnotation to a model element, you must do the following general steps:

1. Create a JavaAnnotation type; see Creating a JavaAnnotation type.

2. Add the JavaAnnotation and assign values to the annotation’s elements; see Using a
JavaAnnotation type.

3. Add the annotation to one or more Java model elements using a dependency with a
AnnotationUsage relationships; see Using a JavaAnnotation within a model.

Creating a JavaAnnotation type

Java 5 annotations are modeled similar to the way classes and objects are modeled. This means
you must define this type of annotation before you can use it.

To create a Java annotation type:

1. Open your Rational Rhapsody project in Java, right-click a package or class on the
Rational Rhapsody browser, and select Add New>Annotation Type.

2. Type a name for your new annotation type.

3. Double-click the annotation type. The Features window opens.

4. On the Elements tab, add any legal JDK 5 data type, as shown in the following figure.
Rational Rhapsody 1215

Java-specific issues
a. Click <<New>> and type a name for the element.

b. Select a type from the Type list.

c. Enter a default value if necessary.

Note: The rows on this tab relate to annotation elements.

5. Click OK.

Using a JavaAnnotation type

To use a JavaAnnotation type, you must create a JavaAnnotation that is of the type you want. To
do so:

1. Open your Rational Rhapsody project in Java, right-click a package on the Rational
Rhapsody browser and select Add New > JavaAnnotation. The Add JavaAnnotation
window opens.

2. Select the JavaAnnotation type from the list.

3. Click OK.

4. Double-click the JavaAnnotation on your Rational Rhapsody browser. The Features
window opens.
1216 User Guide

Java 5 annotations
5. On the Elements tab, enter specific values for the JavaAnnotation.

6. Click OK.

Using a JavaAnnotation within a model

To have classes in your Java design use a JavaAnnotation:

1. Open your Rational Rhapsody project in Java.

2. On a diagram (for example, an object model diagram), drag your JavaAnnotation from the
Rational Rhapsody browser onto your diagram.

Notice that from a model perspective, the JavaAnnotation is shown with two stereotypes.

3. Create a new class on your diagram that represents a user-defined Java class in the system
that wants to make use of the JavaAnnotation.

4. Draw a dependency from your class to your JavaAnnotation Your diagram should
resemble something like the following figure:
Rational Rhapsody 1217

Java-specific issues
5. Double-click the Dependency link. The Features window opens.

6. On the General tab, from the Stereotype list, select AnnotationUsage in
PredefinedTypesJava.

Using this stereotype ensures that the code is generated correctly.

Note: AnnotationUsage displays in the Stereotype box.
1218 User Guide

Java 5 annotations
7. Click OK.

Your diagram should resemble something like the following figure:

The following figure shows how the annotation is used within the Java class shown above:
Rational Rhapsody 1219

Java-specific issues
Code generation and Java 5 annotations

The code generator interprets the terms AnnotationType, JavaAnnotation and AnnotationUsage to
print the corresponding Java code.

In addition, Java annotations of some element can be added as text to the
JAVA_CG::<ElementType>::JavaAnnotation property. The code generator will print the property
content before element declaration.

Reverse engineering and Java 5 annotations

To assure reverse engineering works correctly for Java annotations, note the following
information:

� To control the behavior of reverse engineering, use the
JAVA_ReverseEngineering::ImplementationTrait::
ImportJavaAnnotation property. The following values are available for this property:

– None. All code parts related to Java Annotation are ignored
– Model. Java annotations are imported as model elements (AnnotationType,

JavaAnnotation and AnnotationUsage)
– Verbatim. Java annotation Usage is imported as a verbatim text to

JavaAnnotation property of the corresponded element. AnnotationTypes are
imported as model elements. This is the default value.

– Mixed. Java annotation are imported as model elements; if this fails, usage
will still be imported as a verbatim text to JavaAnnotation.

� Specify a correct CLASSPATH for reverse engineering is important for the correct result
of Reverse Engineering of Java Annotations.

� When you use both schemes of Reverse Engineering of Java Annotations (Model and
Verbatim) the code generated for the model created by RE should be the same as in the
original code (semantically).

� Roundtrip completely ignores all code parts related to Java annotations. Nothing should be
changed.
1220 User Guide

Java reference model
Limitations for Java 5 annotations

Note the following limitations:

� There is no roundtripping of Java annotations.
� Java annotations of events are not supported
� Predefined Java annotations are not supported.
� There is no Default Value field on the Features window for the annotation element

(double-click the annotation element on the Rational Rhapsody browser to open this
Features window). Instead, you can add it on the Elements tab of the Features window for
the Annotation type.

� Java annotations of constructor, destructor (finalize), and associations are not generated by
the code generator. Instead, use the JAVA_CG:Operation::JavaAnnotation and
JAVA_CG:Relation::JavaAnnotation properties.

� Unnamed types in Java annotations are not supported (without “element = …”), for
example: “@Retention(RetentionPolicy.RUNTIME)”. Instead, use the
JAVA_CG:Operation::JavaAnnotation property.

Java reference model
Rational Rhapsody includes a reference model for the classes contained in Java SE 6.

When you create a new Rational Rhapsody project in Java, you can add this model to your project
as a reference.

The Java reference model can be found in the directory <Rational Rhapsody installation
path>\Share\LangJava\JDKRefModel.
Rational Rhapsody 1221

Java-specific issues
1222 User Guide

Systems engineering with Rational
Rhapsody
Rational Rhapsody allows systems engineers to capture and analyze requirements quickly and then
design and validate system behaviors. A Rational Rhapsody systems engineering project includes
the UML and SysML diagrams, packages, and simulation configurations that define the model.
Systems engineers can use the SysML profile features and/or the Harmony process and toolkit to
guide system development through its iterative development process.

Installing and launching systems engineering
Follow the instructions in the Rational Rhapsody installation instructions to set up the
development environments you need. The Rational Rhapsody Systems Engineering Add On
requires these extra installation steps and start-up steps:

1. When the Add-on Installation window displays. Select the Systems Engineering
Add-On check box.

2. Click Next and complete the installation as instructed.

3. When you want to use the systems version of Rational Rhapsody, from the Windows Start
menu, select All Programs > IBM Rational > IBM Rational Rhapsody version
number > Rational Rhapsody Designer for Systems Engineers > Rhapsody.

This installation makes the systems engineering features available to support the UML and SysML
standards in these specifications:

� Check the URL for the UML specification

� Check the URL for the SysML specification
Rational Rhapsody 1223

http://www.uml-forum.com/specs.htm
http://www.omgsysml.org/

Systems engineering with Rational Rhapsody
Creating a SysML profile project
To create a new systems engineering project using the SysML profile features:

1. Start Rational Rhapsody.

2. Click the New button on the main toolbar or select File > New.

3. In the Project name box, type your project name.

4. In the In folder box, enter the directory in which the new project will be located, or click
the Browse button to select the directory.

5. In the Project Type box, select the SysML profile so that you can use the SysML
modeling language and the systems engineering diagrams.

6. You might also want to select one of the Project Settings.

7. Click OK. Rational Rhapsody verifies that the specified location exists. If it does not,
Rational Rhapsody asks whether you want to create it.

8. Click Yes. In this example, Rational Rhapsody creates a new project in the selected
subdirectory, opens the project, and displays the browser in the left pane.

Note
If the browser does not display, select View > Browser.
1224 User Guide

Creating a SysML profile project
SysML profile features

When you select the SysML profile for your project, Rational Rhapsody provides a starting point
with a blank Block Definition Diagram (named Model1), packages, and predefined types, as
shown in SysML Profile Elements. This profile is the Rational Rhapsody implementation of the
OMG SysML Specification. The Rational Rhapsody SysML profile provides this additional
functionality for your model:

� SysML enhancements to standard UML diagrams including the Use Case, Requirements,
Activity, Sequence diagrams and Statecharts

� SysML Block Definition, Internal Block, and Parametric diagrams
� XMI 2.1 support

SysML Profile Elements

The SysML profile also contains default and predefined packages and a read-only ProfileStructure
object model diagram for you to use as reference of the available Rational Rhapsody SysML
features in the profile.
Rational Rhapsody 1225

http://www.omgsysml.org/

Systems engineering with Rational Rhapsody
Note
The items listed under Profiles in the browser are not intended to be used as part of a
working model. They are for information purposes only.

When you create a new project, Rational Rhapsody creates a directory containing the project files
in the specified location. The name you choose for your new project is used to name project files
and directories, and displays at the top level of the project hierarchy in the Rational Rhapsody
browser. Rational Rhapsody provides several default elements in the new project, including a
default package, component, and configuration.

SysML profile packages

The following Rational Rhapsody packages (shown in SysML Profile Elements) are available when
you select the SysML profile for a new project:

� <<ModelLibrary>> SIDefinitions contains these read-only packages: BaseSIUnits and
DerivedSIUnits.

� <<ModelLibrary>> StandardValueTypes contains read-only Complex and Real value
types. For more information about valueTypes, see Adding graphics to block definition
diagrams.

� Activities stereotypes support the SysML expansion of the activity diagram behaviors and
links to the blocks that contain the behaviors.

� Allocation contains read-only stereotypes and table layouts.
� Blocks include stereotypes that represent the system capabilities in the model.
� ConstraintBlocks contains the stereotypes that control the relationships of blocks:

ConstraintBlock, ConstraintParameter, ConstraintProperty, and valueBinding.
� Diagrams lists the stereotypes needed to support these SysML diagrams: Block

Definition, Internal Block, Parametric, and Requirements.
� ModelElements lists the stereotypes needed to support these diagram elements (see

Adding elements):
– Conform
– Problem
– Rationale
– Refinement
– View (see Views and viewpoints)
– Viewpoint with its tags

� PortsandFlows show how items flow between blocks and parts. Ports are the connection
points between blocks or parts and their environments. Ports are often reused and have
clearly defined interfaces. These are most often used in Activity modeling in SysML.
1226 User Guide

Creating a SysML profile project
� Requirements contains the stereotypes to display model conditions that must be met with
the finished product. This profile element also includes read-only requirement table
layouts.

Views and viewpoints

A Rational Rhapsody View is a representation of a system or subsystem in a Rational Rhapsody
package. It allows the designers to focus on specific aspects of the system that are important to
them. For example, they want to define the security system within a manufacturing system for a
new factory or the fuel efficiency components of a new engine.

A Rational Rhapsody Viewpoint defines the rules and conventions to address the requirements for
a View. For example, the Viewpoint for a factory security system might include security
requirements, the security functional and physical architecture, and the security test cases.

Creating a view
To add a View to the project:

1. Highlight the system or subsystem for which a View is required.

2. Right-click and select Add New > General Elements > View.

3. Type the name of the new View into the browser location created.

4. Open the Features window to define the newly added View.

The View can be dragged from the browser onto the diagrams.

Note
You can change an existing package into a View using Change To > View.
Rational Rhapsody 1227

Systems engineering with Rational Rhapsody
Adding a viewpoint
To add a Viewpoint to a View:

1. Highlight the View.

2. Right-click and select Add New > General Elements > Viewpoint.

3. Type the name of the new Viewpoint into the browser location created.

4. Open the Features window to define the Viewpoint.

You might use the tags in the SysML profile to define your Viewpoint:

� Concerns
� Languages
� Methods
� Purpose
� Stakeholders

Adding elements

To add a new element:

1. Highlight the item in the browser to which you are adding the new element.

2. Select Add New > General Elements and select the element type from the possibilities
for the selected item:

� Comment is a textual annotation that does not add semantics, but contains useful
information

� Constraint shows restrictions associated with one or more model elements as a
logical constraint, a condition on a decision branch, or a mathematical expression

� Problem describes an unfavorable environment situation that needs to be
addressed

� Rationale states the reason for a specific requirement or design feature
� Viewpoint specifies the rules and conventions for constructing a View to address

a set of stakeholder concerns.
� Conform details compliance with the Viewpoint rules and conventions.
� Dependency shows a relationship
� Refinement describes how a model element or set of elements can be used to

further define a requirement.
1228 User Guide

Creating a SysML profile project
� Realization specifies the relationship (as a super class) between an interface and a
class that implements that interface

3. To create the new element:

� For the Comment, Constraint, Problem, Rationale, and Viewpoint elements, type
the name of the new element into the browser location created.

� For the Conform, Dependency, and Refinement, select the element on which it
depends and click OK.

� For the Realization, select the class to become a super class of the selected
browser item and click OK.

4. Open the Features window to define the newly added element.

These new elements might be dragged from the browser onto the diagrams.

Note
Elements can be removed from a View or deleted from the model entirely.
Rational Rhapsody 1229

Systems engineering with Rational Rhapsody
Harmony process and toolkit
The Harmony process facilitates a seamless transition from systems engineering to software
engineering. It uses SysML exclusively for system representation and specification. Harmony, a
scenario-driven process, is iterative and promotes reuse of test scenarios throughout system
development, as shown in the Harmony Process diagram.

Harmony process summary

The Harmony process models allow systems engineers to find design errors early in the
development when the cost of correcting them is lower. Customer requests can be more efficiently
assessed, incorporated, and given timely feedback. However, the greatest benefit of a model-
driven process is improved communication, not only between the engineering disciplines, but also
among the technical and non-technical parties involved in the system development process. This is
possible because models can represent different levels of abstraction and, therefore, avoid the
information overload that often occurs when data is passed among the participating groups.

Harmony Process
1230 User Guide

Harmony process and toolkit
The Harmony process can be used in any systems engineering project. The key objectives of these
projects are as follows:

� Derive required system functionality
� Identify system states and modes
� Allocate requirements and functionality to identified subsystems

These key objectives can be met in the UML structure diagrams and the following SysML
diagrams:

� Use case diagrams
� Sequence diagrams
� Activity diagrams
� Statecharts
� Block definition diagrams
� Internal block diagrams
� Parametric diagrams
Rational Rhapsody 1231

Systems engineering with Rational Rhapsody
Creating a Harmony project

Though the Harmony process can be used in any systems engineering project, Rational Rhapsody
provides a special profile to make it easier to use this process in a project.

To create a Harmony project for systems engineering:

1. Start Rational Rhapsody.

2. Click the New button in the main toolbar or select File > New.

3. In the Project name box, type your project name.

4. In the In folder box, enter the directory in which the new project will be located, or click
the Browse button to select the directory.

5. In the Project Type box, select the Harmony profile so that you can use the Harmony
wizards and other systems engineering features.

6. You might also want to select one of the Project Settings.

7. Click OK. Rational Rhapsody verifies that the specified location exists. If it does not,
Rational Rhapsody asks whether you want to create it and generates a starting point for
your Harmony project.

8. Check the Profiles folder in the browser to be certain that Harmony is listed with the
stereotypes and tags.

To add the Harmony profile to a SysML profile project, use the standard Adding a Rational
Rhapsody profile manually method.

Creating an activity view
To model activities in much the same manner as a use case, create an activity view for each group
of sequences. To create an activity view:

1. Create a project with the Harmony profile.

2. Right-click a package or use case in the browser.

3. Select Add New > Harmony > Activity View.

4. Open the Features window to define this view.

The activities in each view are then referenced in activity diagrams. Use the Special Harmony menu
commands to automate operations associated with activity views.
1232 User Guide

Harmony process and toolkit
Adding measures of effectiveness (moe)
To add a “moe” (measures of effectiveness):

1. Create a project with the Harmony profile.

2. Right-click a package, use case, actor, interface, or class in the browser.

3. Select Add New > Harmony > moe.

4. Open the Features window to define the measures of effectiveness.

The “moe” supports the trade analysis feature. For more information, see Special Harmony
menu commands and Performing a Trade Analysis.
Rational Rhapsody 1233

Systems engineering with Rational Rhapsody
Harmony profile features

The Rational Rhapsody systems engineering features includes the following automated tools for
Harmony profile projects:

� SE-Toolkit menu commands to perform common tasks quickly
� Tools that perform repetitive tasks automatically or reduce the number of steps required to

perform a systems engineering operation

Special Harmony menu commands
To access the special systems engineering menu commands:

1. Click an item in the browser that has a special option available.

2. Right-click and select SE-Toolkit to open the menu with the special systems engineering
menu commands.

3. Click the menu option to perform the task. The following table lists the special menu
commands by the browser items used to access them and describes the operations that the
menu commands perform.

Special Harmony Menu Commands Chart
Accessible from

Browser Item Menu Command Systems Engineering Operation
Description

Activity Diagram Auto-Rename Actions Renames all of the actions in an activity
diagram to be the actual action body text
used

Activity Diagram Create New Scenario from
Activity Diagram

Creates a new sequence diagram from an
existing activity diagram with the
swimlanes converted to life lines

Activity Diagram Perform Swimlane
Consistency Check

For every Swimlane that is represented by
an object/part, it ensures that

• Each action has a corresponding
operation

• Each operation has a corresponding
action

Activity View Duplicate Activity View Existing activity view is copied using the
name of the view appended with “_copy”

Activity View and Activity
Diagram

Create Allocation CSV File • Creates a CSV file based on the
Swimlane Allocation

• CVS file is added to Rational Rhapsody
as a controlled file and can be viewed
in Rational Rhapsody
1234 User Guide

Harmony process and toolkit
Activity View and Activity
Diagram

Create Allocation Table Creates an Excel Spreadsheet based on
the Swimlane Allocation (requires Microsoft
Excel)

Activity View and Use
Case

Create Simulation Create an animated version of the
highlighted activity view

Activity View and Use
Case

Perform Activity View
Consistency Check

Displays a window that lists the following
information:

• Operations in the activity diagram that
do not appear in any of the project’s
sequence diagrams

• Errors found in the referenced
scenarios

The results displayed in this window can be
copied into the Clipboard. There is also a
Recheck button.

Block Definition Diagram
and Object Model
Diagram

Perform Trade Analysis Microsoft Excel must be available for this
feature.
The selected diagram must contain blocks/
classes that represent the “solution”
classes, that is, those classes that
aggregate the potential solutions with
contained measures of effectiveness,
<<moe>> stereotype. For more
information, see Performing a Trade
Analysis.

Class/Block Copy MOEs from Base Copies attributes stereotyped <<moe>> or
measure of effectiveness from any parent
classes/blocks to all classes/blocks that
inherit from it. For each attribute, this option
copies the “weight” tag value.

Class/Block Copy MOEs TO Children Exhibits the same behavior as the Copy
MOEs from Base option but in the other
direction (that is, from the Base Class/block
to any that inherit from it). For each
attribute, this option copies the “weight” tag
value.

Internal Block Diagram
and Object Model
Diagram

Generate N2 Matrix Generates an N2 Matrix from a Block
Diagram and its associated Ports/
Interfaces/Links

Class/Block Create Test Architecture Uses the TestingProfile to generate a Test
Context Diagram for the selected block or
class and displays the test messages in the
Log output window

Object, Class, or Actor Create Test Bench Creates a Test Bench style Statechart for
the current Actor

Accessible from
Browser Item Menu Command Systems Engineering Operation

Description
Rational Rhapsody 1235

Systems engineering with Rational Rhapsody
Packages Generate Initial Statechart(s)

Package and Sequence
Diagram

Create Ports And Interfaces This option might perform any of these
operations depending on what was
selected in the browser and available in the
model at this point:

• Creates new interfaces in the
InterfacesPkg to hold them

• Creates ports on structural blocks
involved

• Populates Ports with Interfaces
• Makes Ports behavioral
• Makes any “internal” operations private
• Moves Event Declarations to the

InterfacesPkg
• Errors are flagged and highlighted in

red on the sequences

Sequence Diagram Report Unrealised Messages Provides the user with a window showing a
list of messages on a sequence diagram
which are not yet realized

Use Case Create Use Case Scenario Creates a sequence diagram based on a
selected use case diagram

Use Case Create System Model from
Use Case

Creates a system model diagram based on
a selected use case

Use Case Setup Model Execution

Accessible from
Browser Item Menu Command Systems Engineering Operation

Description
1236 User Guide

Harmony process and toolkit
Performing a Trade Analysis
For block definition diagrams, you can generate a weighted methods Microsoft Excel spreadsheet
from the selected diagram. To generate a trade analysis:

1. In the browser, highlight a block definition diagram.

Note: The selected diagram must contain blocks or classes that represent the
“solution” classes (that is, those that aggregate the potential solutions with
contained MOEs (measures of effectiveness).

2. Right-click and select Perform Trade Analysis. The system generates the spreadsheet or
displays a message indicating that the selected diagram is not appropriate for a trade
analysis.

If the selected diagram is appropriate, the list of potential solutions is converted into a spreadsheet
in a standard weighted methods format. The cells are populated with values, weights, and formulas
to calculate totals.

If the diagram does not contain blocks that represent the “solution” classes or cannot be used for
the analysis, an error message opens with the explanation of the generation failure.
Rational Rhapsody 1237

Systems engineering with Rational Rhapsody
Architectural Design Wizard
For both the Harmony and SysML profiles, the Architectural Design Wizard is available to copy
operations from one architectural layer to another. This allows allocation of operations / events
from a parent block to its children by copying and tagging them and provides these features:

� Allocate the operations (including the documentation and requirement relationships) to
their respective systems

� Track when operations are allocated
� Allow multiple allocations

To copy unallocated operations/events to specific subsystems:

1. Highlight the block or class in the browser.

2. Right-click and select SE-Toolkit > Architectural Design Wizard.

3. If the selected system element does not immediately display, click the Refresh button at
the top of the window. If you want the events in the selected element to be available for
selection, check the Show Events box.

4. Use the pull-down menu above the Parts column to select one or more subsystems.
1238 User Guide

Harmony process and toolkit
5. Highlight the Unallocated Operation(s) / Event(s) from the list on the left that you want
to allocate to a Part listed on the right.

.

6. If you change your mind and want to return items you put into the Parts column back to
the Unallocated column, highlight individual items in the right column and click the All
or Selected button. To return all items to the left side quickly, do not select any items and
click the All or Selected button.
Rational Rhapsody 1239

Systems engineering with Rational Rhapsody
7. Click Exit to close the wizard’s window.

Modeling Toolbox
The Modeling Toolbox can be used with sequence and activity diagrams to set links between a
source and a destination. It allows you to select multiple sources or multiple links and create any
type of dependency between them.

To use the automatic Modeling Toolbox:

1. Display the sequence or activity diagram to which you need to add links.

2. Select an element in the diagram that is the starting point for the link.

3. Choose Tools > SE-Toolkit > Modeling Toolbox.

4. Click the Set Source button and the name of the selected element displays.

5. Click the Harmony tab to select one of these options:

� Populate Activity Diagram
� Create New Scenario from Activity Diagram (determine whether or not to use

the Design Rules)
� Create Messages from
� Use Design Rules
1240 User Guide

Harmony process and toolkit
� Create Allocations
� Allocate Operations from Swimlanes
� Merge Blocks

A detailed description of each Harmony command displays in the Live Help area
when you position the cursor over the small button to the left of the Command
button.

6. In the diagram, select the destination elements and then click the Set Destination button
in the Modeling Toolbox. The toolbox allows these types of links:

� Hyperlink(s)
� Anchor(s)
� SD Ref(s)
� Event Reception(s)
� Value Type

A detailed description of each link type displays when you position the cursor over
the small button to the left of the Command button, as shown in the example above.
If a button is greyed out, that type of link is not appropriate for the selected Source
and Destination. Click the button for the type of link you want to add.

7. Click the Dependencies tab to create a stereotype of the selected type automatically. For a
User defined stereotype, click User and type the name. Click Create Dependency when
you have made your stereotyping selections.

8. Click the Activity GE tab to select either a Reference Activity or a Swimlane Reference.

9. Click Exit at the top of the Modeling Toolbox to perform the selected operations from the
source to the destination.

Note
To perform this task manually, see the instructions in the Systems engineering requirements
in Rational Rhapsody section.
Rational Rhapsody 1241

Systems engineering with Rational Rhapsody
Systems engineering requirements in Rational
Rhapsody

The Rational Rhapsody Gateway add-on product is often used to define specific requirements to
support your analysis. This Add On product allows Rational Rhapsody to hook up seamlessly with
third-party requirements and authoring tools for requirements traceability. In addition, it describes
importing requirements using the Rational Rhapsody Gateway and using use case diagrams
(UCDs) to show the main system functions and the entities that are outside the system (actors).
The use case diagrams specify the requirements for the system and demonstrate the interactions
between the system and external actors. See the Modeling Toolbox to use the automatic linking
feature.

You might also use other manual methods and software to create requirements diagrams in
Rational Rhapsody such as importing them from DOORS or Microsoft Word.

Requirements Diagram with Requirements Imported from Word
1242 User Guide

Systems engineering requirements in Rational Rhapsody
Analysis and requirements using the Rational Rhapsody Gateway

When the IBM Rational Rhapsody Gateway analyzes your project information including
requirements, documents, and database modules, the software provides the following analysis
results:

� Navigation features between the Rational Rhapsody Gateway and interfaced tools
� Requirements captured at high level accessible in an authoring tool
� Filter capabilities for more targeted display and results for reports
� Requirements traceability graph
� A list of elements violating default rules and customized rules
� Additional information within the Rational Rhapsody Gateway environment including

attributes, links, and text

Importing Rational Rhapsody Gateway requirements
You can use the Rational Rhapsody Gateway product to define specific requirements to support
your analysis.

This Add On product allows Rational Rhapsody to hook up seamlessly with third-party
requirements and authoring tools for complete requirements traceability. The Rational Rhapsody
Gateway Add On includes the following features:

� Traceability of requirements workflow on all levels, in real-time
� Automatic management of complex requirements scenarios for intuitive and

understandable views of upstream and downstream impacts
� Creates impact reports and requirements traceability matrices to meet industry safety

standards
� Connects to common requirements management/authoring tools including DOORS,

Requisite Pro®, Word®, Excel® Powerpoint PDF®, ASCII, FrameMaker, Code and Test
files

� A bidirectional interface with the third-party requirements management and authoring
tools

� Monitoring of all levels of the workflow, for better project management and efficiency
Rational Rhapsody 1243

Systems engineering with Rational Rhapsody
Limitations
This is a limitation in Rational Rhapsody Gateway. If you have multiple Rational Rhapsody
projects configured for Rational Rhapsody Gateway, when you right-click and select Reload in
Rational Rhapsody Gateway, it synchronizes with the active opened Rational Rhapsody project,
not the selected project. This creates incorrect data. For example, if you have a Radio and a
Handset project configured in Rational Rhapsody Gateway but Radio is set as the active project,
you work on the Handset model and select the Reload command in Rational Rhapsody Gateway.
This would synchronize the Radio project, but not the Handset project because it is not your active
project.
1244 User Guide

Systems engineering requirements in Rational Rhapsody
Searching requirements

You can search for requirements in the project based on the requirement details such as
stereotypes, tags, or text. To locate requirements using the Rational Rhapsody advanced search
facility:

1. Select the Edit > Advanced Search and Replace.

2. On the Search elements tab, you can use the Clear All button to remove all of the check
marks and then select the specific element or elements you want to research such as
Requirement or Tag.

3. You might also want to narrow the search to specific types of information using the
Search in tab. This allows you to select Name, Description, Requirement ID,
Requirement Specification, and Tag Value.

4. On the Find/Replace tab, enter the search criteria in Find what and click Find.

Creating Rational Rhapsody requirements diagrams

In projects created with the SysML or Harmony profiles, you can use requirements diagrams, with
requirements imported from other software products or created in Rational Rhapsody, to
communicate complex details to team members.

To create a requirements diagram:

1. Highlight the Requirements package in the browser.

2. Right-click and select Add New > Diagrams > Requirements Diagram.

3. Enter the Name of the new diagram. Click OK if you want to add items individually to the
requirements diagram. However, if you want the system to put existing model items into
the new diagram, check the Populate Diagram box and select those items.
Rational Rhapsody 1245

Systems engineering with Rational Rhapsody
4. Select the characteristics and content for the new requirements diagram from the Populate
Diagram window. Click OK.
1246 User Guide

Systems engineering requirements in Rational Rhapsody
Requirements diagram drawing tools
Use the drawing tools to show the relationships and functions to create a detailed requirements
diagram, as shown in the Requirements Diagram with Requirements Imported from Word.

Requirements Diagram Drawing Tools
Drawing

Tool Name Purpose

Requirement Definition of a system requirement

Problem Unfavorable environment situation that the requirement is meant to address or might
encounter as a blocking condition

Rationale Statement of the reason for a specific requirement

Package Used to show the relationship between the package artifact and requirements

Derivation Indicates that a requirement was derived from another

Satisfaction Indicates an artifact or condition that is necessary to fulfill a specific requirement

Verification Indicates how a specific requirement is verified as supplied in the design

Dependency Indicates a dependent relationship between two items in the diagram

Use Case Used to show the relationship between a use case and a requirement

Allocation Indicates that an artifact or requirement is exclusively reserved for use of another
Rational Rhapsody 1247

Systems engineering with Rational Rhapsody
Drawing and defining the dependencies
With elements drawn in the requirements diagram, use a dependency to show a direct relationship
in which the function of an element requires the presence of and might change another element.
You can show the relationship between requirements, and between requirements and model
elements using dependencies. You can set the following types of dependency stereotypes:

� Derive indicates a requirement that is a consequence of another requirement.
� Trace shows the dependency from the model element to its requirement with the

dependency arrow head on the requirement.
To define the relationships between requirements with dependencies:

1. Click the Dependency button on the Diagram Tools.

2. Draw a dependency line from one requirement to another. Right-click on the dependency
line and select Features. At this point you might select derive as the Stereotype, as
shown in this example, or another possible stereotype including trace, extend, refine,
allocate, conform, decompose, satisfy, verify, valueBinding, Send, Usage, Friend, or
<<New>>.

3. Click OK.
Rational Rhapsody automatically adds the dependency relationships to the browser.
1248 User Guide

Systems engineering requirements in Rational Rhapsody
Creating specialized requirement types

To specify specialized requirements types, use the sub-typing features of stereotypes. The
following example of these stereotypes can be examined in the Rational Rhapsody System
Samples directory in the SysMLHandset project.

� <<extend>> shows that a requirement expands or provides more detailed view of another
requirement. (See Req 4.2 and 4.1 in the example above.)

� <<derive>> shows a relationship between two requirements and supplies additional
details. A derive requirement often reflects assumptions about the implementation of the
system. (In the diagram, the arrow direction is from the derived to the original
requirement.)

� <<composite>> requirements are the sub-requirements within the overall requirements
hierarchy. This structure allows a complex requirement to be decomposed into its
containing child requirements.

� <<satisfy>> relationship identifies the system or other model element intended to satisfy
or fulfill the requirement. (In the diagram, the arrow direction is from the satisfying to the
satisfied.)
Rational Rhapsody 1249

Systems engineering with Rational Rhapsody
� <<verify>> shows the relationship between a requirement and its test case. A test case is
usually expressed as an activity or interaction diagram.

� <<refine>> relationship shows how a model element or set of elements further explains a
requirement.

� <<trace>> requirement relationship provides a general purpose relationship between a
requirement and any other model element. The semantics of <<trace>> do not include
real constraints and, as a result, should not be used with any of the other requirements
relationships listed previously.

Requirements tabular view

You can use the Table and matrix views of data feature to create different layouts to view the
requirements information in the project. However, you might also use the preformatted SysML
requirements table:

1. Right-click the Requirements package in the browser.

2. Choose Add New > Requirements > RequirementsTable to access the predefined
SysML requirements layout.

3. Right-click the generated name of the new table in the browser and select Features.

4. Enter the Name of the requirements table to be displayed in the browser list. The
preformatted Layout is automatically listed, but you need to select the package to be
analyzed in the Scope, as shown in this example from the Rational Rhapsody
SysMLHandset sample project. Click OK.
1250 User Guide

Creating use case diagrams
5. In the browser double-click the requirements table name to generate the table in the
drawing area, as shown in this example.

Creating use case diagrams
Use case diagrams show the system main functions (use cases) and the entities (actors) outside the
system.

To start a use case diagram containing the actors and basic use cases:

1. In the browser, right-click the package containing your analysis, and select Add New >
Diagrams > UseCaseDiagram from the menu. The New Diagram window opens.

2. In the Name box replace the generated name with the name you want.

3. Check the Populate Diagrams check box if you want to select items in the project to
place in the new diagram automatically.

4. Click OK.

Rational Rhapsody adds the Use Case Diagrams category in the browser and opens the new
diagram. The Use case diagram drawing tools provides the drawing tools for these diagrams
(shown in the following sections).

Note
For systems engineering purposes, the Extend and Generalization features should not be
used in the use cases.
Rational Rhapsody 1251

Systems engineering with Rational Rhapsody
Boundary box and the environment

The boundary box delineates the system under design from the external actors. It shows what is
within the system environment. Use cases are inside the system (boundary box); actors are outside
the system.

To draw the boundary box in a use case diagram:

1. Click the Create Boundary box button in the Diagram Tools.

2. Click in the upper, left corner of the drawing area and drag to the lower right. Rational
Rhapsody creates a boundary box.

3. Rename the boundary box to be represent your project.

Actors and systems design in use cases

The Rational Rhapsody actors represent the following in systems design models:

� Entities that are outside the system
� External interfaces
� Parts
� Flows through standard ports

To draw the actors:

1. Click the Actor button in the Diagram Tools.

2. Click the location where you want to position the actor symbol in the use case diagram.
Rational Rhapsody creates an actor with a default name of actor_n, where n is greater
than or equal to 0.

3. Type an appropriate name for the actor to represent the function it serves. Rational
Rhapsody adds the actor to the browser.

Note
Because code can be generated using the specified names, do not include spaces in the
names of actors.
1252 User Guide

Creating use case diagrams
Use case features for systems engineering

You can define the features of each use case and associate the use case with a different main
diagram using the Features window.

To define use case features:

1. In the browser, expand a package and the Use Cases category. Double-click the use case,
or right-click and select Features. The Features window opens.

2. Select the Description tab, and type the text to describe the purpose of the use case using
the internal text editor.

3. Select the Relations tab to examine the dependencies, flows, generalizations, and
associations.
Rational Rhapsody 1253

Systems engineering with Rational Rhapsody
4. Double-click any item in the View Relations list to examine the details and make any
required changes.

5. Click OK.

Associating actors with use cases

Actors initiate actions or receive information from the system.

To create these necessary connections for interaction, draw association lines:

1. Click the Create Association button in the Diagram Tools.

2. Click the edge of the actor, then click the edge of a use case. Rational Rhapsody creates an
association line with the name label highlighted. You do not need to name this
association, so you can press Enter, or you can type label text in the highlighted area.

3. In the browser, expand the Actors category to view any relationships you have created
between actors and use cases.
1254 User Guide

Creating use case diagrams
Defining requirements in use case diagrams

Systems engineers often employ use case diagrams to define requirements. This technique
provides the following advantages:

� Naming system capabilities to add specificity to design work
� Showing important user interactions with the system to consider in the design
� Returning a result visible to one or more actors
� Organizing requirements by the use cases to recognize possible design flaws early in the

design process
� Assisting project planning by revealing important relationships in the use cases

Tracing requirements in use case diagrams

You can add requirement elements to use case diagrams to show how the requirements trace to the
use cases.

To add the requirements to the use case diagram:

1. Select a requirement from the browser and drag it into or beside a use case.

2. To be certain that the requirement is visible in the diagram, right-click the requirement you
placed in the diagram and select Display Options. The Requirement Display Options
window opens.

3. The Show group box specifies the information to display for the requirement. Select the
Name radio button to display the name of the requirement.

4. Click OK.

Dependencies between requirements and use cases

You can also use dependencies to link the requirements with the use cases as follows:

1. Click the Dependency button in the Diagram Tools.

2. Click on the element in the use case diagram and draw the dependency line to the
associated requirement. (The dependency arrow head rests on the requirement.)

3. In the browser, expand the Requirements category to check that the dependency
relationship is listed there.
Rational Rhapsody 1255

Systems engineering with Rational Rhapsody
Defining flow in a use case diagram

To specify the exchange of information between system elements, use the Flow button to
indicate the flow of data and commands within a system without specifying the details of this
communication. As the engineer works on the system specification, these abstractions can be tied
to the concrete implementations.

Defining the stereotype of a dependency

You can specify the ways in which requirements relate to other requirements and model elements
using stereotypes. A stereotype is a modeling element that extends the semantics of the UML
metamodel by typing UML entities.

Rational Rhapsody includes predefined stereotypes, and you can also define your own stereotypes.
Stereotypes are enclosed in guillemets on diagrams, for example, «derive».

To define the stereotype of a dependency:

1. Double-click the dependency between a requirement and a use case, or right-click and
select Features.

2. Select trace from the Stereotype pull-down list.

3. Click OK.
1256 User Guide

Activity modeling in SysML
Activity modeling in SysML
Activity modeling in SysML emphasizes the inputs and outputs, sequence, and conditions for
coordinating other behaviors, instead of who owns those behaviors. Therefore, the SysML
activities specify the following information:

� Coordination of executions of lower level behaviors
� Flow of control
� Flow of data

Activities are modelled as “Classifiers” or “Types” with the keyword <<activity>>.

Action types in SysML

The following are the five basic action types in SysML:

� Atomic action controls flows into the action, the action is performed, and then control
flows out of the action.

� Call behavior action launches other activities.
� Call operation launches an operation call on a target block or part.
� Accept event action handles processing of events during the execution of a behavior.
� Send signal action graphically shows an event sent to interact with another block.

SysML activity diagrams

Activity diagrams show the essential interactions between the system and the environment and the
interconnections of behaviors for which the subsystems or components are responsible. These
diagrams also illustrate the flow of control from activity to activity with sequences and conditions.
Activity diagrams can model an operation or the details of a computation and be animated to verify
the functional flow.
Rational Rhapsody 1257

Systems engineering with Rational Rhapsody
Creating an activity diagram

To create an activity diagram:

1. Start Rational Rhapsody if it is not already running and open the model if it is not already
open.

2. In the browser, expand the package containing your subsystems, locate the wanted block,
and the Parts category.

3. Right-click on the item for which you want to describe its activities and select Add New >

Diagrams > Activity Diagram or click the Activity Diagram icon at the top of the
window.

The blank diagram opens in the drawing area. You might want to add a title to the diagram to help
quickly identify the diagram.

Setting activity diagram properties

Action states represent function invocations with a single exit transition when the function
completes. In this example, you will draw the action states that represent the functional processes,
and then add names to the action states.

The default settings are used when you add an Action and type a name in the action state on the
diagram. That name becomes the action text, not the name of the action. Before adding actions, set
the properties for the diagram:

1. Right-click outside the Swimlanes frame and select Diagram Properties.

2. Select the Properties tab and click the All radio button for the Filter.

3. Open the Action category and change the showName and ShowAction properties to use
these values:

Activity_diagram::Action::showName = Name

Activity_diagram :: Action :: ShowAction = Description

This second property allows informal text to be displayed on the diagram, while the
actual action is described formally using an executable language.

4. Click OK.
1258 User Guide

Activity modeling in SysML
Activity diagram drawing tools for systems engineering

A systems engineering activity diagram has the following drawing tools:

Drawing
Tool Name Definition

Accept Event
Action

Lets you add this element to a systems engineering activity diagram so that you can
connect it to an action to show the resulting action for an event. This element can
specify the following actions:

• Event to send
• Event target
• Values for event arguments

This button is displayed by default in a new SysML profile project.

Accept Time
Event

Adds an element that denotes the time elapsed since the current state was entered.

Action Creates a single, top-level action state. For more information, see Drawing action
states.

Action Block Draws compound actions that can be decomposed into actions. Action blocks can
show more detail than might be possible in a single, top-level action.

Action Pin Adds an element to represent the inputs and outputs for the relevant action or action
block. An action pin can be used on a Call Operation (derived from the arguments).
This button displays in on Diagram Tools when you select the Analysis Only check
box when defining the general features of the activity diagram.

Activity Final Signifies either local or global termination, depending on where they are placed in
the diagram.

Activity Flow Creates a transition between action states.

Activity
Parameter

Defines a characteristic of an action block. This button is displayed by default in a
SysML profile project.

Call Behavior Creates a call to a behavior in another activity diagram or to the entire activity
diagram. You can add calls to both activity diagrams and subactivity diagrams.

Call Operation Represents a call to an operation of a classifier.

Decision Node Combines different flows into a common target.

Dependency Indicates a dependent relationship between two items in the diagram.

Flow Final Marks the last transition between action states

Fork Node Allows the splitting of one in-going flow into two or more outgoing concurrent flows.
Rational Rhapsody 1259

Systems engineering with Rational Rhapsody
Drawing action states

To draw action states in the diagram:

1. Click the Action button in the Diagram Tools and create action states in the
diagram.

2. Name each new action carefully to describe its function.

3. Click the action state, or right-click and select Features.

4. In the Description box, type the wanted information.

5. Click OK.

Initial flow Identifies the starting point for the actions in the activity diagram. For more
information, see Drawing a initial flow.

Join Node Allows the merging of two or more concurrent flows into a single outgoing flow.

Merge Node Combines different flows to a common target and is often a decision point.

Object node Identifies where an object is passed from the output of one state’s actions to the
input of another state’s actions.

ObjectFlow Identifies the transition of an object from one action state to another.

Send Action Represents sending actions to external entities. The Send Action is a language-
independent element, which is translated into the relevant implementation language
during code generation.

Subactivity Adds a new subchart to an existing action. This subchart defines a secondary action
to the main action. This helps to simplify the diagram. For more information, see
Drawing a subactivity.

Swimlanes
Divider

Divides the swimlane frame using vertical, solid lines to separate each swimlane
(actions and subactions) from adjacent swimlanes.

Swimlanes
frame

Organizes activity diagrams into sections of responsibility for actions and
subactions.

Drawing
Tool Name Definition
1260 User Guide

Activity modeling in SysML
Drawing a initial flow

One of the Action States must be the initial flow. This is the initial state of the Activity. To identify
the default flow state:

1. Click the Initial Flow button in the Diagram Tools.

2. Click near the default action state and then click its edge. Press Ctrl+Enter to stop
drawing the connector and not label it.

Drawing a subactivity

A subactivity represents the execution of a non-atomic sequence of steps nested within another
activity.

1. Click the Subactivity button in the Diagram Tools.

2. In the swimlane, click or click-and-drag to draw the subactivity state.

3. Name the subactivity state.

4. To display the subactivity icon in the lower right corner of the state drawing, right-click
the subactivity box and select Display Options from the menu.

5. Click the Icon radio button for the Show Stereotype selections and click OK.

Note
Limitation: Subactivities do not support swimlanes.

Drawing activity flows

Activity flows represent the response to a message in a given state. They show what the next state
will be. In this example, you will draw the following transitions:

� Transitions between states
� Fork and join transitions
� Timeout transition

Note
To change the line shape of an activity flow, right-click the line, select Line Shape, and then
Straight, Spline, Rectilinear, or Reroute.
Rational Rhapsody 1261

Systems engineering with Rational Rhapsody
Drawing activity flows between states

To draw activity flows between states:

1. Click the Activity Flow button in the Diagram Tools.

2. Click the subactivity state, and then click the state.

3. Name the activity flow and then press Ctrl+Enter.

Rational Rhapsody allows you to assign a descriptive label to an element. A labeled element does
not have any meaning in terms of an executable action, but the label helps you to reference and
locate elements in diagrams and windows. A label can have any value and does not need to be
unique.

Note
When drawing activity flows, it is a good practice to not cross the flow lines. This makes the
diagram easier to read.

Drawing swimlanes

Swimlanes organize activity diagrams into sections of responsibility for actions and subactions.
Vertical, solid lines separate each swimlane from adjacent swimlanes. To draw swimlanes, create a
swimlane frame and then a swimlane divide:

1. Click the Swimlanes Frame button in the Diagram Tools.

2. Click to place one corner, then drag diagonally to draw the swimlane frame.

3. Click the Swimlanes Divider button in the Diagram Tools.

4. Click the middle of the swimlane frame. Rational Rhapsody creates two swimlanes,
named swimlane_n and swimlane_n+1, where n is an incremental integer starting at 0.
Rename the swimlanes as wanted.

If you drag the swimlane left or right, it also resizes the swimlane frame.
1262 User Guide

Activity modeling in SysML
Drawing a fork node

A fork node represents the splitting of a single flow into two or more outgoing flows. It is shown as
a bar with one incoming activity flow and two or more outgoing activity flows.

To draw a fork node bar:

1. Click the Fork Node button in the Diagram Tools.

2. Click or click-and-drag between two action states. Rational Rhapsody adds the fork node
bar.

3. Click the Activity Flow button, and draw a single incoming activity flow from one state to
the fork node bar. Type the name and then press Ctrl+Enter. This activity flow indicates
that a call request has been initiated.

Drawing a join node

A join node represents the merging of two or more concurrent flows into a single outgoing flow. It
is shown as a bar with two or more incoming activity flows and one outgoing transition.

To draw a join node bar:

1. Click the Join Node button in the Diagram Tools.

2. Click or click-and-drag between an action state and a subactivity. Rational Rhapsody adds
the join node bar.

3. Click the Activity Flow button and draw the incoming activity flows to the join node bar.

4. Draw one outgoing activity flow from the bar to subactivity. Type name, and then press
Ctrl+Enter.

Creating a sequence diagram from an activity diagram

To generate a new sequence diagram from an existing activity diagram:

1. Select the activity diagram in the browser.

2. Right-click and select Create New Scenario from Activity Diagram from the menu.

For more information about using this feature, see Harmony process and toolkit.
Rational Rhapsody 1263

Systems engineering with Rational Rhapsody
Creating a design structure
Internal Block diagrams and Block Definition diagrams define the system structure and identify
the large-scale organizational pieces of the system. They can show the flow of information
between system components, and the interface definition through ports. In large systems, the
components are often decomposed into functions or subsystems.

Block diagrams define the components of a system and the flow of information between
components. Structure diagrams can have the following parts:

� Block contains parts and might also include links inside a block.
� Actors are the external interfaces to the system.
� Standard Port is a distinct interaction point between a class, part, or block and its

environment.
� Dependency shows dependency relationships, such as when changes to the definition of

one element affect another element
� Flow specifies the exchange of information between system elements at a high level of

abstraction.

Block properties

Blocks have three different types of properties:

� Structural properties are parts that refer to other system elements that are required for the
system to exist. Parts have a context and, therefore, show the usage of the system
elements or blocks.

� Reference properties point to other model elements that are not parts.
� Value properties provide system information such as mass, length, or status, but not the

target of any reference. Values can be UML data types (integers) or SysML value types in
engineering units with additional characteristics (unit of measure and/or dimension).
1264 User Guide

Creating a block definition diagram
Blocks and behaviors

Blocks execute actions that are primitive behaviors as the following examples show:

� x=x+1

� y = sin(x)^2 + cos(x)^2

� addTogether(int x, int y)
Actions might be grouped together in different ways:

� As a method to start a behavior consisting of a set of actions
� As a state machine specifying sequences of actions to be executed when the block receives

events
� As an activity diagram specifying sequences of actions from start to completion

Creating a block definition diagram
A Block Definition diagram (External block diagram) shows the system structure and identifies the
system components (blocks) and describes the flow of data between the components from a black-
box perspective. To create a Block Definition Diagram:

1. In the browser, right-click the Architecture package, then select Add New >
Diagrams > Block Definition Diagram. The New Diagram window opens.

2. Type a name for your architecture diagram.

3. Click OK.

Rational Rhapsody automatically creates the Block Definition Diagrams category in the
browser and adds the name of the new block definition diagram. In addition, Rational Rhapsody
opens the new diagram in the drawing area allowing you to construct the diagram using the Adding
graphics to block definition diagrams. As you add blocks and link them to show relationships, you
might consider the many uses of blocks in Block properties and Blocks and behaviors. You can also
add Adding graphics to block definition diagrams.
Rational Rhapsody 1265

Systems engineering with Rational Rhapsody
Block definition diagram drawing tools

The Diagram Tools for a block definition diagram includes the following tools:

Drawing
Tool Name Definitions

Block Draws an instance of a class that can belong to packages and parts.

Part Draws a major component of the model.

FlowSpecification Creates a non-atomic flow port typed by an interface.

Package Draws a group of parts or blocks to form a single element of the model.

FlowPort Shows how the data flows between blocks.

StandardPort Draws the connection points among blocks or parts and their environments.

Association Creates connections that are necessary for interaction.

Directed association Indicates the only object that can send messages to another object.

Aggregation Shows an association specifying a whole-part relationship between the
aggregate (whole) and a component part.

Directed
Composition

Shows the instance of a class that cannot be contained by other instances.

Connector Shows the relationship among blocks or parts.

Dependency Indicates a dependent relationship between two items in the diagram.

Inheritance Indicates the relationship between the derived class and its parent. The derived
class has the same data members and behaviors as the parent class.

Flow Indicates the flow of data and commands within a system.

ConstraintBlock Defines restrictive properties controlling the relationships of blocks.

Constraint Defines a semantic condition or restriction.

BindingConnector Specifies the properties at the ends of the connector (link).
1266 User Guide

Creating a block definition diagram
Satisfaction Explains how problem will be overcome. It usually includes the key element or
design feature that solves the problem.

Allocation Allows a systems engineer to denote the mapping of elements within the
structure of a model.

Problem Records an unresolved issue, limitation, or failure related to one of the model
elements.

Rationale Permits you to record the reason for decisions, requirements, and other design
issues. A rationale might reference a more detailed document or report.

Value Type Creates an extension of the UML dataType. It is used where one would use a
dataType (as a type for a value property for a block, for example). A UML
dataType usually expresses a quantity in a software implementation type, such
as a float or double. However, in SysML, valueType expresses a quantity in a
standard unit, such as milliAmpere. The valueType also includes a placeholder
for the quantity plus the unit.
It should be noted that SysML allows a valueType to be defined without a unit.
For example, when the valueType expresses a ratio, the valueType expresses a
quantity only.

Dimension Used in SysML to separate the concept of “Unit” from “Dimension.” A SysML
Dimension represents a standard physical concept for a set of Units. For
example “Length” is a Dimension in SysML. The Units meter, inch, kilometer,
mile, light_year refer to the concept of Length; therefore, they all have Length as
the value of their Dimension tag.
Dimension helps to organize Units into comprehensive sets based on the
physical domain. Like Units, a Dimension should be used only to set the
Dimension tag for a Unit or for a valueType and is never used as a type.
Dimensions are usually selected from a standard library model (part of the
Rational Rhapsody SysML profile).

Unit Used in conjunction with a SysML valueType to express a given quantity in a
standard way so that other quantities having the same Unit can be compared.
The Unit is usually taken from a standard library of Units, such as SI or NIST
(part of the Rational Rhapsody SysML profile). Units might be expressed in
terms of other units or “derived units.”
Units are only used to set the Unit tag of a valueType. They should not be used
as types for value properties since the Unit concept in SysML does not include
the concept of quantity. Instead, a valueType should be used.

Drawing
Tool Name Definitions
Rational Rhapsody 1267

Systems engineering with Rational Rhapsody
Adding graphics to block definition diagrams

To add the graphics to the block definition diagram:

1. Highlight the item in the diagram for which you want to add a image, such as a photograph
or drawing.

2. Right-click and select Display Options from the menu.

3. In the General tab of the window, select the Enable Image View check box. This
automatically enables the Select An Image option.

4. Browse to find the Image File Path and click OK to insert the selected image.

The following example shows a completed block definition diagram with two inserted images, the
CardReader and FingerprintScanner. Using images to represent system components helps the
project team members to identify individual parts quickly.

Block Definition Diagram
1268 User Guide

Creating an internal block diagram
Creating an internal block diagram
An internal block diagram shows the internal structure or decomposition of a block into its parts or
subsystems.

To create an internal block diagram:

1. In the browser, expand a package.

2. Right-click block in the package and select Add New > Diagrams > Internal Block
Diagram.

3. Type the name diagram and click OK. Rational Rhapsody creates the diagram in drawing
area.

The following example shows a completed internal block diagram for a security system.

Internal Block Diagram Example

If the ports are not visible, right-click the block and then select Ports > Show All Ports.
Rational Rhapsody 1269

Systems engineering with Rational Rhapsody
Internal block diagram drawing tools

An internal block diagram has the following drawing tools:

Drawing the parts

The internal block diagram uses parts to represent the activities. To draw the parts:

1. Click the Part button in the Diagram Tools.

2. In the upper, left corner of the block click or click-and-drag.

3. Type the name you want, and then press Enter.

Drawing
Tool Name Definition

Part Draws a major component of the model.

Block Draws an instance of a class that can belong to packages and parts.

Package Draws a group of parts or blocks to form a single element of the model.

FlowPort Shows how the data is bound to each constraint.

StandardPort Draws the connection points among blocks or parts and their environments.

Connector Shows the relationship among blocks or parts.

Dependency Shows the relationships among the packages in the diagram.

Flow Shows how the data is bound to each constraint.

ConstraintProperty Defines a characteristic of a semantic condition or restriction.

BindingConnector Specifies the properties at the ends of the connector.

Satisfaction Explains how problem will be overcome. It usually includes the key element or
design feature that solves the problem.

Allocation Allows a systems engineer to denote the mapping of elements within the
structure of a model.
1270 User Guide

Creating an internal block diagram
Drawing standard ports and links

You need to link the parts to show the interactions of parts. To accomplish this, you need to draw
standard ports as follows:

1. Click the Standard Port button in the Diagram Tools.

2. Click on the edge of the block, name the standard port.

3. Click on the edge of another block, name the standard port.

To draw link the two parts through their standard ports:

1. Click the Connector button in the Diagram Tools.

2. Click the standard port of the sending part, and then click the standard port of the
receiving part.

Specifying the port contract and attributes

Now you can specify the port contract and attributes for a port interface as follows:

1. Double-click the port to display the Features window.

2. In the General tab, click the Behavior and/or Reversed radio buttons to set the wanted
Attributes. Click Apply to save the changes and keep the window open.

3. Select the Contract tab.

4. Select the Provided folder icon and click the Add button. The Add new interface window
opens.

5. Select In or another option from the pull-down list, then click Apply to save the changes
and leave the window open.

6. Select the Required folder icon and click the Add button. Select Out or another option
from the drop-down list.

7. Click OK.
Rational Rhapsody automatically adds the provided and required interfaces.

8. Click OK.
Rational Rhapsody 1271

Systems engineering with Rational Rhapsody
Parametric diagrams
Parametric diagrams show mathematical relationships (such as performance constraints) among
the pieces of the system being designed. These diagrams are only available if you are using the
SysML profile for your project. Parametric diagrams have the following general uses:

� Indicate the relationships for the objective analysis of functions
� Measure effectiveness
� Clarify the relationship between one variable and another

Parametric Diagrams cannot exist in isolation. They are created using model elements called
constraint blocks that define generic or basic mathematical formulas. See the example of a
completed parametric diagram in Security System Total Installation Costs for X number of units.

Security System Total Installation Costs for X number of units

To illustrate another possible use for a parametric diagram, a set of constraint blocks could define
the volume of a tube, a disc, and the formula for an objects mass (Volume*Density). The
parametric diagram would show how these constraint blocks combine, in a particular usage as a set
of constraint properties, to give the mass of, perhaps, a tin can or a hollow cylindrical container
based upon a set of input parameters. Constraint blocks are created within a block definition
diagram, as described in Creating a block definition diagram.
1272 User Guide

Parametric diagrams
Parametric diagram drawing tools

A parametric diagram has the following drawing tools:

Drawing
Tool Name Definition

ConstraintBlock Defines restrictive properties controlling the relationships of blocks.

ConstraintProperty Defines the usages of a Parametric Constraint Block so that the blocks can
be reused with changes to the usage of the property, but without any
changes to the underlying equations.

Package Draws a group of parts or blocks to form a single element of the model.

Block Draws an instance of a class that can belong to packages and parts.

Part Draws a major component of the model.

ConstraintParameter Defines a characteristic of a semantic condition or restriction.

Binding Connector Binds the data to the constraint.

Satisfaction Explains how problem will be overcome. It usually includes the key element
or design feature that solves the problem.

Allocation Allows a systems engineer to denote the mapping of elements within the
structure of a model.

Dependency Indicates a dependent relationship between two items in the diagram.
Rational Rhapsody 1273

Systems engineering with Rational Rhapsody
Creating the constraint block

Parametric diagrams are based upon constraint properties. Constraint properties can only be
created from constraint blocks. To create a constraint block in a block definition diagram:

1. Right-click the package in the browser where you want the diagram to be created and then
select Add New > Diagrams > Block Definition Diagram.

2. Click the Constraint Block button above the window and place the Constraint Block
on the block definition diagram.

3. Rename the new block using the Features window.

4. Since constraints can only be added to an element in the browser, right-click the constraint
block and select Locate. This navigates to that block in the browser.

5. Right-click the block and select Add New > General Elements > Constraint. This
specifies the relationship between the constraint parameter and the block.

6. Open the Constraint Features window and rename the constraint. Click Apply.

7. In the Specification of the constraint, add the appropriate mathematical relationship, that
is, Volume=B*D*H. Click Apply and the constraint features appear in the constraint
block.

8. Add attributes to the constraint block if there are any constants that the constraint formula
might use, for example g which is 9.81 M/s2. Click OK to close the window and save the
Features you entered.

9. Add constraint parameters for the variables in the constraint formula. This is also
accomplished from the browser. Right-click the constraint block and select Add New >
Constraint Blocks > ConstraintParameter. Rename the parameter in the Features
window.

10. The constraint parameter might be typed with an SI unit by opening its Features window
and then selecting Type. From the pull-down menu, scroll to the top and select
<<Select>>, navigate through the package tree to the SysML profile, and locate the
ModelLibrary unit definitions. Select the correct unit definition.

11. The constraint parameter with its type then displays on the constraint block. New
constraint parameters can be added to the constraint block directly from the constraint
parameters section of the browser hierarchy. Repeat the constraint parameter definition
steps (9–11) for each variable element in the constraint.

Note
Typically, constraint parameters are not shown on constraint blocks. To hide the parameters,
right-click the constraint block and select Ports > Hide All Ports.
1274 User Guide

Parametric diagrams
Creating the parametric diagram

Constraint properties show how a constraint block is used, and the parametric diagram illustrates
this usage. To define a parametric diagram, first create a constraint property and then “type” it with
the constraint block.

To create a parametric diagram for a constraint block:

1. From the appropriate package in the browser, right-click the package and select Add
New > Diagrams > Parametric.

2. From the Diagram Tools, select ConstraintProperty .

3. Drag and drop the Constraint Property onto the diagram.

4. Open the Features window and set its Type to the correct Constraint Property.

5. Rename the Property to its usage.

6. Repeat for other relevant blocks for the calculation. Each block has a set of Constraint
Parameters which show relationships between the blocks when they are joined together
with Binding Connectors.

7. Next you need to add new pieces of data needed in the parametric diagram to bind the
parametrics.

8. Double-click a part and select Features and then the Attributes tab.

9. Click the <<New>> item and add mathematical attributes with the correct name and
appropriate type.

10. Click OK.

11. Drag the data attributes from the browser onto the parametric diagram and connect it to
the appropriate constraint parameter with a value binding.
Rational Rhapsody 1275

Systems engineering with Rational Rhapsody
Binding constraint properties together

To show how the data is bound to each constraint, you need to add constraint parameters and
binding connections to the parametric diagram:

1. Click the ConstraintParameter button on the Diagram Tools and draw this
connection point on a constraint.

2. Click the BindingConnnector button and draw the connection between the data
source and the constraint to bind a value to its constraint.

Adding equations

To add the required equations to the constraints:

1. Right-click on a constraint to display the Features window.

2. Type the equation in the Description area and click OK to save the equation and close the
window.

3. To display the equation in the constraint, right-click it and select Display Options from
the menu.Click the Compartments button.

4. Select Description form the Available list and click the Display button to move it to the
Displayed column. Click OK to save this change. You might want to perform this action
on each of the boxes containing an equation.
1276 User Guide

Implementation using the action language
Implementation using the action language
In order to show actions in a model, the designer needs an implementation language. Rational
Rhapsody includes an Action Language, a subset of C++ that uses a C++ compiler to allow you to
simulate the model. This language provides the following actions:

� Message passing
� Data checking
� Actions on activity flows
� General model execution

To learn the Action Language, examine the Basic syntax rules first. Then review the Action
language reference for more details.

Basic syntax rules

This streamlined version of C++ has these basic syntax rules:

� It is case-sensitive, so “evGo” is different from “evgo.”
� Names must follow these rules:

– No spaces (“Start motor” is not correct.)
– No special characters other than underscore (“_”) (“StartMotor@3” is not

correct.)
– Must start with a letter, can’t start with an underscore (“2ToBegin” is not

correct.)
� All statements must end in a semicolon
� Do not to use Reserved words such as id, for, next.
Rational Rhapsody 1277

Systems engineering with Rational Rhapsody
Frequently used statements

To add some simple operations to your model, you can use the following statements:

� These increment/decrement operators provide standard functions:
– X++; (Increment X)
– X--; (Decrement X)
– X=X+5; (Add 5 to X)

� To print out on the screen, use one of these:
– cout << “hello” << endl;
– cout << attribute_name << endl;
– cout << “hello : “ << attribute_name << endl;

Reserved words

The Action Language reserved words are listed below. All reserved words for built-in functions
are lower case, for example, if.

asm continue float int params sizeof typedef

auto default for IS_IN private static union

break delete friend IS_PORT protected struct unsigned

case do GEN long public switch virtual

catch double goto new register template void

char else id operator return this volatile

class enum if OPORT short throw while

const extern inline OUT_PO
RT

signed try
1278 User Guide

Implementation using the action language
Assignment and arithmetic operations

The following are the the assignment and arithmetic operations available in the action language:

Defining an action using the action language

To define action states, Rational Rhapsody provides an action language that is a subset of C++. To
define an action:

1. Double-click an action state, or right-click and select Features.

2. Type action language into the Action box, as shown in this example of an action language
instruction:

OUT_PORT(mm_cc)->GEN(RegistrationReq);

3. Click OK.

X=1; Sets X equal to 1

X=Y; Sets X equal to Y

X=X+5; Adds 5 to X

X=X-3; Subtracts 3 from X

X=X*4; Multiplies X by 4

X=X/2; Divides X by 2

X=X%5; Set X to remainder of X divided by 5

X++; Adds 1 to X

X--; Subtracts 1 from X
Rational Rhapsody 1279

Systems engineering with Rational Rhapsody
Checking action language entries

After entering action language into several models, it is useful to check those entries using the
Rational Rhapsody search facility.

To check your action language entries:

1. Select Edit > Search in Model.

2. Type a portion of the instruction that you want to use for the search in the Find What box.

3. Click Find. Rational Rhapsody lists all of the locations where it found that search item.

4. Click on the entries in the list of elements found, and the system displays the diagram
containing that entry and the window with the full action language content. Make any
corrections that are needed.
1280 User Guide

Implementation using the action language
Action language reference

This section lists each of the action language commands with its definition and syntax.

Printing
Use the following action language commands to control print operations within an application.

Using printf

printf(format, arg1,…,arg_n)

Prints arguments utilizing format specified.
Format is %type, where type is: c character s string d decimals f float

Examples:

Using cout

cout << "Str_1" << Var_1 <<…<< endl;

(Prints items listed between cout and endl)

Example:

cout << "the value of X is" << X << endl;

In this example, if X equals 5, then the output will be: the value of X is 5

Syntax Output

printf ("Characters: %c %c \n", 'a', 65); Characters: a A

printf ("Decimals: %d %ld\n", 1977,
650000);

Decimals: 1977 650000

printf ("floats: %f \n", 3.1416, 4.67); Floats: 3.1416 4.67

printf ("%s \n", "A string"); A string
Rational Rhapsody 1281

Systems engineering with Rational Rhapsody
Comparison operators
X==5;

(Is X equal to 5)

X!=Y;
(Is X not equal to Y)

X<3;
(Is X less than 3)

X<=12;
(Is X<=12)

X>Z;
(Is X greater than Z)

X>=34;
(Is X greater than or equal to 34)

X>Y && X<7
(Is X greater than Y and X less than 7)

X>Y || X<7
(Is X greater than Y or X less than 7)

Conditional statements
if (comparison expression) statement;else statement;

Single Statement Example:

if (X<=10) X++; else X=0;

(If X is less than or equal to 10 then add 1 to the value of X, otherwise set X to 0)

Multi Statement Example:

If (X<=10) {

X++;
printf ("%s \n", "X is less than 10");

} else {

X=0;
cout << "Finished" << endl;

}

1282 User Guide

Implementation using the action language
(If X is less than or equal to 10 then add 1 to the value of X, and print the statement "X is less than
10". Otherwise set X=0 and print the statement "Finished.")

Incremental looping
for (Variable=Start Value; Comparison Statement; increment/decrement Variable)

{ Statement; Statement;…}

(Execute the statements as long as the variable is true in the comparison statement, then increment
or decrement the variable. Variable starts at the defined Start Value.)

Example:

For (X=0; X<=10; X++) cout << X << endl;

(If X is less than or equal to 10, then print the value of X at that time, then increment X.)

Conditional looping
While (Conditional Statement)

{ Statement; Statement;…}

(Execute the statements as long as the conditional statement is true)

Example:

X=0;

while(X<=10) {

cout << X << endl;

X++;

}

(X starts with the value of 0. While X is less than or equal to 10, print the value of X, and then add
1 to the value of X.)
Rational Rhapsody 1283

Systems engineering with Rational Rhapsody
Launching block operations
Operation_Name(parm_1, …,parm_n);

(Launch the block operation Operation_Name with/without parameters.)

Examples:

go();

(Launch operation go without parameters)

min(x,y)

(Launch operation min with parameters X and Y)

Generating events
GEN(evName);

(Generate event evName and send to yourself.)

Examples:

GEN(evStart);

(Send event evStart to your own statechart)

GEN(evMove(10,X));

(Send event evMove with parameters 10 and X to have statechart respond.)

Generating port events
OUT_PORT (pName)->GEN(evName);

(Generate event evName and send it to the port pName)

Examples:

OUT_PORT(p2)->GEN(evStart);

(Send event evStart to port p2)

OUT_PORT(p2)->GEN(evMove(10,X));

(Send event evMove with parameters 10 and X to port p2)
1284 User Guide

Implementation using the action language
Referencing event parameters
params->event_parameter;

(references value of event_parameter)

Examples:

if (params->velocity <= 5)…

(Test value of parameter velocity for an event to see if less than or equal to 5.)

Testing port for an event
IS_PORT(port_name);

(Returns TRUE if event that caused current activity flow arrived through port port_name)

Examples:

if (IS_PORT(port_2))…

(Test to see if event that caused current activity flow arrived through port_2, result is TRUE if yes,
FALSE if no.)

Test to see if currently in a state
IS_IN(state_name);

(Returns TRUE if in state state_name)

Examples:

if (IS_IN(Accelerating))…

(Test to see if currently in state Accelerating. Result is TRUE if yes, FALSE if no.)
Rational Rhapsody 1285

Systems engineering with Rational Rhapsody
System validation
Rational Rhapsody enables you to visualize the model through simulation. Simulation is the
execution of behaviors and associated definitions in the model. Rational Rhapsody simulates the
behavior of your model by executing its behaviors captured in statecharts, activity diagrams and
textual behavior specifications. Structural definitions like blocks, ports, parts and links are used to
create a simulation hierarchy of subsystems.

Once you simulate the model, you can open simulated diagrams, which let you observe the model
as it is running and perform design-level debugging. You can perform the following tasks:

� Step through the model
� Set and clear breakpoints
� Inject events
� Create an output trace

It is good practice to test the model incrementally using model execution. You can simulate pieces
of the model as it is developed. This allows you to determine whether the model meets the
requirements and find defects early in the design process. Then you can test the entire model. In
this way, you iteratively build the model, and then with each iteration perform an entire model
validation.

Creating a component

A component is a level of organization that names and defines a simulatable component. Each
component contains configuration and file specification categories, which are used to build and
simulate model.

Each project contains a default component, named DefaultComponent. You can use the default
component or create a new component. In this example, you can rename the default component
Simulation, and then use the Simulate component to simulate the model.

To use the default component:

1. In the browser, expand the Components category.

2. Select DefaultComponent and rename it Simulation.
1286 User Guide

System validation
Setting the component features

Once you have created the component, you must set its features.

To set the component features:

1. In the browser, double-click Simulation or right-click and select Features. The
Component window opens.

2. The Executable radio button to set the Type.

3. If you used the common design package names, select Analysis, Architecture, and
Subsystems as the Selected Elements. These are the packages for which you create a
simulatable component. Do not select the Requirements package because you do not
simulate it.

4. Click OK.

Creating a configuration

A component can contain many configurations. A configuration includes the description of the
classes to include in code generation, and settings for building and Simulating the model.

Each component contains a default configuration, named DefaultConfig. In this example,
rename the default configuration to Debug, and then use the Debug configuration to simulate the
model.

To use the default configuration:

1. In the browser, expand the Simulate component and the Configurations category.

2. Select DefaultConfig and rename it Debug.
Rational Rhapsody 1287

Systems engineering with Rational Rhapsody
Preparing to Web-enable the model
The first step in Web-enabling a working Rational Rhapsody model is to set its configuration and
elements as Web-manageable and then to simulate, build, and run the model.

Note
You cannot webify a file-based C model.

Creating a Web-enabled configuration

In this example, create a new configuration and then set its features as follows:

1. Right-click the Configurations category and select Add New Configuration.

2. Type Panel.

3. Double-click Panel or right-click and select Features. The Features window opens.

4. Select the Initialization tab and set the following values:

� For the Initial instances box, select Explicit to include the classes which have
relations to the selected elements.

� Select Generate Code for Actors.
5. Click Apply to save these selections and keep the window open.

6. Select the Settings tab, and set the following values:

� Select Animation from the Instrumentation Mode pull-down list. Rational
Rhapsody adds instrumentation code to the simulated application, which enables
you to simulate the model.

� Select Web Enabling for Webify.
� If wanted, click the Advanced button to change the default values for the Webify

parameters. Rational Rhapsody opens the Advanced Webify iconkit Settings
window.

This window contains the following boxes, which you can modify:
– Home Page URL is for the URL of the home page
– Signature Page URL is for the URL of the signature page
– Web Page Refresh Period is for the refresh rate in milliseconds
– Web Server Port is for the port number of the Web server

� Select Real (for real time) as the Time model.
1288 User Guide

Preparing to Web-enable the model
� Select Flat as the Statechart Implementation. Rational Rhapsody implements
states as simple, enumerated-type variables.

Rational Rhapsody fills in the Environment Settings section, based on the compiler
settings you configured during installation. At this point the window should
resemble this example.

7. Click OK.
Rational Rhapsody 1289

Systems engineering with Rational Rhapsody
Selecting elements to Web-enable

To Web-enable the model, set the elements that you want to control or manage remotely over the
Internet using either the Rational Rhapsody Web Managed stereotype or the WebManaged
property. To select elements to Web-enable:

1. To locate the items you want to change, choose Edit > Search in Model. Type the name
into the Find What box and click Find. The search shows all instances of that text and
the browser path for each.

2. Double-click the item located under the Subsystems browser category.

3. In the Features window, select Web Managed from the Stereotype pull-down list.

4. Click OK.

5. Make the same change to the remaining three events to make them Web Managed.

Note
If the element already has an assigned stereotype, set the element as Web-managed using a
property. In the Properties tab, select WebComponents as the subject, then set the value of
the WebManaged property within the appropriate metaclasses to Checked.
1290 User Guide

Connecting to the Web-enabled model
Connecting to the Web-enabled model
Rational Rhapsody includes a collection of default pages that serve as a client-side user interface
for the remote model. When you run a Web-enabled model, the Rational Rhapsody Web server
automatically simulates a Web site including the file structure and interactive capability. This site
contains a default collection of simulated on-the-fly pages that refreshes each element when it
changes.

Note
You can also customize the Web interface by creating your own pages or by referencing the
collection of pages that come with Rational Rhapsody.

Navigating to the model through a Web browser

You can access a Web-enabled model running on your local machine or on a remote machine. In
this example, you will connect to the model on your local machine.

To connect to the Web-enabled model on your local machine:

1. Open Internet Explorer.

2. In the address box, type the following URL:

http://localhost

Other users on the same network can connect to your local model using the IP
address or machine name in place of localhost.

If you changed the Web server port using the Advanced Webify iconkit Settings
window, type the following code:

http://<localhost>:<port number>

In this URL, <localhost> is localhost (or the machine name or IP address of
the local machine running the MyProject model), <port number> is the port
specified in the Advanced Webify icon kit Settings window.

By default, the Parts Navigation page of the Rational Rhapsody Web user interface opens.

Note
If you cannot view the right-hand frame in Internet Explorer, go to Icons > Internet
Options > Advanced and clear the Use Java xx for <applet> check box.
Rational Rhapsody 1291

Systems engineering with Rational Rhapsody
Viewing and controlling a model

The Parts Navigation page provides easy navigation to the Web Managed elements in the model by
displaying a hierarchical view of model elements, starting from the top level aggregate. By
navigating to and selecting an aggregate in the left frame of this page, you can monitor and control
your model in the aggregate table displayed in the right frame.

Aggregate tables contain name-value pairs of Rational Rhapsody Web-enabled elements that are
visible and controllable through Internet access to the machine hosting the Rational Rhapsody
model. They can contain text boxes, combo-boxes, and Activate buttons. You can monitor the
model by reading the values in the dynamically populated text boxes and combo-boxes. You can
control the model by pressing the Activate button, which initializes an event, or by editing
writable text boxes.

Sending events to your model

You can simulate events in the Rational Rhapsody Web user interface and monitor the resulting
behavior in the simulated diagrams.

1. If the simulated sequence diagram is not already open, simulate it and click the Go button.

2. If the simulated statechart is not already open, simulate it.

3. If the simulated activity diagram is not already open, simulate it.

4. Resize the Rational Rhapsody Web user interface browser window so that you can view
the simulated diagrams while sending events to the model.

5. In the navigation frame on the left side of the browser, expand
ConnectionManagement_C[0], and click
ConnectionManagement_C::CallControl_C[0]

6. In the Rational Rhapsody Web user interface, click Activate next to the starting point in
the sequence diagram.

7. Open the simulated sequence diagram. Rational Rhapsody displays how the instances pass
messages.

8. The simulated activity diagram shows activity flows from the active state to the inactive
state.

You can continue generating events and viewing the resulting behavior in the simulated diagrams.
1292 User Guide

Importing DoDAF diagrams from Rational System Architect
Importing DoDAF diagrams from Rational System
Architect

Rational System Architect customers can import Rational System Architect DoDAF (non-ABM)
to use in a Rational Rhapsody project. The SA Importer is a Rational Rhapsody Add On requiring
a special license. The “SA Importer” requires type mapping between Rational Rhapsody and
Rational System Architect elements using an external mapping file. This allows the users to
modify the map to extend the import scope as wanted. The out-of-the-box scope of the import
information into Rational Rhapsody as SysML elements.

Mapping the import scope

The external map file ties Rational System Architect elements to Rational Rhapsody elements and
allows the users to analyze and adjust the imported data.

To map the import scope:

1. Locate the “SA Importer” map file (RhpSAMap.xml)in the Rational Rhapsody folder in the
AddOn\ProductIntegrator directory.

2. Edit this file, using any XML editor, to map the two Rational System Architect element
types to Rational Rhapsody elements.

� Relation type maps only relation elements such as flows, links or dependencies.
� Element type handles all other elements.

3. If two element types from the Rational System Architect are not sufficient, create new
map entries for the wanted types or create a default element mapping entry under the
default map.
Rational Rhapsody 1293

Systems engineering with Rational Rhapsody
Rational System Architect type mappings to Rational Rhapsody
This chart shows the supported Rational System Architect type mappings to the Rational
Rhapsody metaclasses:

Note: All elements that are not created through a direct mapping are mapped to
Comments and the related attributes are kept as Tags.

Adding a default map entry
To create a default element mapping entry:

1. Open the “SA Importer” map file (RhpSAMap.xml) in an XML editor.

2. Add the following element:

<element Rhapsody_MetaClass="Comment" SA_Type="*">

 <attribute Rhapsody_Field="Description"
SA_Property="Description"></attribute>

 <attribute Rhapsody_Tag="SAElementType"
SA_Property="TypeName"></attribute>

 </element>

This mapping converts all Rational System Architect elements, that are not mapped explicitly into
comments in Rational Rhapsody, with additional information from Rational System Architect
about their original type kept as Tags.

Rational System
Architect Type Rational Rhapsody Metaclass Comments

SV-1 diagram Package Direct mapping through a map file

System Node Block (SysML element) Direct mapping through a map file

System Entity Part (SysML element) Direct mapping through a map file

System Function Operation Final conversion is made by a post
processing script

System Interface Flow Direct mapping through a map file

System Data
exchange

Flow item Final conversion is made by a post
processing script

Data Element Attribute of a Part (a Part that stands
for System entity)

Final conversion is made by a post
processing script
1294 User Guide

Importing DoDAF diagrams from Rational System Architect
Importing the Rational System Architect elements

To run the SA Importer:

1. Launch Rational System Architect and load a DoDAF (non-ABM) encyclopedia.

2. Launch Rational Rhapsody.

3. Choose Tools > Import from System Architect. Rational Rhapsody launches the System
Architect selection window.

4. Highlight the Rational System Architect diagram of interest and click Next.
Rational Rhapsody 1295

Systems engineering with Rational Rhapsody
5. In the next window, select the Rational Rhapsody package where the diagram should be
placed in your Rational Rhapsody project. Click Import.

Only valid Rational Rhapsody elements are imported. The SA Importer puts the selected
diagram data into Rational Rhapsody under the selected package and maintains the element
hierarchy as it is in the Rational System Architect encyclopedia. The import operation also adds
SysML profile characteristics to the project, unless it was already a SysML profile project.

Converting imported data into a Rational Rhapsody diagram

To convert the imported data into a Rational Rhapsody diagram:

1. Right-click the package that contains the imported data from Rational System Architect
and select Add New and the SysML diagram type you want from the menu.

2. In the New Diagram window, enter the name of the diagram, select the Populate Diagram
check box, and click OK.

3. On the Populate Diagram window, select the elements you want to add to the new
diagram.

4. Click OK.
1296 User Guide

Importing DoDAF diagrams from Rational System Architect
Post processing mechanism for Rational System Architect users

You can use the post processing mechanism, SAIntegratorListenerPlug-in, to perform analysis
on the imported data. This Java plug-in is stored in the <Rational Rhapsody installation
path>\AddOn\ProductIntegrator\PostProcessing\SAIntegratorListenerPlugin. For more
information, see the readme.txt file in that folder.

Generating a Imported Elements report

To create an out-of-the-box SysML data flow report on the imported data:

1. Highlight the package holding the imported System Architect elements.

2. Choose Tools > ReporterPLUS > Report on selected package.

3. In ReporterPLUS, select to generate a Word or HTML report and use the
SysMLDataFlowInPackage.tpl report template.

4. Follow the instructions in the ReporterPLUS wizard to generate the report.
Rational Rhapsody 1297

Systems engineering with Rational Rhapsody
Integration with Teamcenter systems engineering
Rational Rhapsody allows you to use its modeling abilities in conjunction with Teamcenter
Systems Engineering from UGS.

The integration between the two tools allows you to work on the elements common to both
Teamcenter and Rational Rhapsody models, such as requirements, use cases, and actors, from
within either of the tools. Specifically, you can:

� Create a new Teamcenter design by importing an existing Rational Rhapsody model
� Generate Rational Rhapsody models from existing Teamcenter designs.
� Work on a project in Teamcenter, and then have the common elements updated

automatically the next time you open the corresponding model in Rational Rhapsody.
� Work on common elements in the framework of a Rational Rhapsody model and then save

the changes to the Teamcenter repository.

UML or SysML

Out of the box, you can use UML or SysML with the Teamcenter Interface and Rational
Rhapsody. For Systems Engineers, this means you can interactively exchange information
between Rational Rhapsody models using SysML and the Teamcenter Systems Engineering/
Requirements Management environment. For example, you can create and modify SysML
elements (such as block and activity) defined in the Rational Rhapsody SysML profile.

In addition to new term SysML elements, you can modify the provided ElementsMap.xml file to
map a Teamcenter element with a more domain-specific Rational Rhapsody element with one
stereotype. This stereotype can be one of the predefined types in Rational Rhapsody or a user-
defined stereotype.

To specify UML or SysML, you have to set the default in the ElementsMap.xml file, which
handles the mapping between Teamcenter and Rational Rhapsody elements.

1. Open the ElementsMap.xml file (found in the Rational Rhapsody installation path, for
example, <Rational Rhapsody installation path>\AddOn\TcSE) in a text editor.
1298 User Guide

Integration with Teamcenter systems engineering
2. Set either the RhapsodyUMLTcSEUML portion of the ElementsMap.xml file to be the
default or set the RhapsodySysMLTcSESysML portion of the file to be the default. Do
not set both as the default.

– For UML, the following figure shows RhapsodyUMLTcSEUML set as the
default (Default=“Yes”):

– For SysML, the following figure shows RhapsodyUMLTcSEUML set as the
default (Default=“Yes”):

Note: If SysML is specified as the default in the ElementsMap.xml file and the
Teamcenter design contains Rational Rhapsody SysML elements (meaning the
map file has elements that contain Rhapsody_Profile="SysML"), then when
you select Open Model or New Model in Teamcenter for Rational Rhapsody,
Rational Rhapsody SysML will be used. However, if your Teamcenter design
does not contain any Rational Rhapsody SysML elements, then Rational
Rhapsody UML will be used even if SysML is set as the default in the map file.
Rational Rhapsody 1299

Systems engineering with Rational Rhapsody
Prerequisites for working with Rational Rhapsody

The prerequisites for working with Rational Rhapsody are as follows:

� For each Teamcenter project where you would like to use Rational Rhapsody integration,
you must first import the provided Rational Rhapsody XML schema.
a. Right-click a Teamcenter project and select Import > Import Schema.

b. Navigate to the Rational Rhapsody installation folder path (for example, <Rational
Rhapsody installation path>\AddOn\TcSE\Server).

c. Select the appropriate schema:

– For UML, select Rhp_Integration_Schema.xml
– For SysML, select RhpSysML_Integration_Schema.xml

� Only Teamcenter users with Architect permission can use Rational Rhapsody integration
from within Teamcenter.

Importing a Rational Rhapsody model into Teamcenter

To create a new Teamcenter design by importing a Rational Rhapsody model:

1. In Teamcenter, right-click a folder and select Rhapsody > Import Model.

2. Select the appropriate Rational Rhapsody file.

A new Teamcenter design will be created, based on the relevant elements in the Rational
Rhapsody model. The Rational Rhapsody model will also be attached to the Teamcenter design.

Note
If a Rational Rhapsody model element does not have a corresponding type in Teamcenter,
but has children elements that do, these children elements will be ignored and will not be
added to the Teamcenter design.
1300 User Guide

Integration with Teamcenter systems engineering
Creating a Rational Rhapsody model from existing Teamcenter Project

To create a new Rational Rhapsody model from an existing Teamcenter project:

1. In your Teamcenter project, add the Rational Rhapsody elements that you would like to
use. (These elements are available after you have imported the provided Rational
Rhapsody XML schema; see Prerequisites for working with Rational Rhapsody.)

2. Right-click the relevant Teamcenter project folder and select Rhapsody > New Model.

3. Browse to where you want to save the Rational Rhapsody model.

A new Rational Rhapsody model is created, and all applicable elements in the folder are added to
the Rational Rhapsody model. The name of the new Rational Rhapsody project will be the same as
the name of the selected folder.

Note
If an element does not have a corresponding type in Rational Rhapsody, but has children
elements that do, these children elements will be ignored and will not be added to the
model.

Modifying shared elements from within Teamcenter

To modify elements shared with Rational Rhapsody from within Teamcenter:

1. In Teamcenter, right-click the relevant folder and select Rhapsody > Open Model.

Note: When the Rational Rhapsody model is opened, it is updated with any changes
that other users might have made to the Teamcenter database, or that you might
have made in Teamcenter before selecting Open Model.

2. Browse to where you want to save the Rational Rhapsody model.

3. Make your changes to the model.

4. Save your changes.
All changes made to shared elements will be applied to the corresponding Rational
Rhapsody project as well.
Rational Rhapsody 1301

Systems engineering with Rational Rhapsody
View corresponding Rational Rhapsody element
To view the corresponding Rational Rhapsody element for a given Teamcenter element:

1. Right-click the element in Teamcenter and select Rhapsody > Open Model.

2. Browse to where you want to save the Rational Rhapsody model.

Rational Rhapsody is launched and the relevant Rational Rhapsody model element is displayed.

Note
This feature works only for the following model elements: object model diagrams, use case
diagrams, collaboration diagrams, component diagrams, and sequence diagrams.

Modifying shared elements from within Rational Rhapsody
To modify shared elements from within Rational Rhapsody:

1. Make changes to the Rational Rhapsody model.

2. From Rational Rhapsody menu bar, select File > Synchronize with TcSE.

This saves any changes that were made to the Rational Rhapsody model and synchronizes the
Teamcenter project with the Rational Rhapsody model.

Because changes made through Rational Rhapsody might conflict with changes made by other
users to the Teamcenter database, any changes made from within Rational Rhapsody must be
merged with changes that might have been made by other users. This is done by using the Rational
Rhapsody Base DiffMerge feature. Each time the user opens the corresponding Rational Rhapsody
model, a “base” version is also copied to the client machine. When the user saves their changes,
Rational Rhapsody compares these changes and any changes contained in the current version from
the server against the “base” version. In a rare case, where conflicts are found between the
versions, these conflicts can be resolved using the Rational Rhapsody DiffMerge tool.

Limitations

Note the following limitations:

� Activity Flow, Flow, and Link relationships are not supported, as well as SysML new
terms applied to these types.

� Attribute and Operation types are not supported, as well as SysML new terms applied
to these types.

� The mapping between a Teamcenter element and a Rational Rhapsody element can only
contain one stereotype.
1302 User Guide

The MicroC profile
The MicroC profile provides capabilities that are designed for C applications that will run on
operating systems with very limited resources or systems with no operating system. These
capabilities include:

� extended execution model
� a highly-efficient execution framework
� modeling of network ports
� optimizations for static systems
� segmented memory support
� monitoring of application running on target

The extended execution model
The extended execution model is implemented via:

� An OXF, called mxf.
� Profile-specific code generation behavior
� Changes to the Rational Rhapsody standard Features window that allows you to provide

additional information for classes and objects.

MicroC code generation

The profile-specific code generation mechanism is used when the value of the property
General::Model::ExecutionModel is set to Extended. When you create a project based on the
MicroC profile, this is the default value for the property.

UI changes

When using the MicroC profile in a project, the Features window for classes and objects contains
additional fields that allow you to provide the additional information required for classes and
objects when using the extended execution model.
Rational Rhapsody 1303

The MicroC profile
The mxf
mxf is a derivative of the standard Rational Rhapsody OXF. Unused functionality, such as
cleanups and malloc’ed data, has been flagged out using compilation flags. The framework is also
MISRA98-compliant.

All data and containers are statically defined.

Modeling network ports
The MicroC profile contains two “new terms” whose purpose is to allow you to bind data elements
to signals on a bus:

� inNetworkPort - connects to an input signal from a bus
� outNetworkPort - connects to an output signal on a bus

Both of these types of1 network ports can be created in the browser and then be dragged to an
object model diagram. (If you have applied the ArchitectureDiagram stereotype to the diagram,
you can also create network ports by selecting the appropriate icon in the Diagram Tools.)

The following constraints apply to the creation of network ports:

� Network ports must be connected to a flow port on a Part, using a link.
� The network port must be of the same type as the flow port to which it is connected.

Adding a network port

To add a network port:

1. If you have applied the ArchitectureDiagram stereotype to the diagram, select the
appropriate icon in the Diagram Tools and drag it to the diagram.

If you are using an object model diagram without the ArchitectureDiagram stereotype:

a. In the browser, right-click he class that is the parent of the instance to which you will
be connecting the port and select Add New > General Elements > inNetworkPort
(or outNetworkPort).

b. Drag the network port to the relevant diagram.

2. Connect the network port to the flow port on the Part.

3. Open the Features window for the network port, and provide values for the various fields.
1304 User Guide

Optimizations for static systems
Features window for network ports

The Features window for network ports contains the following fields:

� Name - the name of the network port
� Stereotype - currently not supported
� Type - the type of the signal on the bus, for example, int.

Note: In terms of type, the two types of network ports support unidirectional atomic
types. This means that you cannot use non-atomic types, bi-directional ports, or
multiplicity other than 1.

For inNetworkPorts, the Features window also contains the following network access fields:

� Get API - the API call to use to get the signal from the bus
� Polling Mode - allows you to choose synchronous polling or periodic polling (in

synchronous, polling is handled by the execution manager that owns the network port in
the hierarchy)

� Polling Period (if Periodic mode is selected) - interval at which the port will poll the input
- in ticks

� Polling Delay (if Periodic mode is selected) - delay between system startup and the first
polling action - in ticks

For outNetworkPorts, the Features window also contains the following network access fields:

� Set API - the API call to use to set the signal value on the bus

Optimizations for static systems
The MicroC profile also includes the following optimizations that are geared to static systems:

� Direct Flow ports
� Direct Relations
� ROMable Application
� Initial Value for Instance Attribute

Direct flow ports

Direct flow ports are flow ports which result in generated code that has a higher level of
optimization than the code ordinarily generated by Rational Rhapsody for flow ports. This is done
by using a direct connection between the source and target rather than using an interface-based
Rational Rhapsody 1305

The MicroC profile
approach. The code is further optimized by connecting flow ports directly to a composition's inner
parts where relevant.

The generation of this optimized code for flow ports is controlled by the following properties
which are part of the MicroC profile, and are found under C_CG::Configuration:

� DirectFlowPorts - boolean property that turns the use of direct flow ports on/off
� DirectFlowPortsInitializingStyle - determines whether the flow ports are initialized at

runtime or compile-time
Note that the value of the property DirectFlowPortsInitializingStyle affects code generation
only if the property InitializingMode is set to ByCategory. Otherwise, the code generated is
determined by the value of the property InitializingMode.

By default, the use of direct flow ports is turned on when using the MicroC profile.

Note that the optimization used for direct flow ports can only be applied to atomic (unidirectional)
flow ports.

Direct flow ports differ from ordinary flow ports only in terms of the code generated. They are
subject to the same constraints as ordinary flow ports: attribute name must match flow port name,
type of the attribute in the sending and receiving objects must match.

Direct relations

The MicroC profile contains an option to generate optimized code for relations. When this
optimization is used, Rational Rhapsody does not generate setters and getters for relations, these
being unnecessary in static systems.

The generation of this optimized code for relations is controlled by the following properties which
are part of the MicroC profile, and are found under C_CG::Configuration:

� DirectRelations - boolean property that turns the use of direct relations on/off
� RelationInitializingMode - determines whether the relations are initialized at runtime or

compile-time
Note that the value of the property RelationInitializingMode affects code generation only if the
property InitializingMode is set to ByCategory. Otherwise, the code generated is determined
by the value of the property InitializingMode.

By default, the use of direct relations is turned on when using the MicroC profile.

This optimization for relation code can only be used for relations where each end has multiplicity
of no more than 1. For relations where multiplicity greater than 1 is used, Rational Rhapsody will
generate its standard code for relations (not the optimized code) regardless of the values of the
relevant properties.
1306 User Guide

Monitoring of application running on target
Monitoring of application running on target
The target monitoring feature adapts the Rational Rhapsody animation feature for use with targets
that have very limited resources.

This feature allows you to monitor the status of the application running on the target, but does not
allow you to provide input to the application.

Since communication is only one-way, this feature requires only minimal instrumentation code in
the application

Using target monitoring

Use of the target monitoring feature involves:

1. instructing Rational Rhapsody to generate the appropriate instrumentation code

2. configuring the communication between Rational Rhapsody and the application running
on the target

3. launching the monitoring process and viewing status in Rational Rhapsody

Generating instrumentation code
To have Rational Rhapsody generate the code required for target monitoring:

1. Open the Features window for the appropriate Rational Rhapsody configuration.

2. On the Settings tab, set the Instrumentation Mode to Animation.

3. Use the Advanced button to open the Advanced Instrumentation Settings window.

4. When the window opens, set Target Monitoring to On.

Now, when code is generated for this configuration, it will include the necessary instrumentation
code for monitoring the application on the target.

Configuring communication with application on target
In order to receive updates from the application running on the target, you have to set the
following properties to the appropriate values for your target:

� TargetProtocolBuildFlag - the protocol used by the target to send messages to Rational
Rhapsody (for example, RS232 on Star12, RS232 on Windows, TCP on Windows)

� OnHostMessageReaderDLL - the message reader to be used by Rational Rhapsody for
listening to messages from the target. For listening on RS232
Rational Rhapsody 1307

The MicroC profile
port,($OMROOT)\DLLs\SerialMessageReader.Dll. For TCP/IP protocol,
($OMROOT)\DLLs\TcpMessageReader.Dll.

� OnHostMessageReaderArguments - string of arguments for reading of messages by the
host running Rational Rhapsody. For SerialMessageReader.Dll, the argument format is
DeviceName:,BaudRate,DataBits,Parity,StopBits (for example, com1:,9600,8,n,1). For
TcpMessageReader.Dll, the string consists only of a single integer indicating the port to
listen on (if no changes were made to the file TargetMonitor.c, the default port is 24816)

Monitoring the application on the target
When using target monitoring, you should keep in mind that Rational Rhapsody does not control
the running application in any way, so any of the animation controls provided only serve to control
the display of incoming information by Rational Rhapsody. For example, you can pause the
display of status information by Rational Rhapsody and then resume the display of the incoming
information, even though the application itself keeps running on the target. The only way to
control the running of the application itself is to use the debugger that is controlling the application
on the target.

To monitor the application on the target:

1. To have the application pause at specific junctures, set breakpoints using the debugger
controlling the application.

2. On the Start Target Monitoring toolbar, click the Start Target Monitoring button. This
starts the translation proxy and puts Rational Rhapsody into animation mode. For
animation to function properly, you must click this button before starting the application
on the target via a debugger or other control.

3. To have Rational Rhapsody pause the display of incoming information at specific
junctures (regardless of the progress of the application), use the Breakpoints button on the
Animation toolbar.

4. Use the following buttons as required to control the display of data from the application:

– Animation Break - allows you to pause the display of information coming
from the target

– Go - after pause, allows you to resume updating of information display
– Go Step - after pause, allows you to resume updating of information display,

one step at a time (using standard Rational Rhapsody definition of “step”)
5. Click the Stop Target Monitoring button on the Animation toolbar to have Rational

Rhapsody exit animation mode.
1308 User Guide

Viewing MicroC properties
Viewing MicroC properties
The MicroC profile uses a set of properties, contained in the file MicroC.prp, for controlling its
various code optimization features and for controlling the target monitoring feature.

When using the MicroC profile, the list of filters used for viewing subsets of properties will
include an entry called MicroC Settings. When you select this option, the properties that relate to
the MicroC profile are displayed by category, with each category displayed on its own tab. This
categorization of the properties is controlled by the Dialog::All::PropertiesPerspectives
property.
Rational Rhapsody 1309

The MicroC profile
1310 User Guide

IBM Rational Rhapsody DoDAF Add On
The IBM Rational Rhapsody for Department of Defense Architectural Framework (DoDAF)
Add On provides industry standard diagrams and notations for developing DoDAF-compliant
architecture models. These diagrams and notations are easily communicated and understood by a
wide audience, greatly improving the comparability and communicability of architectures while
ensuring the interoperability of systems.

Rational Rhapsody for DoDAF Add On is a semantic framework for developing, representing, and
integrating architectures in a consistent way for applications for the Department of Defense (DoD).
For information on the Department of Defense Architectural Framework (DoDAF) Specification,
see the documents at www.defenselink.mil/cio-nii/cio/earch.shtml.

Rational Rhapsody for DoDAF Add On is part of the System Engineering Add-on component that
might have been added during the Rational Rhapsody installation process (according to your
Rational Rhapsody license). Or, if you purchased the Add On after your initial installation of the
Rational Rhapsody product, you must run the Add On separately with a license key. See the
Rational Rhapsody installation instructions and system requirements.

Note
If you want to import IBM Rational System Architect for DoDAF Add On diagrams as
Rational Rhapsody SysML diagrams, see Importing DoDAF diagrams from Rational System
Architect.

Rational Rhapsody for DoDAF Add On and profile
The Rational Rhapsody for DoDAF Add On includes a DoDAF Profile, a number of DoDAF
helper utilities, a DoDAF Reporter Template, a Microsoft Word Document Template file, a
Rational Rhapsody ReporterPLUS License, an image library with a set of public domain graphics
for military applications, and a tutorial.

To provide an effective Model Driven Development Solution for creating DoDAF-compliant
architectural models, use the Rational Rhapsody for DoDAF Add On together with Rational
Rhapsody in conjunction with a sound Systems Engineering Process and Methodology.

The Rational Rhapsody for DoDAF Add On is an independent process, but it also supports a
variation of the Harmony development process targeted at the development of DoDAF-compliant
Rational Rhapsody 1311

IBM Rational Rhapsody DoDAF Add On
architecture models. The Rational Rhapsody for DoDAF Add On is a template-driven solution that
can be customized and extended to meet specific customer requirements and development
processes.

By simulating the Rational Rhapsody model, the ability of an architecture to meet its operational
goals can be measured, and its effectiveness in comparison with other architecture models can be
observed. The operational scenarios captured as event traces can be executed against the model,
and the response of the architecture model can be recorded. In addition, using the automated
testing capabilities in Rational Rhapsody, robustness of an architecture model can be analyzed, and
a suite of functional verification tests can be generated from the model.

DoDAF views
DoDAF defines the following views:

� Operational view, which identifies what needs to be accomplished and who does it
� Systems view, which relates systems and characteristics to operational needs
� Technical view, which prescribes standards and conventions
� All View, which encompasses all of the other views as there are overarching aspects of

architecture that relate to the Operation, Systems, and Technical views

Operational view

The Operational view is a description of the tasks and activities, operational elements, and
information exchanges required to accomplish DoD missions. DoD missions can include both
military missions and business processes.

The Operational view contains graphical and textual elements that comprise an identification of
the operational nodes, assigned tasks and activities, and information flows required between
nodes. It defines the following aspects of communication:

� Types of information exchanged
� Frequency of exchange
� Tasks and activities supported by the information exchange

Operational views can describe activities and information exchanges at any level of detail and to
any breadth of scope that is appropriate. The detail level is driven by the information required to
perform the intended analyses. The kind of analysis you want to do determines what kind of
information and the level of detail you must put into the Operational view.
1312 User Guide

DoDAF views
Systems view

According to the Department of Defense, a “system” might be partially or fully automated and is
defined as “any organized assembly of resources and procedures united and regulated by
interaction or interdependence to accomplish a set of specific functions.”

The Systems view relates the system resources to the operational capabilities described in the
Operational view. Further detail of the information exchanges described in the Operational view is
provided in order to:

� Translate node-to-node exchanges into system-to-system transactions
� Communicate capacity requirements
� Show security protection needs

The Systems view describes systems and interconnections providing for, or supporting, DoD
functions. DoD functions include both warfighting and business functions.

The systems, shown in the Systems view, can be existing, emerging, planned, or conceptual,
depending on the purpose of the architecture effort. This view might be a reflection of the current
state, transition to a target state, or analysis of future investment strategies.

Technical view

The Technical view is the minimal set of rules governing system parts and elements. It governs the
following aspects of the parts:

� Arrangement
� Interaction
� Interdependence

The purpose of the Technical view is to ensure a system satisfies a specified set of requirements.

The Technical view provides the basis for the engineering specification of the systems in the
Systems view and includes technical standards. The Technical view is the engineering
infrastructure that supports the Systems view.

All views

All Views encompasses all of the other views as there are overarching aspects of architecture that
relate to the Operation, Systems, and Technical views.
Rational Rhapsody 1313

IBM Rational Rhapsody DoDAF Add On
Products included in the Rational Rhapsody for
DoDAF Add On

The following table lists the products that the Rational Rhapsody for DoDAF Add On includes.

Architecture
Product View Product Name Product Description

All Views Package AllViews This optional stereotyped
package allows you to add in AV
products and other views and
packages, if wanted.

AV-1 All Overview and
Summary
Information

This product is typically a text
(Word, FrameMaker, HTML)
document. You can add
AV-1documents and launch them
by clicking on them.

AV-2 All Integrated
Dictionary

This is a DoDAF-generated text
product (report).

Operational View Package This optional stereotyped
package is similar to the All View
product. It supports all the
operational products.

OV-1 Operational High-Level
Operational
Concept Graphic

This high-level graphical/ textual
description of the operational
concept allows you to import
pictures and other operational
elements, such as Operational
Nodes, Human Operational
Nodes, Operational Activities and
the relations among them.

OV-2 Operational Operational Node
Connectivity
Description

This product shows the
connections and flows among
operational nodes and operational
activities. If wanted, the behavior
of operational nodes and
operational activities can be
shown by adding OV-5, OV-6a,
OV-6b, and OV-6c diagrams.
These diagrams are the primary
source of information used by the
Rational Rhapsody for DoDAF
Add On to create the OV-3
diagram.
1314 User Guide

Products included in the Rational Rhapsody for DoDAF Add On
OV-3 Operational Operational
Information
Exchange Matrix

This product shows information
exchanged between nodes, and
the relevant attributes of that
exchange. OV-3 is generated from
the information shown in OV-2
and other operational diagrams.
This information is stored as a
CSV file and can be added to any
product.

OV-5 Operational Operational
Activity Model

This product details the behavior
of operational nodes or more
commonly, operational activities.

OV-6a Operational Operational Rules
Model

This product is a textual
description of “business rules” for
the operation. It is a controlled file.
One of three products used to
describe the mission objective.

OV-6b Operational Operational State
Transition
Description

This product is a statechart that
can be used to depict the behavior
of an operational element (node
or activity). One of three products
used to describe the mission
objective.

OV-6c Operational Operational Event
Trace Description

This product is a sequence
diagram that captures the
behavioral interactions among
and between operational
elements and (in the Harmony
process) captures the operational
contracts among them. One of the
three products used to describe
the mission objective.

OV-7 Operational Logical Data Model This product is a class diagram
that shows the relations among
Informational Elements (data
classes). This is similar to entity
relationship diagrams, but is more
powerful.

System View Package This optional stereotyped
package is similar to other views,
but contains system elements.

SV-1 Systems Systems
Interface
Description

This product is a diagram that
contains System nodes, systems,
system parts and the connections
between them (links). These can
be used with or without ports.

Architecture
Product View Product Name Product Description
Rational Rhapsody 1315

IBM Rational Rhapsody DoDAF Add On
SV-2 Systems Systems
Communications
Description

This product is a diagram that
shows the connections among
systems via the communications
systems and networks.

SV-3 Systems Systems-Systems
Matrix

This product is generated from the
information in the other system
views. SV-3 assumes that there
are links between items
stereotyped SystemNode,
System, or System Part and
represents these in an N2 diagram
(system-system matrix).

SV-4 Systems Systems
Functionality
Description

This product represents the
connection between System
Functions and Operational
Activities. The connection is made
by drawing a Realize dependency
line from the System Function to
the Operational activity on the
diagram. System Functions are
mapped onto the system
elements that support them by
making System Functions parts of
the system elements (that is,
System Functions are drawn
within the other system elements).
System elements can also realize
system functions. Note that here,
as in almost all the other views,
you can use Performance
Parameters (bound to their
constrained elements via anchors)
to add performance data. This is
summarized in SV-7.

SV-5 Systems Operational
Activity to
Systems
Function
Traceability Matrix

This product is a spreadsheet-like
generated view summarizing the
relations among system elements
(system nodes, systems and
system parts), system functions
that they support, and the
mapping to operational activities.

SV-6 Systems Systems Data
Exchange Matrix

This product shows the
information in the flows
(information exchanges) between
system elements. They might be
embedded flows (bound to the
links) or they might be flows
independent of links. This is a
spreadsheet-like generated
product.

Architecture
Product View Product Name Product Description
1316 User Guide

Products included in the Rational Rhapsody for DoDAF Add On
SV-7 Systems Systems
Performance
Parameters Matrix

This is a generated spreadsheet-
like product, showing all the
performance parameters and the
elements that they constrain.

SV-8 Systems Systems
Evolution
Description

This product is the system
evolution description. This is an
activity diagram (there is a
SystemProject element
stereotype to serve as the “base”
for this activity diagram). SV-8
depicts the workflow for system
development, object nodes for
products released, and
performance parameters for
things like start and end dates,
slack time, and so on.

SV-9 Systems Systems
Technology
Forecast

This product is a text document -
a stereotype of a Controlled File.

SV-10a,
SV-10b,
SV-10c

Systems Systems Rules
Model,
Systems State
Transition
Description,
Systems Event
Trace Description

These products are similar to the
OV-6a, OV-6b, and OV-6c
products, but they are separately
identified, even though they are
structurally identical.

SV-11 Systems Physical Schema This product is similar to the OV-7
class diagram. This product uses
a class diagram to show physical
schema (data representation).

Architecture
Product View Product Name Product Description
Rational Rhapsody 1317

IBM Rational Rhapsody DoDAF Add On
Rational Rhapsody for DoDAF Add On helper utilities
There are a number of helper utilities provided with the Rational Rhapsody for DoDAF Add On.
These precompiled helpers assist with common functions. They include helpers to generate the
derived products OV-3, SV-3, SV-5, SV-6, and SV-7.

To activate a helper, right-click the applicable model element and select a helper from the pop-up
menu. In the following figure, the model element selected is the top-level project folder:
1318 User Guide

Rational Rhapsody for DoDAF Add On helper utilities
The following table summarizes the helpers and the model elements for which they are available.
The Applicable To column indicates which model element you must right-click to make the
helper appear on the pop-up menu. For more information about the helpers, see Manually adding
the Rational Rhapsody for DoDAF Add On helpers.

Helper Name Applicable To

Setup DoDAF Packages DoDAF Project

Create OV-2 from Mission Objective Mission Objective

Create OV-6c from Mission Objective Mission Objective

Update OV-2 from OV-6c OV-6c Event Trace

Generate Service Based OV-3 Matrix DoDAF Project

Generate Data-Flow Based OV-3 Table DoDAF Project

Generate SV-3 Matrix DoDAF Project

Generate SV-5 Summary Matrix DoDAF Project

Generate SV-5 Full Matrix DoDAF Project

Generate Service Based SV-6 Matrix DoDAF Project

Generate Data-Flow Based SV-6 Table DoDAF Project

Generate SV-7 Table DoDAF Project

DoDAF Report Generator DoDAF Project
Rational Rhapsody 1319

IBM Rational Rhapsody DoDAF Add On
Setup DoDAF packages

The Setup DoDAF Packages helper is used to configure a new DoDAF project with helpers that
are useful in building a DoDAF-compliant architecture model. In addition to doing basic
configuration of the project, the helper creates a framework for the DoDAF project. This helper
also creates two (empty) OV-1s; one is meant to be “semantic free” and the other “semantic rich.”

Create OV-2 from Mission Objective

The Create OV-2 from Mission Objective helper is used to create an OV-2 Operational Node
Connectivity Description product, and associates the OV-2 with the selected mission objective.
Operational nodes can be dragged onto the diagram to represent the operational nodes in the OV-2.

Create OV-6c from Mission Objective

The Create OV-6c from Mission Objective helper is used to create an initial OV-6c Operational
Event Trace Description product, and associates the OV-6c with the selected mission objective.
The OV-6c includes the operational nodes associated with the mission objective as lifelines.

Update OV-2 from OV-6c

The Update OV-2 from OV-6c helper is used to add operational activity allocations, along with
needline and information exchanges after realizing the messages in an OV-6c diagram. Ports are
added to the operational activities, and interfaces created and attached to the ports. These
interfaces form the required and provided interface contracts between operational nodes.

Generate Service Based OV-3 Matrix

For information on the Generate Service Based OV-3 Matrix, see Generating the OV-3 Operational
Information Exchange Matrix.

Generate SV-3 Matrix

The Generate SV-3 Matrix is used to create a report that is based on the links between system
elements in SV-1s and SV-4s, whether or not ports are used or whether interfaces for those ports
are formally defined.

Generate SV-5 Summary Matrix

The Generate SV-5 Summary Matrix helper is used to create a summary to show a system function
or system element row if and only if there is a dependency to an operational element. The most
common dependency is Realization.
1320 User Guide

Rational Rhapsody for DoDAF Add On helper utilities
Generate SV-5 Full Matrix

The Generate SV-5 Full Matrix helper is used to create a report to show all system functions and
element.

Rational Rhapsody for DoDAF Add On Report Generator

The Rational Rhapsody for DoDAF Add On Report Generator helper generates a Microsoft Word
Document (.doc) file containing DoDAF architecture products from a Rational Rhapsody model.
The process of generating a document is largely push button, and requires minimal user
interaction. The content of the document is extracted from the Rational Rhapsody model created
by the user. The resulting document is organized as follows:

� AV-1 Overview and Summary Information
� AV-2 Integrated Dictionary
� OV-1 High Level Operational Concept Graphic
� OV-2 Operational Node Connectivity Description
� OV-3 Operational Information Exchange Matrix
� OV-5 Operational Activity Model
� OV-6a Operational Rules Model
� OV-6b Operational State Transition Description
� OV-6c Operational Event-Trace Description
� OV-7 Logical Data Model
� SV-1 Systems Interface Description
� SV-2 Systems Communications Description
� SV-3 Systems-Systems Matrix
� SV-4 Systems Functionality Description
� SV-5 Operational Activity to Systems Function Traceability Matrix
� SV-6 Systems Data Exchange Matrix
� SV-7 Systems Performance Parameters Matrix
� SV-8 Systems Evolution Description
� SV-9 Systems Technology Forecast
� SV-10a Systems Rules Model
� SV-10b Systems State Transition Description
� SV-10c Systems Event-Trace Description
Rational Rhapsody 1321

IBM Rational Rhapsody DoDAF Add On
� SV-11 Physical Schema
� TV-1 Technical Standards Profile

For more information on the Rational Rhapsody for DoDAF Add On Report Generator helper, see
Generating the DoDAF report from the architecture model.

Rational Rhapsody project for Rational Rhapsody for
DoDAF Add On configuration

You specify the Rational Rhapsody model elements that are to form the core views in the
generated DoDAF documentation. From these, other DoDAF products are derived. The Rational
Rhapsody model elements included in the Rational Rhapsody for DoDAF Add On generated
report are specified using stereotypes provided in the Rational Rhapsody for DoDAF Add On
profile. The DoDAF profile also provides tags that can be used to specify the location of external
data and graphics that should appear in the DoDAF products. The Rational Rhapsody for DoDAF
Add On includes a helper utility to create a Rational Rhapsody project with the DoDAF profile
preloaded so you.

Creating a Rational Rhapsody for DoDAF project

To create a Rational Rhapsody for DoDAF project:

1. Launch Rational Rhapsody and select File > New.

2. On the New Project window:

� Type in your project name.
� Specify a location.
� Select DoDAF as the Project Type from the list. You might also select one of the

Project Settings.
Note: This DoDAF type (or profile) is provided by the Rational Rhapsody for

DoDAF Add On in order to help you customize and extend the Rational
Rhapsody product to support a Domain Specific Language (DSL), which lets
you work with DoDAF terms, diagrams, and artifacts rather than UML terms,
diagrams, and artifacts.

3. Click OK.

4. If the folder you specified does not exist, you are asked if you want to create it. Click Yes.
1322 User Guide

Rational Rhapsody project for Rational Rhapsody for DoDAF Add On configuration
5. Expand the Packages and Profiles folders in the Rational Rhapsody browser, as shown in
the following figure.

Note: Profiles shown in your browser can vary depending on your site properties and
product licensing.

6. To initialize the Rational Rhapsody for DoDAF Add On project, right-click the top-level
project name (DoDAF_Project in the example) and select Setup DoDAF Packages, as
shown in the following figure:

Note: If you do not see Setup DoDAF Packages, see Manually adding the Rational
Rhapsody for DoDAF Add On helpers.
Rational Rhapsody 1323

IBM Rational Rhapsody DoDAF Add On
7. Click OK.

8. Look at your Rational Rhapsody browser and notice what Setup DoDAF Packages did
for your project. For example, expand the new Operational Views category until you see
the OV1-High-Level Graphic and OV-1 MIssion Concept mission object diagrams, as
shown in the following figure:
1324 User Guide

Rational Rhapsody project for Rational Rhapsody for DoDAF Add On configuration
Diagrams toolbar for a Rational Rhapsody for DoDAF project

The Diagrams toolbar, as shown in the following figure, provides quick access to the graphic
editors, where diagrams are created and edited. The DoDAF profile that you used to create your
Rational Rhapsody for DoDAF Add On project displays a Diagrams toolbar that is unique to this
profile. The available diagrams are represented as icons on the toolbar across the top of the
Rational Rhapsody window. To hide or display this toolbar, select View > Toolbars > Diagrams.

The following table shows all the diagram types with their icons, as displayed on the Diagrams
toolbar for a project created with the DoDAF profile. Note that there are no icons on the Diagrams
toolbar for the following diagrams:

� OV-3 is a derived product and is generated from the model.
� SV-3, SV-5, SV-6, and SV-7 are derived products and are generated from the model.
� AVs and TVs are controlled files and are added to the model.

Project Overview Diagram

OV-1: Hi Level Operational Graphic

OV-2: Operational Node Connectivity Diagram

OV-4: Organizational Relationships Diagram

OV-5: Operational Activity Diagram

OV-6a: Operational Rules Model

OV-6b: Operational State Transition Description Diagram

OV-6c: Operational Event-Trace Description Diagram

OV-7: Logical Data Model

SV-1: System Interface Description
Rational Rhapsody 1325

IBM Rational Rhapsody DoDAF Add On
SV-2: System Communication Description Diagram

SV-4: System Functionality Description Diagram

SV-8: System Evolution Description Diagram

SV-10a: Systems Rules Model

SV-10b: System State Transition Description Diagram

SV-10c: System Event-Trace Description Diagram

SV-11: Physical Schema Diagram
1326 User Guide

Rational Rhapsody project for Rational Rhapsody for DoDAF Add On configuration
DoDAF tags

The DoDAF profile allows for the application of tags to diagrams, elements, and relations. These
tags can be accessed from the Rational Rhapsody Browser or from the diagram, element, or
relation itself.

Accessing tags through the Rational Rhapsody browser
To access the tags from the browser:

1. Navigate to the applicable package stereotype by expanding the folders, as shown in the
following figure:

2. Double-click a tag to its Features window where you can view information applicable to
it, such as its description, as shown in the following figure:
Rational Rhapsody 1327

IBM Rational Rhapsody DoDAF Add On
Accessing tags from a diagram, element, or relation
To access a tag from a diagram, element, or relation itself:

1. Right-click the item you want in the Rational Rhapsody browser and select Features to
open its Features window.

2. To assign a value to a tag, on the Tags tab, click in the cell to the right of the tag select a
value from a drop-down list, as shown in the following figure:

Note: To add a tag locally (meaning for use only by the current element, use the
Quick Add group: Enter a name for the tag and a value, then click the Add
button.
1328 User Guide

Rational Rhapsody project for Rational Rhapsody for DoDAF Add On configuration
Generating the OV-3 Operational Information Exchange Matrix

The OV-3 Operational Information Exchange Matrix provides a detailed report of the information
exchange between operational nodes.

To automatically generate the OV-3 Matrix:

1. Right-click the top-level project folder (DoDAF_Project in the example) and select
Generate Service Based OV-3 Matrix, as shown in the following figure:
Rational Rhapsody 1329

IBM Rational Rhapsody DoDAF Add On
2. Enter the name for the OV-3 file, as shown in the following figure, and click OK.

3. Wait while the matrix file is generated. Click OK to dismiss the confirmation message.

4. The browser now reflects the changes made.
1330 User Guide

Rational Rhapsody project for Rational Rhapsody for DoDAF Add On configuration
Generating the DoDAF report from the architecture model

Using another helper, you can generate a Rational Rhapsody for DoDAF Add On report from the
architecture model that includes the following architecture products: AV-1, AV-2, OV-1, OV-2,
OV-3, OV-5, OV-6b, and OV-6c. The AV-2 is generated for you automatically from the
architecture model data. Keep in mind that the Rational Rhapsody model itself is a dynamic and
searchable AV-2 including all elements of the architecture model.

Note
You must already have the Microsoft products mentioned in this section. They are not
provide by the Rational Rhapsody DoDAF Add On or the Rational Rhapsody product.

To generate the Rational Rhapsody for DoDAF Add On report:

1. Right-click your top-level project folder on the Rational Rhapsody browser and select
DoDAF Report Generator, as shown in the following figure:
Rational Rhapsody 1331

IBM Rational Rhapsody DoDAF Add On
2. Wait while your files are generated.
The Rational Rhapsody for DoDAF Add On Report Generator window displays and
ReporterPLUS starts to load the model and generate the files. This process might take a
few minutes. When completed, Rational Rhapsody display where the files are stored,
which will be in the Rational Rhapsody project directory, as shown in the following
figure:

3. Click OK.

4. Look at the files generated.

� The document is formatted and displayed in Microsoft Word, as shown in the
following figure:
1332 User Guide

Limitations
� The OV-3 spreadsheet is saved as a worksheet in an Excel file
It is possible to navigate to the definition of any interfaces displayed in the OV-3 Matrix.
Double-click an interface name in the OV-3 Excel file or in the OV-3 Word document will bring
you to the corresponding definition of the interface in the AV-2 Data Dictionary. Use the Back
button in Word’s Web toolbar to return to the OV-3.

Note
The Word document can be converted to other formats including HTML and PDF using
third party software (not provided in Rational Rhapsody).

Limitations
The Rational Rhapsody for DoDAF Add On has the following limitation. To use a mapping
between Rational Rhapsody Diagrams (artifacts) and DoDAF Architecture products different than
the one described here, the Helper Program and ReporterPLUS Template must be modified.
Rational Rhapsody 1333

IBM Rational Rhapsody DoDAF Add On
Troubleshooting
This section provides you with information that you can use for troubleshooting purposes.

Verifying the Rational Rhapsody for DoDAF Add On installation

If you are having a problem with the Rational Rhapsody for DoDAF Add On or if it does not
appear in the Rational Rhapsody product as mentioned in this section, you should verify that it has
been added.

Use any of the following methods to verify that Rational Rhapsody for DoDAF Add On has been
added:

� See if there is a path to the Add On. From the Windows Start menu, select All Programs >
IBM Rational > IBM Rational Rhapsody version number > Rational Rhapsody
DoDAF Add On.

� See if the Add On has been included with the Rational Rhapsody product. Typically that
path would be <Rational Rhapsody installation path>\DoDAF Pack.

� Create a project in Rational Rhapsody using New > Project and see if DoDAF is available
from the Project Type (profile) pull-down menu.

If you find that the Rational Rhapsody for DoDAF Add On is not included in your system, then
you must add it. You need a license key for the Rational Rhapsody for DoDAF Add On if it is not
already a part of your Rational Rhapsody license.

If the Rational Rhapsody for DoDAF Add On is included in your system but you are having
problems with it, you might need to remove and then run the installation program for the Add On
to repair your software if it has been damaged.
1334 User Guide

Troubleshooting
Manually adding the Rational Rhapsody for DoDAF Add On helpers

Typically, when you add the Rational Rhapsody for DoDAF Add On, the installation program
automatically configures the Rational Rhapsody for DoDAF Add On helpers for you. The
following table summarizes the helpers and their settings:

Helper Name Command Arguments Applicable To

Setup DoDAF Packages <Path>\DoDAFPack.exe -dodaf -i DoDAF

Create OV-2 from Mission
Objective

<Path>\DoDAFPack.exe -dodaf -uc MissionObjective

Create OV-6c from Mission
Objective

<Path>\DoDAFPack.exe -dodaf -sd MissionObjective

Update OV-2 from OV-6c <Path>\DoDAFPack.exe -dodaf -d OV-6c

Generate Service Based OV-3
Matrix

<Path>\DoDAFPack.exe -dodaf -ov3m DoDAF

Generate Data-Flow Based
OV-3 Table

<Path>\DoDAFPack.exe -dodaf -ov3t DoDAF

Generate SV-3 Matrix <Path>\DoDAFPack.exe -dodaf -sv3 DoDAF

Generate SV-5 Summary
Matrix

<Path>\DoDAFPack.exe -dodaf -sv5short DoDAF

Generate SV-5 Full Matrix <Path>\DoDAFPack.exe -dodaf -sv5long DoDAF

Generate Service Based SV-6
Matrix

<Path>\DoDAFPack.exe -dodaf -sv6m DoDAF

Generate Data-Flow Based
SV-6 Table

<Path>\DoDAFPack.exe -dodaf -sv6t DoDAF

Generate SV-7 Table <Path>\DoDAFPack.exe -dodaf -sv7 DoDAF

DoDAF Report Generator <Path>\DoDAFPack.exe -dodaf -report Project
Rational Rhapsody 1335

IBM Rational Rhapsody DoDAF Add On
If you find that any of the Rational Rhapsody for DoDAF Add On helpers are missing from the
submenus in Rational Rhapsody, first make sure you have verified the Rational Rhapsody for
DoDAF Add On installation as described in Verifying the Rational Rhapsody for DoDAF Add On
installation. Once you have verified that it has been added, you can manually configure the helpers
using the instructions that follow. While verifying the installation, make sure you have noted the
path where the Rational Rhapsody for DoDAF Add On is located.

To add the Rational Rhapsody for DoDAF Add On helpers:

1. Open the Helpers window. Choose Tools > Customize.

2. On the Helpers window, use the New button to create a new helper, and enter the
appropriate helper name from the table above.

a. Set the Command, Arguments, and Applicable To boxes as listed for a helper on
the table above. For the command, replace <Path> with the path where your Rational
Rhapsody for DoDAF Add On is located.

b. Select the External program radio button and select the Show in pop-up menu
check box.

3. Click Apply.

4. If needed, configure another helper by using the above steps, or click OK to close the
Helpers window.
1336 User Guide

Troubleshooting
Correcting messages that appear as mission objectives

After updating the OV-2 from an OV-6c, you should check the OV-2 and make sure the messages
between nodes are correctly appearing as events. If you find a message going between operational
nodes displays in the OV-2 as an operation rather than an event, this indicates the message type
was not changed to Event in the OV-6c diagram. The following figure shows an example of
evJFMCCStandDownCompleted appearing with the private operation symbol , but should
have the event symbol .
Rational Rhapsody 1337

IBM Rational Rhapsody DoDAF Add On
To fix this problem:

1. Expand the Rational Rhapsody browser to see the operation under the appropriate
operational node. For example, expand the folder Project_1 > OperationalViews >
Operational View > Operational Nodes > JCS >Operations
>evDOCCStandDownCompleted.

2. Delete the operation by right-clicking the incorrect operation and selecting Delete from
Model.

3. Click Yes to confirm your action.

4. Open the OV-6c diagram and check all the messages with the message name in question.

Note: To spot the problematic message, make sure messages that connect operational
nodes have a hollow arrowhead , and mission objective messages (messages
that start and end on the same node) have a solid arrowhead .

5. To change the incorrect message, change the message type:

a. Double-click the message to open the Features window.

b. On the General tab, in Message Type box, select Event, as shown in the following
figure:
1338 User Guide

Troubleshooting
6. With the message selected, choose Edit > Auto Realize to realize the message.

7. Right-click OV-6c Two Phased Attack on the Rational Rhapsody browser and select
Update OV-2s from OV-6c. You have repaired the OV-6c and OV-2 diagrams, as shown
in the following.

View, caption, or table of figures is missing from document

If the final document does not include an OV-3 matrix, figure captions, or table of figures, the
macros in the DoDAFReportRTF.dot Word document template file are not being executed. Make
sure the security settings for Word are set to medium security to allow macros to be run. In Word,
you can change the security setting using Tools > Macro > Security.

Microsoft Word might prompt you to enable macros in the generated Rational Rhapsody for
DoDAF Add On report when it is opened. You will need to select Enable Macros button on this
window when you open the DoDAF report in order for the macros to run.
Rational Rhapsody 1339

IBM Rational Rhapsody DoDAF Add On
1340 User Guide

IBM Rational Rhapsody MODAF Add On
The United Kingdom’s Ministry of Defence Architecture Framework (known as MODAF)
provides standards for enterprise architecture.

Enterprise architecture is the practice of applying a comprehensive and rigorous method for
describing a current and/or future structure and behavior for an organization’s processes,
information systems, personnel, and organization sub-units, so that they align with the
organization’s core goals and strategic direction. It is effectively a structured approach to
describing how a business works or is intended to work so that it can reach its primary objectives.
Enterprise architecture is used typically by the military for capability procurement, by
governments, and by large businesses.

An architecture framework is a specification of how to organize and present an enterprise
architecture. It provides a means to present and analyze the enterprises problems. It does not
generally tell you how to do something. Architecture frameworks tend to consist of a standard set
of viewpoints that represent different aspects of an organization’s business as it relates to a
particular objective. In the context of MODAF, this implies a systems of systems approach as the
analysis is complex and wide-ranging.

Large organizations use MODAF because it enables and facilitates the management of complex
enterprise-wide implementations and promotes collaborative architecture development. While
MODAF provides an enterprise architecture framework, it is not an architecture. The
architecture is the result of using an architecture framework. Therefore, you must use MODAF in
conjunction with a knowledge management approach and process that can regulate both the
framework and the data.

For all organizations that use MODAF, a key feature of this framework is its goal to help estimate
and reduce costs across all projects involved with the enterprise. In the context of military
enterprises, the Ministry Of Defence (MOD) sees MODAF as key to the success of its Network
Enabled Capability (NEC) goal.

Large frameworks have collections called viewpoints that contain views (also known as products).
The viewpoints are inter-related and use elements of each others views. Modeling helps to manage
the complexity and retain consistency between the views.
Rational Rhapsody 1341

IBM Rational Rhapsody MODAF Add On
MODAF incorporates aspects of the widely used United States Department of Defense
Architectural Framework (known as DoDAF). However, MODAF extends the scope of DoDAF to
include viewpoints that reflect the interests of planners and procurement organizations. While
DoDAF has four viewpoints (Operational, Systems, Technical, and All Views), MODAF has six
with the addition of the Strategic and Acquisition viewpoints. MODAF uses the same views that it
shares with DoDAF, though some might work differently in MODAF. For more information on
DoDAF, see IBM Rational Rhapsody DoDAF Add On.

MODAF is defined as a UML profile. For details of the MODAF MetaModel (or M3, as it is
known), see http://www.modaf.org.uk/. Of the 35 views in MODAF, approximately 22 are
expressible in UML. The remaining views (except AcV-1 and AcV-2, which are not supported in
the IBM Rational Rhapsody for MODAF Add On) are either information that can be extracted
from the model using the Tables and Matrices functionality in Rational Rhapsody or are text
documents that can be added to the model.

For more information about MODAF, see the following Web sites:

� For technical and introductory material, go to http://www.modaf.org.uk. This Web site
contains the official online documentation for MODAF.

� For the history of MODAF, go to http://www.modaf.com.

Rational Rhapsody for MODAF Add On
The IBM Rational Rhapsody for MODAF Add On includes a MODAF profile, MODAF helper
utilities, a model library to enable customization of certain table/matrix views so that you can
define your own table/matrix view layouts and add your own custom table/matrix views, a
MODAF ReporterPLUS template, a Rational Rhapsody ReporterPLUS license, a set of icons, and
an image library with a set of public domain graphics for military applications. In addition, a
sample project is available in <Rational Rhapsody installation path>\MODAF
Pack\MODAF_ExampleModel.

The Rational Rhapsody for MODAF Add On might have been added during the Rational
Rhapsody installation process (according to your Rational Rhapsody license). Or, if you purchased
the Rational Rhapsody for MODAF Add On after your initial installation of the Rational
Rhapsody product, you must install it separately with a license key. You must use the Rational
Rhapsody installation wizard’s Modify option to install the Rational Rhapsody for MODAF Add
On after the initial Rational Rhapsody installation. See the Rational Rhapsody installation
instructions for installation instructions and any system requirements.

When you create a new project in Rational Rhapsody, you identify a project type by selecting a
profile, in this case, the MODAF profile. This means that you create your project so that it contains
model elements that are customized for your specific domain or purpose. See Configure a Rational
Rhapsody project for MODAF.
1342 User Guide

http://www.modaf.org.uk/
http://www.modaf.com/
http://www.modaf.org.uk/

MODAF viewpoints
To provide an effective Model Driven Development Solution for creating MODAF-compliant
architectural models, use the Rational Rhapsody for MODAF Add On together with Rational
Rhapsody in conjunction with a sound Systems Engineering Process and Methodology.

The Rational Rhapsody for MODAF Add On is process independent, but it can support a variation
of the Harmony development process targeted at the development of MODAF-compliant
architecture models. The Rational Rhapsody for MODAF Add On is a template-driven solution
that can be customized and extended to meet specific customer requirements and development
processes. For information about Harmony, see Harmony process and toolkit.

MODAF viewpoints
Large frameworks have collections of common views called viewpoints (for example, the Systems
viewpoint). Viewpoints are heavily interrelated as they use elements of each others views (for
example, the SV-1 view has an element called a System that can be used or referred to in many
other views).

Note that a view is also called a product.

The MODAF viewpoints are:

� All Views viewpoint. In both DoDAF and MODAF, and along with the Technical
viewpoint, All Views (AV) provides summary information for the architecture that
enables it to be indexed, searched, and queried. All Views encompasses all of the other
views as there are overarching aspects of architecture that relate to the Strategic,
Operation, Systems, Acquisition, and Technical viewpoints.

� Strategic viewpoint. Specific to MODAF, the Strategic viewpoint (StV) represents, in an
abstract manner, what you want to do over time. It documents the strategic picture of how
a capability (for example, a military capability) is evolving in order to support capability
deployment and equipment planning. The Strategic, Operational, and Systems viewpoints
have a layered relationship.

� Operational viewpoint. In both DoDAF and MODAF, the Operational viewpoint (OV)
documents the operational processes, relationships, and context to support operational
analyses and requirements development. The Operational, Strategic, and Systems
viewpoints have a layered relationship.

� Systems viewpoint. In both DoDAF and MODAF, the Systems viewpoint (SV) represents
how you plan to physically achieve your goals. It documents system functionality and
interconnectivity to support system analysis and through-life management (meaning it
relates systems and characteristics to operational needs). The Systems, Strategic, and
Operational viewpoints have a layered relationship.
Rational Rhapsody 1343

IBM Rational Rhapsody MODAF Add On
� Acquisition viewpoint. Specific to MODAF, the Acquisition viewpoint (AcV) is partly
derived from elements of the Strategic viewpoint and provides information for the
Operational and Systems viewpoints. The Acquisition viewpoint represents acquisition
program dependencies, timelines, and the status of MOD Defence Lines of Development
(DLOD, equivalent to U.S. Department of Defense DOTMLFPs) status so that the
various MOD programs are managed and synchronized correctly. Note that the AcV-1
and AcV-2 views are not supported in the Rational Rhapsody MODAF profile.

� Technical viewpoint. In both DoDAF and MODAF, and along with the All View
viewpoint, this viewpoint documents policy, standards, guidance, and constraints to
specify and assure quality expectations. It also covers all the other viewpoints.

The following illustration shows the MODAF viewpoints and how they relate to each other. In
addition, each viewpoint includes a listing of their views.

You create viewpoints and views as needed. Which viewpoint you start with is up to you. Note that
the viewpoints and their views do not have to be and are not expected to be created all at the same
time.
1344 User Guide

MODAF viewpoints
All Views viewpoint

The All Views viewpoint encompasses all of the other viewpoints as there are overarching aspects
of architecture that relate to the Strategic, Operational, Systems, Acquisition, and Technical
viewpoints. All Views records what has happened and what should happen going forward. It
provides a dictionary (through the AV-2 Integrated Dictionary view) for the architecture that
guides the current developers of the architecture and helps future developers understand the
framework going forward. This viewpoint is critical to the future success of the current MODAF
architecture and any future architecture. Therefore, you should always use the views in this
viewpoint for MODAF.

Typical stakeholders of the All Views viewpoint are enterprise planners.

Strategic viewpoint

The Strategic viewpoint is a description of the strategic picture of how capability (for example,
military capability) is evolving in order to support capability management and equipment
planning. It contains capability management and shows how capabilities map to operational
concepts over time. Its main intent is to analyze the areas of capability gaps, overlaps, and
redundancies, and to map capabilities to organizations and platforms. There is no reference to
implementation in this viewpoint.

Typical stakeholders of the Strategic viewpoint are high-level planners, policy makers, and
analysts.

Operational viewpoint

The views in the Operational viewpoint can describe activities and information exchanges at any
level of detail and to any breadth of scope that is appropriate in logical terms. The detail level is
driven by the information required to perform the intended analyses. The kind of analysis you
want to do determines what kind of information and the level of detail you must put into the
Operational viewpoint. The OV views re-use the capabilities defined in the StV views within
content of an operation or scenario. The OV views are used during the various point of an
enterprise’s lifecycle, including the creation of current and future requirements, and during the
planning phase for the operation.

Typical stakeholders of the Operational viewpoint are operation planners.
Rational Rhapsody 1345

IBM Rational Rhapsody MODAF Add On
Systems viewpoint

The Systems viewpoint relates the system resources to the operational capabilities described in the
Operational viewpoint. The views in the viewpoint describe the resources that help you archive the
intended capability. They describe the system resources available and their interactions with each
other. This includes the matter of human involvement in the operation of systems.

The systems shown in the Systems viewpoint can be existing, emerging, planned, or conceptual,
depending on the purpose of the architecture effort. This viewpoint might be a reflection of the
current state, transition to a target state, or analysis of future investment strategies.

A primary use of the views in the Systems viewpoint is to develop system solutions that address
user requirements and therefore system requirements.

Typical stakeholders of the Systems viewpoint are members of an organization’s acquisition group
and its associated suppliers.

Acquisition viewpoint

The Acquisition viewpoint details how the various identified systems will be acquired over time as
part of programs. This includes identifying dependencies among projects and capability
integration across DLODs (in military endeavors). Note that although you can create views for this
viewpoint, the Acquisition viewpoint’s AcV-1 and AcV-2 views are not supported in the Rational
Rhapsody for MODAF Add On.

Typical stakeholders of the Acquisition viewpoint are those involved in capability management
and acquisition.

Technical viewpoint

The purpose of the Technical viewpoint is to ensure a system satisfies a specified set of
requirements. The views in this viewpoint cover governance (standards, rules, policy, and so on)
for all aspects of the architecture.

The Technical viewpoint provides the basis for the engineering specification of the systems in the
Systems view and includes technical standards (though they do not have to be “technical”). The
Technical viewpoint is the engineering infrastructure that supports the Systems viewpoint.

Typical stakeholders of the Technical viewpoint are policy makers and those charged with
maintaining core interoperability standards.
1346 User Guide

Views Included in the Rational Rhapsody for MODAF Add On
Views Included in the Rational Rhapsody for MODAF
Add On

The following table lists the views (within their viewpoints) included in the Rational Rhapsody for
MODAF Add On.

For more information about these views, go to the official online documentation Web site for
MODAF at http://www.modaf.org.uk.

Architecture
Viewpoint/View View View Name Description

All Views Viewpoint Package The All Views viewpoint contains views
that provide overview and
nomenclature.

AV-1 All Overview and
Summary
Information

This view is typically a text document
(for example, Word, FrameMaker,
HTML) that provides overview and
summary information for the operations
and capabilities being considered for the
enterprise. It scopes the architecture
and gives it context. You can add AV-1
documents and launch them by clicking
on them.

AV-2 All Integrated
Dictionary

This view presents all the elements
used in an architecture as a standalone
structure, generally using a
specialization hierarchy. It should
provide a text definition for each one
and references the source of the
element (for example, MODAF
Ontology, IDEAS Model, local, and so
on).

Strategic Viewpoint Package The Strategic Viewpoint contains views
that detail military capabilities and how
they evolve to be used by various
organizations.

StV-1 Strategic Enterprise Vision This view defines the strategic context
for a group of enterprise-level
capabilities. It takes the overall
enterprise vision and goals of the
architects and enables them to relate
these to realizable capabilities. StV-1
used to be a textual document but is
now better represented in a more
structured format as UML structure or
class diagrams.
Rational Rhapsody 1347

http://www.modaf.org.uk/3Modelling/73/what-are-the-modaf-views#nogo

IBM Rational Rhapsody MODAF Add On
StV-2 Strategic Capability Taxonomy This view models capability hierarchies.
It enables users to organize capabilities
in the context of an enterprise phase,
showing required capabilities for current
and future enterprises. It specifies all the
capabilities that are referenced
throughout the current architecture and
possibly other reference architectures.
StV-2 is realized using UML structure or
class diagrams.

StV-3 Strategic Capability Phasing This view shows when capabilities are
expected to be used. It maps
capabilities to time periods. It is also
used to perform gap/overlap and
redundancy analysis.
StV-3 shows a customized table view,
with the user defining the time periods.

StV-4 Strategic Capability
Dependencies

Similar to StV-2, this view shows the
capability dependencies and logical
groupings of capabilities (capability
clusters) of the capabilities described in
the StV-2.
StV-4 is realized using UML structure or
class diagrams.

StV-5 Strategic Capability to
Organization
Deployment Mapping

This view details what capabilities are
mapped to what systems at any
particular time and the fulfilment of
capability requirements, in particular by
network-enabled capabilities. Use this
view to perform gap/overlap analysis
and interoperability analysis, validate
that capabilities have been realized in
Systems, and help provide system
requirements documents (SRDs) for
Systems views.
StV-5 is realized using UML class or
structure diagrams.

Architecture
Viewpoint/View View View Name Description
1348 User Guide

Views Included in the Rational Rhapsody for MODAF Add On
StV-6 Strategic Operational Activity
to Capability
Mapping

This view describes the mapping
between the capabilities required by an
enterprise and the operational activities
that those capabilities support. Use this
view to map capabilities to Operations
and ensure that all capabilities are
fulfilled and can be traced to Operational
Activities.
StV-6 is derived from UML class
diagrams with dependencies. It can be
completed once you have done some of
the Operational views.
StV-6 is a major reason to use tables/
matrix layouts and views in Rational
Rhapsody.

Operational
Viewpoint

Package The Operational viewpoint contains
views that provide a logical view of how
an operation is carried out.

OV-1 Operational OV-1 consists of three parts: OV-1a,
OV-1b, and OV-1c. The OV-1 views are
realized using UML use case diagrams.

OV-1a Operational High-Level
Operational
Concept Graphic

This high-level graphical presentation of
the operational concept allows you to
import pictures and other operational
elements, such as Operational Nodes,
Human Operational Nodes, Operational
Activities, and the relations among
them. It is intended to be an informal
representation of the Concept of
Operations (CONOPS).

OV-1b Operational Operational
Concept Description

This view presents a textual description
for OV-1a and it is produced with the
associated OV-1a.

OV-1c Operational Operational
Performance
Attributes

This view presents in tabular form the
details for the operational performance
attributes associated with the scenarios
represented in OV-1a and their
evolution over time.
OV1-1a contains performance
parameters that define quality of service
requirements.

Architecture
Viewpoint/View View View Name Description
Rational Rhapsody 1349

IBM Rational Rhapsody MODAF Add On
OV-2 Operational Operational Node
Relationships
Description

This view shows the detailed
relationships and flows among
operational nodes and operational
activities. It also might be used to
express a capability boundary, that is,
the problem domain.
OV-2 is realized using UML class or
structure diagrams.

OV-3 Operational Operational
Information
Exchange Matrix

This view, presented as a matrix, shows
information exchanged between nodes,
and the relevant attributes of that
exchange.
OV-3 can be derived from OV-2 and is
generated using the table and matrix
functionality.

OV-4 Operational Organizational
Relationships Chart

This view shows an organizational chart
for the enterprise. It is divided into two
types, a typical chart and an actual
chart.
OV-4 is realized for using UML class or
structure diagrams.

OV-5 Operational Operational
Activity Model

This view shows the flow and ordering
of activities required to achieve the
operational capability.
OV-5 is a lower-down version of OV-2
and is realized using UML activity
diagrams.

OV-6a Operational Operational Rules
Model

The OV-6 views are used to describe
the textual rules that control and
constrain the mission (for example,
doctrine, rules of engagement, and so
on). They are represented as
operational constraints placed upon
operational view model elements.
The actual rules and to which elements
they are applied are shown in a UML
structure or class diagram and then
shown in a table.

OV-6b Operational Operational State
Transition
Description

The OV-6 views are used to describe
the mission objective.
OV-6b view depicts the behavior of an
operational element (node or activity).
OV-6b is realized using UML
statecharts.

Architecture
Viewpoint/View View View Name Description
1350 User Guide

Views Included in the Rational Rhapsody for MODAF Add On
OV-6c Operational Operational Event-
Trace Description

The OV-6 views are used to describe
the mission objective.
OV-6c shows the messages and
ordering of messages passing between
operational nodes.
OV-6c is realized using UML sequence
diagrams.

OV-7 Operational Information Model This view shows the structures of the
data that are being passed between
elements.
OV-7 is realized using UML class
diagrams that define the data, its
composition and types.

System Viewpoint Package The System viewpoint contains views
that look at how Operations are
physically implemented. They are used
as input to SRDs, detail how platforms
interact, and are the physical realization
of capabilities in StVs.

SV-1 Systems Resource
Interaction
Specification

This view shows what your resources
are and how they interact with each
other. This includes the human
elements of your enterprise, such as
roles, posts, and organizations; as well
as physical elements, such as systems
and platforms. This view is generally
used for the definition of systems
concepts/options, interface definitions,
interoperability analysis, and operational
planning.
SV-1 is realized from using UML
structure or class diagrams.

SV-2a Systems Systems
Port Specification

The SV2 views are all related to
communication and can be realized
using UML structure and class
diagrams.
SV-2a specifies the ports (specified
points of interaction) that a system has
and defines the protocols that a port
might use.

SV-2b Systems Systems
Port Connectivity
Description

The SV2 views are all related to
communication and can be realized
using UML structure and class
diagrams.
SV-2b shows the interaction of ports
between systems. SV-2b is very similar
to SV-1 but with protocols and networks
included.

Architecture
Viewpoint/View View View Name Description
Rational Rhapsody 1351

IBM Rational Rhapsody MODAF Add On
SV-2c Systems Systems
Connectivity Clusters

The SV2 views are all related to
communication and can be realized
using UML structure and class
diagrams.
SV-2c defines how individual
connections between systems are
grouped into logical connections
between parent resources.

SV-3 Systems Resource Interaction
Matrix

This view tells you what communicates
with what. It is generated from the
information from SV-1. SV-3 shows the
lines of communication between
systems as an N2 diagram
(system-system matrix). It indicates
source (provider of information) and sink
(consumer of information) of data flows.

SV-4 Systems Functionality
Description

This view defines the functional
decomposition of a system or function. It
can be used to show how functions
interact to perform a higher-level
function. SV-4 provides the functional
requirements from the SRDs.
SV-4 can be realized by using UML
activity diagrams.

SV-5 Systems Function to
Operational
Activity
Traceability Matrix

This view is a spreadsheet-like
generated view that summarizes the
mapping of System and Systems
functions to Operations, helps identify
missing System functions, and provides
traceability links between URDs and
SRDs.
This matrix is derived from UML class
diagrams that have dependencies that
link systems resources or functions to
operations.

SV-6 Systems Systems Data
Exchange Matrix

Similar to SV-3 but for system data, this
view details source-sink, protocols,
content, and so on, of all data items. It
helps specify interoperability
requirements.
SV-6 is derived from information
captured as attributes in the model. It is
customizable depending upon the
information required by the user of the
architecture.

Architecture
Viewpoint/View View View Name Description
1352 User Guide

Views Included in the Rational Rhapsody for MODAF Add On
SV-7 Systems Resource
Performance
Parameters Matrix

This is a generated spreadsheet-like
view that defines the quality of service
requirements expected of each part of
the system.
SV-7 can be derived from a UML
requirements diagram or attributes
associated with model elements. This
view is customizable by the user.

SV-8 Systems Capability
Configuration
Management

This view is the system evolution
description. It describes how the system
or architecture is expected to evolve
over long periods of time.
SV-8 is similar to StV-3.
SV-8 can be realized as an UML class
or structure diagram.

SV-9 Systems Technology and
Skills Forecast

This view is a customizable table (it
depends on user-defined time periods)
that details what technology will be
available in the near future. It touches
upon system evolution, capability
phasing, and acquisitions.

SV-10a Systems Resource
Constraints
Specification

This view specifies functional and
non-functional constraints on the
implementation aspects of the
architecture (that is, the structural and
behavioral elements of the SV
viewpoint).
These elements are mapped to each
other on a class or structure diagram
and shown in a set of table views.

SV-10b Systems Resource
State Transition
Description

This view shows state-based behavior,
of the system resources to various
events. For consistency, the state-based
behavior should map to the aggregate
behavior of all the flows shown in
SV-10c.
SV-10b is realized using UML
statecharts.

SV-10C Systems Resource Event-
Trace Description

This view provides a time-ordered
representation of all the message and
event interaction that occur between the
various systems resources. These
diagrams are focussed around specific
scenarios.
SV-10c is realized using UML sequence
diagram.

Architecture
Viewpoint/View View View Name Description
Rational Rhapsody 1353

IBM Rational Rhapsody MODAF Add On
SV-11 Systems Physical Schema This view is similar to OV-7 and it
defines data used at the physical level
(data relationships, structure, attributes),
optimizes data structures, and specifies
interfaces and data types.
SV-11 is realized in UML class
diagrams.

Acquisition Viewpoint Package It contains elements associated with the
Acquisition viewpoint that are used by
other views in the Rational Rhapsody
MODAF profile.
Note that the AcV-1 and AcV-2 views
are not supported in the Rational
Rhapsody MODAF profile.

Technical Viewpoint Package The Technical viewpoint contains views
that detail technical standards that
constrain the system development.

TV-1 Technical Standards Profile TV-1 presents the current technical and
non-technical standards, guidance, and
policy applicable to the architecture.
Note that TV-1 can be a very large
external document that is brought into
the model or it can created as a
customizable table that maps elements
representing standards to model
elements.

TV-2 Technical Standards Forecast This view identifies the standards under
development with expectations going
forward. TV-2 can be seen in a
customizable table that relates
standards to time periods.

Architecture
Viewpoint/View View View Name Description
1354 User Guide

Configure a Rational Rhapsody project for MODAF
Configure a Rational Rhapsody project for MODAF
You specify the Rational Rhapsody model elements that are to form the core views in the
generated MODAF documentation. From these, other MODAF views are derived. The Rational
Rhapsody model elements included in the MODAF generated report are specified using
stereotypes provided in the MODAF profile.

Creating a Rational Rhapsody for MODAF project

To create a Rational Rhapsody for MODAF project:

1. Launch Rational Rhapsody and choose File > New to open the New Project window.

2. On the New Project window:

� Enter a project name (for example, MODAF_Project, as shown in the following
figure).

� Specify a folder location.
� As the project type, select MODAF from the Project Type drop-down list. You

might also want to select one of the Project Settings.
Note: The MODAF project type (or profile) is provided by the Rational Rhapsody for

MODAF Add On in order to help you customize and extend the Rational
Rhapsody product to support a Domain Specific Language (DSL), which lets
you work with MODAF terms, diagrams, and artifacts rather than UML terms,
diagrams, and artifacts.

3. Click OK.
Rational Rhapsody 1355

IBM Rational Rhapsody MODAF Add On
4. If the folder you specified does not exist, click Yes to create it. Rational Rhapsody creates
the project and opens with the initial view, as shown in the following figure:

5. Add the primary Architecture Structure. Highlight the top-level project name
(MODAF_Project in our example) and choose File > Add to Model to open the Add
to Model window.
1356 User Guide

Configure a Rational Rhapsody project for MODAF
6. Browse to the Rational Rhapsody installation folder and locate MODAF Pack.

7. Accept the defaults and double-click IBM Rational Rhapsody MODAF Add-on and
then locate MODAF_Setup_Pkg.

8. Accept the defaults and double-click MODAF_Setup_Pkg and then change the files of
type to Package (*.sbs), as shown in the following figure:
Rational Rhapsody 1357

IBM Rational Rhapsody MODAF Add On
9. Accept the defaults and double-click Architecture.sbs. This brings in the main
viewpoints for your MODAF project. You now have the basic project structure. Your
expanded Rational Rhapsody browser should resemble something like the following
figure:

10. To add views to a particular viewpoint, right-click the viewpoint and select Add New >
[Name] Views > [Name of View].
1358 User Guide

Configure a Rational Rhapsody project for MODAF
11. Rational Rhapsody opens the drawing area with the applicable Diagram Tools for the
view when appropriate, as shown in the following figure:

12. To add other elements for a particular viewpoint, right-click the view and select Add
New > [Name] View Elements > [Name of Element], as shown in the following figure:
Rational Rhapsody 1359

IBM Rational Rhapsody MODAF Add On
Customize the Rational Rhapsody table and matrix
views for MODAF

In Rational Rhapsody, you can create your own tables and matrix views to represent your model
data, providing you with another option to convey information among your team and stakeholders.
For example, you can view your model requirements in a tabular view making it easy to see the
details contained in all the requirements. This view is particularly useful for visualizing a large
amount of data and their relationships to each other.

Rational Rhapsody provides these additional methods to view model data:

� Table view performs a query on a selected element type and display a detailed list of its
various attributes and relations, as shown in the following figure:

� Matrix view displays queries showing the relations among selected model elements, as
shown in the following figure:
1360 User Guide

Customize the Rational Rhapsody table and matrix views for MODAF
These views provide the following development capabilities:

� Define and run dynamic queries of model content

� Easy display and analysis of requirements
� Exportable and printable tables and data lists

For details on how to create the table and matrix views in Rational Rhapsody, see Table and matrix
views of data. To be able to supply the data for your table and matrix views, you have to create
stereotypes and tags. See Creating stereotypes and using tags.

Creating stereotypes and using tags

A profile hosts domain-specific tags and stereotypes. In addition, you can create your own
stereotypes and tags for your Rational Rhapsody project. For more information about stereotypes,
see Stereotypes. For tags, see Use tags to add element information.

To be able to create your own custom table and matrix views, you can use the stereotypes and tags
provided by the MODAF profile. However, to be able to truly produce table and matrix views of
your own design, you will probably find it most useful to create at least one stereotype of your own
and then create the tags you want for it. Once set up, you can associate any of your tags with views
and operations to produce tables and matrices that are customized for your project needs.

Note
Before you try to create your own custom table and matrix views, see Table and matrix views
of data. You should also see About creating table/matrix views in MODAF.
Rational Rhapsody 1361

IBM Rational Rhapsody MODAF Add On
About creating table/matrix views in MODAF

For the Rational Rhapsody for MODAF Add On, the ability to create custom table and matrix
views is facilitated by the Table CustomizationPkg, which consists of three subpackages:

� CustomizableTableAndMatrixLayoutsPkg

� CustomizedStereotypesPkg

� CustomizableTableAndMatrixViewsPkg

CustomizableTableAndMatrixLayoutsPkg
The CustomizableTableAndMatrixLayoutsPkg package contains the table layouts for the
MODAF-specific table views that need to be customized by the user. The customization normally
consists of setting up the display of the tag elements to be extracted by the user, as shown in the
following figure:
1362 User Guide

Customize the Rational Rhapsody table and matrix views for MODAF
Customized matrix layouts can be added and used by the specific MODAF views by changing the
layout and scope to be used by the view, as shown in the following figure:

CustomizedStereotypesPkg
The CustomizedStereotypesPkg package provides a location to store the custom stereotypes to be
used for custom table layout. Stereotypes can be created with user customizable tags and then
applied to specific type of element (typically a class or object).
Rational Rhapsody 1363

IBM Rational Rhapsody MODAF Add On
The tags are typically typed by a specific element (selected from the MODAF profile stereotypes
list) type. This ensures that when the tag is populated in the model element that the correct type of
information is displayed in the actual table (if defined in the table layout).
1364 User Guide

Customize the Rational Rhapsody table and matrix views for MODAF
When an element is given a particular stereotype all the tags associated with the stereotype are
inherited by the element. Then you have to populate the tag values with the correct information.
Rational Rhapsody 1365

IBM Rational Rhapsody MODAF Add On
CustomizableTableAndMatrixViewsPkg
The customized MODAF-specific views are still created in their correct places in the Architecture.
The CustomizableTableAndMatrixViewsPkg package is intended for custom views outside the
scope of the MODAF-specific table and matrix views.

You create a customizable table or matrix by selecting the appropriate package, for example, Add
New > Table Customizations > Matrix View (as shown in the following figure) or Add
New > Table Customizations > Table View.
1366 User Guide

Customize the Rational Rhapsody table and matrix views for MODAF
Rational Rhapsody creates a new view. Then you have to open the Features window for the view
and select the package scope of the view and the appropriate layout to use (from the
CustomizedTableAndLayoutsPkg package), as shown in the following figure:

When the table or matrix view is selected in the browser, it will be brought up in the Graphic
Editor area (typically to the right of the browser).

Note: If the view displays empty, incomplete, or has too much information, you might
want to review how the scope was set.

For more details about creating the Table and Matrix views in Rational Rhapsody, see Table and
matrix views of data.

Note
For the MODAF profile, to create a layout or view for a table or matrix, the menu command
path, for example, is Add New > Table Customization > Table Layout (instead of Add
New > Table Layout). Otherwise, the procedures in Table and matrix views of data are the
same.
Rational Rhapsody 1367

IBM Rational Rhapsody MODAF Add On
Create documentation for Your MODAF project with
ReporterPLUS

The Rational Rhapsody for MODAF Add On provides you with a ReporterPLUS template that
gives you the ability to generate complete electronic documentation with hyperlinks between
related and referenced model elements. Output, for example, can be in HTML and Microsoft
Word. For information about ReporterPLUS.

This section describes how to set up ReporterPLUS to use this template. It also discusses the
structure of the generated document, how to generate the document, and provides some tips on
how to use the model structure to its best advantage when generating a document.

Setting up ReporterPLUS

As mentioned earlier, the ReporterPLUS template supplied with the Rational Rhapsody for
MODAF Add On can produce hyperlinks between referenced elements. To enable this feature of
the template, you must modify the Rhapsody.ini file located in the Rational Rhapsody
installation folder and then move it to the System (or Windows directory).

To set up ReporterPLUS:

1. Make a copy of the Rational Rhapsody.ini file that is located in the Rational Rhapsody
installation folder (for example, <Rational Rhapsody installation
path>\Rhapsody730).

You should now have a Rhapsody.ini file and a Copy of rhapsody.ini file.

2. Rename Copy of rhapsody.ini file to OriginalRhapsody.ini.

Having this file ensures that you can return to the original state of the rhapsody.ini file
when needed.
1368 User Guide

Create documentation for Your MODAF project with ReporterPLUS
3. Add the following lines within the [General] section of the Rhapsody.ini file:

[ReporterPLUS]
EnableLoadOptions=TRUE
LoadElementReferences=TRUE

4. After you save your changes to the Rhapsody.ini file, move it to your System (or
Windows directory).

Note: If you use Copy and Paste, be sure to delete the file from where you copied it
from.

5. Restart Rational Rhapsody to ensure the changes take effect.

Document structure

The document produced by ReporterPLUS consists of these main sections:

� A table of contents where all the views and elements are listed and hyperlinked to their
location in the documentation.

� A graphical section that contains all the views, including the embedding of external
documents, elements that exist on those views and their descriptions, if they have any. All
the elements are hyperlinked to their definition in the Data Dictionary section.

� A Data Dictionary section that contains the details of all the elements in the model in the
viewpoint in which they were created. The model elements from the first section are all
hyperlinked to their counterpart in the Data Dictionary as are any connected elements,
descriptions and tags for all elements are shown.
Rational Rhapsody 1369

IBM Rational Rhapsody MODAF Add On
Generating a MODAF document

The Rational Rhapsody for MODAF Add On provides you with a ReporterPLUS template called
ModafReport.tpl. The template is located within the Rational Rhapsody installation path (for
example, <Rational Rhapsody installation path>\MODAF Pack\templates). You can use
ReporterPLUS to create, for example, HTML and Microsoft Word documents from any Rational
Rhapsody model.

To use the ModafReport.tpl template:

1. Be sure that you have set up ReporterPLUS to use the ModafReport.tpl template; see
Setting up ReporterPLUS.

2. With your MODAF project open in Rational Rhapsody, choose Tools > ReporterPLUS >
Report on all model elements.

3. On the Select Task window, select the type of output you want, and click Next.

4. On the Select Template window, browse to the MODAF ReporterPLUS template location
(for example, <Rational Rhapsody installation path>\MODAF Pack\templates)
and select the ModafReport.tpl file.

5. On the Select Template window, click Next.

6. On the Confirmation window, click the Finish button.

7. On the Generate Document window:

� Enter a document name.
� Browse to where you want to locate the files that will be produced.
� Click the Generate button to generate your document.

8. Wait while your document is generated. ReporterPLUS spends some time loading the
template and the model. Then it analyzes the model and the model element relationships.

9. When available, click Yes to open your report.
1370 User Guide

Create documentation for Your MODAF project with ReporterPLUS
Troubleshooting ReporterPLUS and Rational Rhapsody for MODAF

If the contents of a package do not appear in the document created by ReporterPLUS, it is possible
that you might have created an architecture without adding the architecture.sbs package as
described in Configure a Rational Rhapsody project for MODAF.

The MODAF profile has two tags that have been added to all the viewpoints, ContainsViews and
RootView. By default. they are set to Cleared (meaning False, their check boxes are not selected).
However, within the imported architecture.sbs package, these tags have been preset to Checked
(meaning True, their check boxes are selected).

ContainsViews is set to Checked when you have established a hierarchy of views within a
particular viewpoint that specifically contains views. By default, this is set to Cleared because the
main reason why subviews are used is to provide containers for sets of model elements so that a
table or matrix view can be scoped correctly.

RootView indicates that this is the Root Viewpoint for this particular set of views, it should only be
set to Checked for the viewpoints that sit directly above the Architecture layer.

To override the default settings for a particular viewpoint:

1. Right-click the viewpoint and select Features.

2. Select the Tags tab on the Features window.

3. Select the ContainsView check box (so that it is selected).

4. Select the RootView check box if the viewpoint is likely to contain views that you want
displayed in the documentation. If a viewpoint just contains elements and if those
elements are used by other views external to the owning viewpoint, they will still appear
in the document generated by ReporterPLUS in the correct places.
Rational Rhapsody 1371

IBM Rational Rhapsody MODAF Add On
The Dependencies Linker
The Dependencies Linker is an extension to the Link wizard documented in the Systems
Engineering Toolkit (for more information, see Harmony process and toolkit). The Dependencies
Linker allows dependencies to be created between particular model elements. It is located under
the MODAF tab of the Link Wizard window.

The Dependencies Linker is a tool for advanced users who know which dependency relationships
are allowed between which elements and can use the browser effectively.

The modaf_stereotypes.txt file contains a list of the possible dependencies. The file is located
in the <Rational Rhapsody installation path>\Share\Profiles\MODAF path. The profile
controls the permissions as to what dependencies can be created by what elements.

Using the Dependencies Linker

To use the Dependencies Linker:

1. Choose Tools > Dependencies Linker to open the Link Wizard window.

2. On the Rational Rhapsody browser, select the source element and then click Set Source
on the Link Wizard window.

3. On the MODAF tab of the Link Wizard, select the dependency from the drop-down list.

4. On the Rational Rhapsody browser, select the destination element and then click Set
Destination on the Link Wizard window.
1372 User Guide

The Dependencies Linker
5. Click the Create Dependency button on the MODAF tab of the Link Wizard.

Note: If the Create Dependency button is disabled, this means that you have selected
an illegal dependency between the two elements.

Troubleshoot the Dependencies Linker

If the Dependencies Linker tool does not appear, then it is likely that the MODAF.hep file is not
located in the same folder as the MODAF.sbs file. Make sure the MODAF.hep file is in the same
folder as the MODAF.sbs file.
Rational Rhapsody 1373

IBM Rational Rhapsody MODAF Add On
General troubleshooting
This section provides you with information that you can use for general troubleshooting purposes
for Rational Rhapsody for MODAF Add On.

Verify the Rational Rhapsody for MODAF Add On installation

If you are having a problem with the Rational Rhapsody for MODAF Add On or if it does not
appear in the Rational Rhapsody product as mentioned in this section, you should verify that it has
been added.

Use any of the following methods to verify that the Rational Rhapsody for MODAF Add On has
been added:

� See if there is a path to the Add On. From the Windows Start menu, select All Programs >
IBM Rational > IBM Rational Rhapsody version number > IBM Rational Rhapsody
MODAF Add On.

� See if the Add On has been included in the Rational Rhapsody product. Typically that path
would be <Rational Rhapsody installation path>\MODAF Pack.

� Create a project in Rational Rhapsody and see if the MODAF type (profile) is available.
If you find that the Rational Rhapsody for MODAF Add On is not on your system, then you must
install it. You need a license key for the Rational Rhapsody for MODAF Add On if it is not already
a part of your Rational Rhapsody license. See the Rational Rhapsody installation instructions for
more information about installing the Rational Rhapsody for MODAF Add On.

If the Rational Rhapsody for MODAF Add On is on your system but you are having problems
with it, you might have to remove it and then run the Installation program again to repair your
software if it has been damaged.

Find icons missing from diagram tools

If you notice that there seems to be icons missing from Diagram Tools, check to be certain that the
$OMROOT is correct for the Rational Rhapsody for MODAF Add On.

Check your Rational Rhapsody for MODAF model

The Rational Rhapsody for MODAF Add On contains a helper (a Java plug-in) that checks the
architectural conformance of your model. It indicates where an element is contained within an
illegal parent.
1374 User Guide

General troubleshooting
Setting up the Rational Rhapsody Check Model tool for a Rational Rhapsody
for MODAF Add On project

To set up the Rational Rhapsody Check Model tool so that it checks your Rational Rhapsody for
MODAF Add On model:

1. Choose Tools > Check Model > Configure to open the Configuration window for the
Check Model tool.

2. Click the Deselect All button to clear the check boxes for all the checks (tests).

3. Select the Element Has Illegal Parent test (which is in the MODAF Checks domain), as
shown in the following figure:

4. Click OK.
Rational Rhapsody 1375

IBM Rational Rhapsody MODAF Add On
Running the Rational Rhapsody Check Model tool
To run the Rational Rhapsody Check Model tool:

1. Choose Tools > Check Model > DefaultConfig (the name of the default component).

2. The results appear on the Check Model tab of the Rational Rhapsody Output window, as
shown in the following figure:

Note the following information about the Rational Rhapsody Check Model tool for a Rational
Rhapsody for MODAF Add On model:

� If more than one error is found, the Architecture will always be seen by default. Other
results that can be ignored are if Receptions are used on Interfaces and AssociationEnds,
and Subtype relationships for data elements.

� When possible, you can double-click the element highlighted in an error to locate it in the
browser to help you understand its parent hierarchy with reference to the M3.

� You might want to examine the Model::Stererotype::Aggregates property of the
stereotype definition in the profile. This contains the elements that should be allowed to
be contained by the parent element causing the error.

� You can examine the structure of an element. Right-click the error element or its parent in
the browser and select Show Relations in New Diagram to create an object model
diagram that is automatically populated with related model elements. For more
information on Show Relations in New Diagram, see Showing all relations for a class,
object, or package in a diagram.

� The Rational Rhapsody Check Model tool only works with JRE 1.5.
1376 User Guide

The Rational Rhapsody automotive
industry tools
The Rational Rhapsody tools for the automotive industry provide for specification and design of
automotive systems and software applications. Rational Rhapsody provides the AUTOSAR-
specific Model-driven Development (MDD) environment to leverage both UML and SysML. This
makes it possible for engineers to reuse specifications for common vehicle features across multiple
automotive lines. The AUTOSAR profiles are used for architectural description of an AUTOSAR
model using the native AUTOSAR concepts.

The AutomotiveC profile takes advantage of the capabilities of the MicroC profile, which enables
code generation for static systems with limited resources. The AutomotiveC profile also contains a
number of features designed specifically for automotive projects.

Rational Rhapsody extends the benefits of MDD to the C developer by allowing designers to work
in either a functional or object-oriented environment. Rational Rhapsody includes blocks, flows,
graphical files, functions, and data so that C developers can create models using familiar concepts.

AUTOSAR modeling
Rational Rhapsody provides two AUTOSAR profiles (AUTOSAR_21, and AUTOSAR_31) that
can be used for modeling components in accordance with the AUTOSAR development process.
These profiles conform with the AUTOSAR 2.1, and 3.1 standards.

Note
The AUTOSAR profiles are only visible in the list of profiles if you selected the
Automotive option during your installation of Rational Rhapsody.

Information on the AUTOSAR architecture can be found at the AUTOSAR Web site,
www.autosar.org
Rational Rhapsody 1377

www.autosar.org

The Rational Rhapsody automotive industry tools
The AUTOSAR workflow

The workflow for AUTOSAR modeling is as follows:

1. Create an AUTOSAR Rational Rhapsody project.

2. Create diagrams using the AUTOSAR elements provided by Rational Rhapsody.

3. Use the Rational Rhapsody Check Model tool to verify that there are no problems with
your AUTOSAR model.

4. Export your model to the AUTOSAR XML format.

Creating an AUTOSAR project

To create an AUTOSAR project in Rational Rhapsody:

1. Choose File > New.

2. In the New Project window:

a. Provide a project name.

b. Indicate the folder where the project should be saved.

c. From the Project Type list, select AUTOSAR_20, AUTOSAR_21, or
AUTOSAR_31.

d. You might select one of the Project Settings.

e. Click OK.

Creating AUTOSAR diagrams

The Rational Rhapsody AUTOSAR profiles allow you to compose the following types of
diagrams:

� ECU diagram
� Implementation diagram
� Internal Behavior diagram
� SW Component diagram
� System diagram
� Topology diagram
1378 User Guide

AUTOSAR modeling
Checking an AUTOSAR model

To verify that there are no problems with your model, select Tools > Check Model >
[configuration name] from the main menu.

Import/export from/to AUTOSAR XML format

Projects based on the AUTOSAR profiles can be exported from Rational Rhapsody to the
AUTOSAR XML format.

To export your project:

1. Select Tools > Generate AUTOSAR XML Document.

2. Click Browse on the When the Export window to select the destination XML file.

3. Click Export.

Rational Rhapsody can also import data stored in the AUTOSAR XML format.

To import AUTOSAR data:

1. Select Tools > Import AUTOSAR XML Document

2. Click Browse on the When the Import window opens to select the source XML file.

3. Click Import.
Rational Rhapsody 1379

The Rational Rhapsody automotive industry tools
The AutomotiveC profile
The AutomotiveC profile provides the capabilities that you are likely to require for projects in the
automotive industry and developed using the C language only.

The AutomotiveC profile automatically loads the MicroC profile, which contains code-generation
capabilities designed for static systems.

In addition, the AutomotiveC profile includes a number of features intended specifically for
automotive projects, such as:

� Automotive-specific adaptors, based on the user of configuration-level stereotypes
� Simulink and Statemate block integration capabilities

Automotive-specific adaptor

The AutomotiveC profile includes an automotive-specific adaptor called OSEK21.

You select the adaptor to use by applying one of the configuration-level stereotypes (see
Configuration stereotypes.

The OSEK21 adaptor
The OSEK21 adaptor provides a Rational Rhapsody development environment for users of the
Metrowerks OSEK 21 operating system and tools.

The OSEK adaptor is a set of Rational Rhapsody components which allow you to easily generate
code and build applications for either of the following targets:

� Metrowerks OSEK21 OS/NT Build 2.1.10 (Build env: MSdev)
� Metrowerks OSEK21 OS/12 Build 2.1.13 (Build env: Metrowerks)

All of the required files are copied to your disk when you choose the Automotive add-on option
during installation.
1380 User Guide

The AutomotiveC profile
Target hardware and software

The OSEK21 adaptor is used to create applications for the following target hardware and software:

Hardware:

� OSEK21NT target: PC
� OSEK21HC12 target: Motorola HC12dg128 evaluation board.

Software:

� OSEK21NT target: Windows XP, Metrowerks OSEK 21 OS for NT, Visual Studio (nmake
utility, compiler, linker and so on)

� OSEK21HC12 target: Windows XP, Metrowerks OSEK 21 OS for HC12, Hiware tools for
the Motorola HC12 target (compiler, linker, and so on), Visual Studio (nmake utility)

OSEK21 tasks

The predefined task OS_TASK is responsible for initialization of the model. Using the relevant
properties provided, the following characteristics have been assigned to the task: highest priority,
non-preemptive, autostart, basic. You can change these characteristics as required.

The predefined task TIMER_TASK is responsible for timeout-handling and dispatching of timed
actions. Using the relevant properties provided, the following characteristics have been assigned to
the task: second-highest priority, non-preemptive, autostart, basic. You can change these
characteristics as required.

Using the OSEK21 adaptor - workflow

To build an application using the OSEK21 Adaptor:

1. Create a new project of type AutomotiveC.

2. Add OSEK tasks to your model: Add New > AutomotiveC > OSEK21BasicTask (or
OSEK21ExtendedTask).

3. For each task, change the Concurrency box to Active.

4. For each task, use the Tags tab of the Features window to set the necessary values for the
OIL definition.

5. For each task, add the required attributes and operations.

6. Create a new OSEK21HC12Configuration configuration (Add New > OSEK21 >
OSEK21HC12Configuration).

7. Set the new configuration to be the active configuration
Rational Rhapsody 1381

The Rational Rhapsody automotive industry tools
8. In the configuration, set the property C_CG:OSEK21HC12:OSEKDIR to the path to OSEK 21
for HC12.

9. In the configuration, set the property C_CG:OSEK21HC12: HICROSSDIR to the path to the
Hiware tools.

10. If necessary, modify the value of the following properties:

C_CG::OSEK21HC12::OsekMainFileDefinition - determines the content of the C source
file that contains the main entry of the OSEK application and the definition of the
predefined tasks from the framework (OS_TASK and TIMER_TASK).

C_CG::OSEK21HC12::OilDefinitionTemplate - the content of the OIL file cfg.oil that
contains include statements to include the model's specific OIL definition.

11. Generate and compile the application.

The workflow described above refers to building an application for the OSEK21 OS/12 target.

To build an application for the OSEK21 OS/NT target, use OSEK21NTConfiguration when
creating a new configuration, and in the configuration, set the property
C_CG::OSEK21NT::OSEKDIR to the path to OSEK 21 for NT.

Automotive-specific stereotypes

The stereotypes are available for the C language and in the Automotive C profile only.

Configuration stereotypes
The AutomotiveC profile contains the following stereotypes that can be applied to configurations:

� OSEK21NTConfiguration

� OSEK21HC12Configuration

These stereotypes are “new terms” that are applicable to configurations. They correspond to the
following environments:

� OSEK21NT
� OSEK21HC12

These stereotypes set the value of the Environment property. This value specifies the set of
Rational Rhapsody properties to use for that environment.
1382 User Guide

The AutomotiveC profile
You can create a new configuration using either of the following methods:

� In the browser, from the context menu for components, select Add New >
AutomotiveC > [configuration].

� From the context menu for components, select Add New > Configuration. From the
context menu for the newly created configuration, select Change To > [configuration].

Note
For AutomotiveC projects, you must use one of the relevant configuration stereotypes.
When you create a new project, the browser will contain a configuration called
DefaultConfig. This is a generic configuration so you must apply one of the automotive
configuration stereotypes to it.

Simulink and StatemateBlock integration capabilities

When you create a new project based on the AutomotiveC profile, Rational Rhapsody also loads
the SimulinkInC profile and the StatemateBlock profile.

This allows you to include Simulink and Statemate blocks in your model.

Fixed-point variable support

The AutomotiveC profile provides support for fixed-point variables by automatically loading the
Rational Rhapsody FixedPoint profile:

For more information regarding the use of fixed-point variables in Rational Rhapsody, see Using
fixed-point variables.

AutomotiveC properties

The AutomotiveC.prp file is loaded when you create a project based on the AutomotiveC profile.

The file contains properties for the OSEK environments.
Rational Rhapsody 1383

The Rational Rhapsody automotive industry tools
1384 User Guide

StatemateBlock in Rational Rhapsody
The Rational Statemate system, an IBM product, is a high-level graphical development
environment. Many companies use Rational Statemate for their modeling needs. However, some
Rational Statemate customers requested the flexibility to provide co-execution of models in
Rational Statemate and Rational Rhapsody. The integration of these two modeling products allows
the seamless code-to-code merging of a Rational Statemate model into a Rational Rhapsody
architecture. This integration has the following prerequisites:

� Rational Rhapsody Developer for C version 7.1.1 or higher
� Rational Statemate 4.2 MR2 or higher on the computer and licensed
� License for Rational Statemate MicroC code generator

Preparing a Rational StatemateBlock for Rational
Rhapsody

To synchronize a Rational Statemate model with Rational Rhapsody, the Rational Statemate model
must have the following characteristics:

� Only one top-level activity
� MicroC profile with only one module

Perform the following operations in Rational Statemate to prepare the Rational Statemate model
for Rational Rhapsody:

1. Open the Rational Statemate model. If you want to show Rational Statemate animation in
Rational Rhapsody, be certain to select the GBA option from the Rational Statemate
MicroC profile options.

2. To set the required properties in Rational Statemate before generating code:

a. Open the Rational Statemate MicroC Code Generator.

b. Select Options > Settings > Application Configuration > Application Files.

c. In the Application Files window, select both of the Generate Code in a Single File
and Generate Code as Statemate Block items.
Rational Rhapsody 1385

StatemateBlock in Rational Rhapsody
d. Click OK.

3. Generate the C code using the Rational Statemate MicroC Code Generator.

4. In the Rational Statemate main interface, select the Files tab and:

a. Select a Rational Statemate MicroC code generator profile.

b. Select the menu item: Configuration > Create Statemate Block Configuration for
Rhapsody > Read mode/Update mode.

Creating the Rational StatemateBlock in Rational
Rhapsody

In order to create a Rational Rhapsody element for the Rational Statemate model:

1. Open Rational Rhapsody.

2. Choose File > New to create a new Rational Rhapsody project. Fill in the Project name
and In folder boxes.

3. In the Type box of the New Project window, select the StatemateBlock profile from the
pull-down menu.

4. Rename the automatically created diagram to relate to your project.

5. In the diagram, use the Object icon in the Diagram Tools to create an object with a
name that is appropriate for your project.

6. Right-click the object in the diagram and select Features from the menu.

7. In the General tab of the Features window, select the StatemateBlock class stereotype for
the object and click OK to save the change.

8. Right-click the StatemateBlock object and select Import/Sync Statemate Model.

9. In the Import/Sync State Block window, fill in the fields in this order:

a. The default in the Rational Statemate Installation path should be the path to your
Rational Statemate installation in this format <STM_ROOT>\pm (pm = project
management). If the location of the Rational Statemate pm file is not correctly
displayed in the default location, click the Advanced button. Then enter the correct
path to your Rational Statemate installation in the window. Click OK to save the path
information and return to the Import/Sync State Block window.

Note: This is an important step because the path entered here resets all Rational
Rhapsody path references to your Rational Statemate system to use this newly
entered path as the default Rational Statemate path. See Troubleshooting
1386 User Guide

Creating the Rational StatemateBlock in Rational Rhapsody
Rational Statemate with Rational Rhapsody if you receive error messages while
performing this operation.

b. Select Statemate Project from the pull-down list in the next field.

c. Select Statemate Block from the pull-down list in the next field.

d. Select Statemate Workarea from the pull-down list in the next field.

e. In the Activation Period (msec) field, enter the time period between calls to the
Rational Statemate Block execution code. This value must be greater than or equal to
50.

f. Click Import/Sync to validate the previous selections and perform the import and
synchronization operations if the entries are valid. If one or more of the entries
contain errors, the system displays a validation error message. See Troubleshooting
Rational Statemate with Rational Rhapsody for more information.
Rational Rhapsody 1387

StatemateBlock in Rational Rhapsody
Connecting and synchronizing Rational Statemate and
Rational Rhapsody

The StatemateBlock, created in the previous procedure, operates as a black-box for Rational
Statemate code within the Rational Rhapsody architecture once it has been connected and
synchronized. The StatemateBlock interface of the top-level flowing data within the Rational
Statemate model is specified in Rational Rhapsody using flowports.

To connect the two models:

1. In the Rational Rhapsody diagram from the previous procedure, use the Object icon
to create a object with the appropriately named flowports.

2. Connect the Rational Rhapsody flowports to the ports on the StatemateBlock object via
links.

3. To produce an executable, perform code generation and build the entire Rational
Rhapsody model.

The StatemateBlock in Rational Rhapsody automatically synchronizes with the Rational Statemate
model and adds or removes flowports from the StatemateBlock to reflect any changes made in the
Rational Statemate top-level flowing data. The synchronization operation uses a Rational
Rhapsody Block Configuration containing the following Rational Statemate data:

� Rational Statemate MicroC Profile with a single module
� Rational Statemate charts that are in the scope of the MicroC profile. The top-level chart

must have a single top-level (regular) Activity
� Rational Statemate Panels that are in the scope
1388 User Guide

Troubleshooting Rational Statemate with Rational Rhapsody
Troubleshooting Rational Statemate with Rational
Rhapsody

When entering information into the Import/Sync Statemate Block window, you might receive one
of these error messages. The table shows the possible error messages and their explanations.

Error Message Explanation

“Cannot load libraries. Please make sure
you are using the correct Statemate
installation path.”

Rational Rhapsody was unable to located the
stmBlockInterfaceDll.dll in the bin directory of the
installation path entered into the window. Correct the
Rational Statemate Installation Path so that the DLL
can be located.

“PM Filepath not found. Please specify a
valid PM path.”

The Rational Statemate PM file name entered into the
Rational Statemate PM Location field must contain
“pm.dat” in the name.

“Invalid Statemate Project. Please select a
Statemate Project before pushing OK.”

The Import/Sync process has checked the Rational
Statemate MicroC profile and the Rational Statemate
project was not found or the project name did not match
the one entered in the Rhapsody window.

“Invalid Rhapsody Block name. Please
select a Statemate Block before pushing
OK.”

The Import/Sync process has checked the Rational
Statemate MicroC profile and cannot locate the
StatemateBlock that was entered in the Rhapsody
window.

“Invalid Statemate Workarea name. Please
select a Statemate Workarea before
pushing OK.”

The Import/Sync process has checked the Rational
Statemate MicroC profile and the Rational Statemate
Workarea name was not found that matched the name
entered in the Rhapsody window.

“Missing Statemate Block’s charts. Would
you like to perform check-out and generate
code now?”

The Import/Sync process checked for the Rational
Statemate code that should have been generated as
described in Preparing a Rational StatemateBlock for
Rational Rhapsody. If it needs to be generated, click
Yes in this error message box.

“Missing generated code for
StatemateBlock. Would you like to
generate code now?”

The Import/Sync process checked for the Rational
Statemate code that should have been generated as
described in Preparing a Rational StatemateBlock for
Rational Rhapsody. If it needs to be generated, click
Yes in this error message box

“Missing required files. Cannot synchronize
with Statemate model.”

If you selected No when the system offered to generate
the Rational Statemate code (see the two previous error
messages), this error message indicates that the
Rational Statemate model cannot be synchronized with
the Rational Rhapsody until the Rational Statemate code
has been generated.
Rational Rhapsody 1389

StatemateBlock in Rational Rhapsody
1390 User Guide

IBM Rational DOORS interface
Software engineers typically need to show traceability of requirements between customer
documents and specifications. Moreover, understanding the ramifications of adding or deleting
requirements in complex designs, or ascertaining which requirements drove the creation of certain
design elements, can be a daunting task.

Rational Rhapsody works with the Dynamic Object Oriented Requirements System (DOORS) to
track and manage design requirements throughout the lifetime of a project and to navigate between
the design and the requirements, in either direction, online.

The Rational DOORS interface exports design information stored in Rational Rhapsody to the
Rational DOORS environment. Design information can include classes, variable and type
information, design diagrams, statecharts, and transitions. In Rational DOORS, the information is
represented in a logical form as hierarchical requirements inside formal modules reflecting the
original hierarchy of the elements in the Rational Rhapsody model. Thus, consistency is
maintained between both environments.

The requirements management task is performed within Rational DOORS. Typically, the Rational
DOORS tool maintains project documents, user documents, and documentation of changes.
System specification and modeling are performed within Rational Rhapsody. The model is built,
however, to meet the requirements stored in Rational DOORS, which is the owner of the
requirements. Prototyping and analysis done in Rational Rhapsody verify that the model is
consistent with your requirements.

The interface works by sharing information between the Rational Rhapsody model and the
Rational DOORS database. Requirements are traced by transferring shadow copies of Rational
Rhapsody elements into a Rational DOORS formal module, where the shadows are internally
linked into the Rational DOORS database.

Note
A “Rhapsody handle” string is attached to each Rational DOORS shadow object to trace the
connection from the Rational DOORS shadow to the original Rational Rhapsody element.
Rational Rhapsody 1391

IBM Rational DOORS interface
Installation requirements
To use the Rational DOORS interface:

� Copy the dxlapi.dll dynamic link library from the bin directory in the Rational DOORS
installation to your winnt\system32 directory.

� Make sure that the file pc_server.dxl is in the $OMROOT\etc directory of the Rational
Rhapsody installation.

� Rational DOORS must be on the local machine.
Rational Rhapsody reads the locations of your Rational DOORS installation and license from the
Windows registry and the LM_LICENSE_FILE environment variable. If for some reason Rational
DOORS is not registered in the registry in the normal way and your LM_LICENSE_FILE variable is
not set, you can manually set the InstallationDir and LmLicenseFile properties under
RTInterface::DOORS. If these properties are set, they override the registry value or environment
variable.

To set the Rational DOORS properties:

1. Click File > Project Properties and select RTInterface::DOORS.

2. Set the InstallationDir property to the location of your Rational DOORS installation.
For example:

d:\doors

3. Set the LmLicenseFile property to the location of your Rational DOORS license. For
example:

d:\doors\lib\license.dat

If you are using a client license for Rational DOORS, you can enter a port number and
server using the following format:

<port>@<server>

Rational DOORS version 7.0

By default, Rational DOORS 7.0 does not show the links module. To show the links module
(named “Rhapsody_links” by default), select View > Show Link Modules in the main Rational
DOORS window.

Solaris-specific information

Rational Rhapsody on Solaris supports Rational DOORS 4.1.4 only. Use the following settings:
1392 User Guide

Using Rational Rhapsody with Rational DOORS
setenv DOORSHOME /tools/DOORS4.1.4
setenv SERVERDATA /tools/DOORS4.1.4/data
setenv PORTNUMBER 36677
setenv DOORSDATA /tools/DOORS4.1.4/data
set path = ($path $DOORSHOME/bin)
setenv LM_LICENSE_FILE 7192@lily

In these settings, lily is the name of the Rational DOORS license server.

To use Rational DOORS 6.0 on Solaris systems, use Rational Rhapsody and the following
settings:

setenv DOORSHOME /tools/doors6.0
setenv SERVERDATA /tools/doors6.0/data
setenv PORTNUMBER 36677
setenv DOORSDATA $PORTNUMBER@bee
setenv LOCALDATA /tools/doors6.0/data
set path = ($path $DOORSHOME/bin)
setenv LM_LICENSE_FILE 7192@lily

In these settings:

� lily is the name of the Rational DOORS license server.
� bee is the name of the Rational DOORS data server.

Using Rational Rhapsody with Rational DOORS
The general process for using Rational Rhapsody with Rational DOORS is as follows:

1. Set up a project within Rational DOORS.

2. Capture requirements and other design information in Rational DOORS.

Note: Rational DOORS is the owner of the requirements. If you need to make
changes to requirements, make them in Rational DOORS.

3. Capture the high-level use cases, structure, sequences, and behavior of the system in
Rational Rhapsody.

4. Select elements from the Rational Rhapsody model that you want to trace to elements in
Rational DOORS.

5. Export the selected elements as shadow copies to the Rational DOORS database.

6. Navigate to the exported elements in Rational DOORS from the Rational Rhapsody
browser.

7. Create links within Rational DOORS between the requirements and shadow copies.
Rational Rhapsody 1393

IBM Rational DOORS interface
8. Run the Check tool to verify the consistency of shadows in the Rational DOORS database
with elements in the Rational Rhapsody repository and the completeness of the links
between the two.

9. Navigate from the Rational DOORS database to the respective elements in Rational
Rhapsody, as wanted.

Configuring Rational Rhapsody and Rational DOORS with the Gateway
wizard

The Rational Rhapsody Gateway synchronizes Rational Rhapsody models with Rational DOORS
and other requirement management tools. The Gateway DOORS wizard simplifies the set up
process to link Rational Rhapsody and Rational DOORS. You can use the wizard to create new
Rational DOORS documents or open the wizard for an existing Rational DOORS document in
order to make some customizations. The wizard provides a step-by-step configuration of the
Rational DOORS document capture.

The two types of customizations are Rational DOORS Basic and Rational DOORS Advanced. The
common configuration for Rational DOORS capture, Rational DOORS Basic type, uses the Object
ID as the requirement identifier. Rational DOORS Advanced type uses a ReqID attribute as the
requirement identifier.

To configure Rational DOORS using the Rational Rhapsody Gateway wizard:

1. Open Rational Rhapsody Gateway.

2. Choose File > DOORS Wizard. The wizard inserts a new Rational DOORS document in
the project editor.

3. Enter the following information for the new document:

� Document name
� Rational DOORS Type to used directly or as a template for new type. Enter the

New Type name when creating a new type.
� Types from library such as Rational DOORS Advanced or Rational DOORS Basic

4. In the Type Customization window, configure the Requirement and Attribute capture in
the Kind column for ReqID. Select one of the following options:

� Ident use the attribute as Requirement identifier.
� Label use the attribute as Requirement label.
� Text use the attribute as Requirement text.
� Present check that attribute is present on the Rational DOORS object being

captured, a Condition can be provided to test the value of the attribute (regular
expression).
1394 User Guide

Using Rational Rhapsody with Rational DOORS
� Absent check that attribute with optional Condition is missing on the Rational
DOORS object being captured.

� Attribute create an Attribute type to capture the Rational DOORS attribute in
Rational Rhapsody Gateway.

� Ignore keep this choice when the Rational DOORS attribute is not necessary for
the Rational Rhapsody Gateway.

5. In the Set Links to capture window from the list of link modules, select the links to
capture.

6. You can also select one of the two global settings that can be configured for the Rational
DOORS document:

� Capture diagrams allows capture of pictures that are in-lined in the Rational
DOORS Object Text.

� Extract only defined attributes allows saving conversion time by not converting
attributes that are not used by the Rational DOORS type.

Requirements synchronization in Rational DOORS and Rational
Rhapsody

You can edit requirements in both Rational Rhapsody and Rational DOORS without regard to
which tool created the original requirements.

Based on the configuration settings, the requirements synchronization process then compares
changes to the Requirement class. The synchronization operation compares important class
features such:

� GUID of Model Element (if any)
� Identifier of the requirement
� Label
� Text
� Attributes

� Name and values
� Pictures

The Rational Rhapsody Gateway synchronization preview displays the differences in the Rational
Rhapsody and Rational DOORS versions of the requirements so that you can select the appropriate
action.
Rational Rhapsody 1395

IBM Rational DOORS interface
Navigating from Rational DOORS to Rational Rhapsody

You can select an object in the Rational DOORS exported elements module and navigate to the
matching element in the Rational Rhapsody model. The navigation operation highlights the
selected element in Rational Rhapsody. When navigating to a browser element, such as a class, the
element is highlighted in the Rational Rhapsody browser. In the case of a state or transition, the
matching statechart opens and the appropriate state or transition is highlighted. In the case of
diagrams, the diagram will open in Rational Rhapsody.

To navigate from Rational DOORS to Rational Rhapsody:

1. Select any shadow object in the Rational DOORS formal module.

2. Select Rhapsody > Navigate to Rhapsody. The Rational Rhapsody application loads
with the matching element highlighted.

Rational DOORS projects
The project must already exist in Rational DOORS before you can connect to it from Rational
Rhapsody. In Rational DOORS, create the project to which you will export Rational Rhapsody
data if the Rational DOORS project does not already exist.

Invoking the Rational DOORS interface

To start the Rational DOORS interface in Rational Rhapsody:

1. Open the Rational Rhapsody project you want to export.

2. Choose Tools > DOORS Interface. The DOORS Interface window opens.

3. In the Project Name box, type the name of the Rational DOORS project to which you
want to connect.

4. Select the mode using the Run in Batch Mode option. The default value is interactive
mode (unchecked).

To be able to navigate to Rational DOORS objects from the Rational Rhapsody browser,
you must use interactive mode.

Note
If you want to launch Rational DOORS, click Login and provide your Rational DOORS
username and password.
1396 User Guide

Rational DOORS projects
Set export options

Export options enable you to control:

� Which Rational Rhapsody design elements are exported
� Whether all elements are exported to one Rational DOORS formal module or to several

modules
� Whether each package is exported to a separate formal module
� Which metatypes (such as packages or classes) to export

The Export All option enables you to export all design elements in the current Rational Rhapsody
project as shadows to Rational DOORS.

To export all design elements in the current Rational Rhapsody project as shadows to Rational
DOORS, select the Export All check box. When you select Export All, the browser tree is
unavailable, indicating that you can no longer select individual packages or diagrams.

To explicitly select individual packages or diagrams, clear the All types check box and select one
or more element metatypes to export using the browser tree.

You can export nested packages to Rational DOORS. When you select a package to export, that
package and all the packages nested under it are exported.

Identify which formal modules to create

The Create module per package option enables you to export design elements from the Rational
Rhapsody project to formal modules with the same names as their packages in the Rational
DOORS project. If this option is disabled, all elements are exported to a single formal module
named RHAPSODY_MODULE.

Note the following information:

� When models are exported using the Create module per package option, you cannot
navigate to Rational DOORS from a class or top-level object model diagram (one that is
not in a package). In both cases, you will receive a message stating that the element’s
package could not be found.

� While you are in Create module per package mode, a new empty package will not be
detected; in this mode, the package has no shadow in Rational DOORS, only a module.
Rational Rhapsody 1397

IBM Rational DOORS interface
Selecting Rational DOORS export options

Export options enable you to select the types of elements that can be exported, rather than the
individual elements that actually are exported. For example, if you choose to export elements of
metatype Package, you can still opt to export one particular package but not another. If you choose
not to export elements of metatype Package, no individual elements of that type will be exported.

Examples of exportable metatypes include packages, classes, attributes, object model diagrams,
statecharts, relations, operations, states, activity flows, and constraints. Generally, all of the
metatypes that you see in the Rational Rhapsody browser are exportable, and more. States and
transitions of statecharts are also exportable metatypes.

To select which metatypes to export:

1. Click Options. The Export Options window opens.

2. To export all metatypes in the Rational Rhapsody model to Rational DOORS, select the
All types check box. The browse tree is unavailable, indicating that you can no longer
select individual metatypes.

To explicitly select individual metatypes to export, clear the All types check box and
select one or more element metatypes to export using the browser tree.

3. To export the graphics of diagrams and statecharts to Rational DOORS, select the
Diagram images check box, or set the
RTInterface::ExportOptions::ExportPictures property to Checked. When you have
turned on this option, every diagram that you export to Rational DOORS has an OLE
object inserted in its shadow. The OLE object holds the diagram graphics as an RTF file
stored in the Rational Rhapsody project directory.

Note: If WORD is not on the machine, the OLE object will not be created.

4. To export element labels instead of names, select the Export Labels check box.

5. There are two kinds of deletion:

a. Hard delete means the element and its link is deleted from the Rational DOORS
database.

b. Soft delete means the element is marked as deleted, but remains in the database so it
can be recovered. The link is deleted.

The property RTInterface::ExportOptions::PurgeOnDelete controls the deletion
type used in Rational DOORS. By default, this property is set to Checked (hard
delete).

To permanently delete the element, select the Purge on Delete check box.
1398 User Guide

Rational DOORS projects
Note the following information:

– When there is an extra element in Rational DOORS that does not exist in
Rational Rhapsody, the system asks whether you want to delete it.

– If you soft delete an element and later create an element with the same name,
a new shadow element is created in Rational DOORS. The old one is not
used.

The metatypes are shown in hierarchical order, with packages and diagrams at the top of the tree.
This is analogous to the way metatypes are shown in the browser. The same information hierarchy
is maintained in the Rational DOORS formal module as in the Rational Rhapsody model.

Note the following information:

� You can deselect a subordinate metatype only if its higher-level metatype is selected. For
example, you must select packages in order to export classes, events, types, globals, use
cases, or actors.

� When you export only particular types of data, change those elements and then re-export
the model without exiting Rational Rhapsody, Rational DOORS “sees” only those
elements that were originally exported and updates them in Rational DOORS.

� If you have exited Rational Rhapsody and re-opened it before re-exporting, the default
setting in the Export Options window returns to All Types.

� States are organized according to their position in the state hierarchy in the source
statechart. Transitions are organized under their source state. The hierarchy of transitions
and states is the same as in the Rational Rhapsody reporter tool.

� Constraints can only be exported to Rational DOORS with their owners. Constraint
shadows become the children of their owner’s shadow.

� Diagram shadows are created in the shadow of the module for the package to which they
belong.

� Generalization of classes, use cases, and actors are mentioned in the derived shadow’s
attributes in Rational DOORS. The short text attribute in Rational DOORS holds the
following code:

<Super ELEMENT_TYPE> : <object_name>

In this syntax, <object_name> is the name of the parent relating to that shadow. To view
the short text attribute in Rational DOORS, right-click the shadow of the element and
select Edit.
Rational Rhapsody 1399

IBM Rational DOORS interface
Linking the Rational DOORS data

You link Rational Rhapsody elements to Rational DOORS requirements by first exporting
information that identifies the elements to Rational DOORS. The information is inserted into a
Rational DOORS module as an object. You can link any exported element that is not undefined or
unresolved in Rational Rhapsody.

Once you have set the wanted export options, you are ready to export the project.

To export the project:

1. In the DOORS Interface window, click Export.The Login window opens.

2. Type your Rational DOORS user name and password.

3. Click OK.

If Rational Rhapsody cannot connect to the Rational DOORS project, the specific Rational
DOORS error message displays. If Rational DOORS cannot be run at all, Rational Rhapsody
displays an error message.

Once you have successfully logged in, Rational Rhapsody exports design information to the
Rational DOORS project. For each Rational Rhapsody element for which the Rational DOORS
project does not yet have a shadow, one is created. If the Rational DOORS project already has a
shadow for a particular element, the shadow is updated with current information.

After all shadow information is updated in the Rational DOORS project, Rational Rhapsody
automatically checks the data to verify that all elements were correctly exported.

Rational Rhapsody remains connected to Rational DOORS for the duration of the Rational
Rhapsody session. Therefore, if you close the DOORS Interface window, you do not need to
reconnect to Rational DOORS during the same Rational Rhapsody session.

Together with each shadow element, Rational Rhapsody exports structure information that allows
Rational DOORS to mirror the hierarchy of information shown in the Rational Rhapsody browser.
Rational Rhapsody also maintains internal information on exported elements.

Links in Rational DOORS between use case and sequence diagrams
Certain element types in Rational Rhapsody are connected in logical relationships with each other.
For example, a use case diagram in Rational Rhapsody can hold references to the sequence
diagram that describes it. Rational Rhapsody creates a link between the relational shadows (for
example, the use case shadow and its corresponding sequence diagram shadow) during the export
operation. These connections are expressed in the Rational DOORS formal module, like any other
Rational Rhapsody model information.

Linked elements in Rational Rhapsody include:
1400 User Guide

Rational DOORS projects
� Use cases and their sequence diagrams
� Use cases and their collaboration diagrams
� Sequence and collaboration diagrams, and classes that participate in each.

A link module named Rhapsody_links (default name) is added to the Rational DOORS project
to describe the links between the shadows. You can control the name of the link module using the
property RTInterface::DOORS::LinkModuleName.

The link module describes the links as entry points in a matrix of the shadows. Links can be
between shadows in the same module or between shadows from different modules. The blue
squares specify a link between the use case “arming and disarming” and sequence diagram
“Arming the a...” and between the use case “changing code” to the sequence diagram “Changing
the c...”
Rational Rhapsody 1401

IBM Rational DOORS interface
A link is graphically specified in the Rational DOORS formal module as an arrowhead, red for
outgoing links and orange for incoming links.

To navigate from a shadow to its links shadows:

1. Position the cursor on the arrow specifying the link.

2. Click the right mouse button.

3. Select the wanted shadow from the shadows links list.

Information stored in Rational DOORS
Each exported object is a Rational DOORS shadow element containing the following information:

� The name of the Rational Rhapsody element.
� The package or diagram to which the element belongs in Rational Rhapsody.

Note the following information:
– If you selected the option Create module per package, each exported

element belongs to a formal module corresponding to the package in Rational
Rhapsody. Otherwise, the Rational DOORS object is hierarchically located
under the object representing the package in the RHAPSODY_MODULE.

– If you want the Rational DOORS project name to reflect the Rational
Rhapsody project name, set the
RTInterface::DOORS::ModuleNameFromProject property to Checked. If
you set the property to Checked, the elements are exported to a formal module
matching the name of the Rational Rhapsody project, plus a leading “R”. For
example, if the project name is Pbx, the formal module name will be RPbx.

� The type of the Rational Rhapsody element.
� The description of the Rational Rhapsody element.
� In special cases, descriptive information is added to the shadow element in Rational

DOORS. For relations, for example, information is added similar to that contained in a
Rational Rhapsody report.
1402 User Guide

Information stored in Rational DOORS
The following figure shows the graphical view of a Rational Rhapsody project that has been
exported to Rational DOORS. It shows the Default package, which has been exported to a
Rational DOORS formal module of the same name, and the hierarchy of some of the shadow
objects, such as events, classes, statecharts, and states, that are part of the package.
Rational Rhapsody 1403

IBM Rational DOORS interface
Rational DOORS information stored in Rational
Rhapsody

Rational Rhapsody maintains unique identification information for each design element that was
successfully exported to Rational DOORS so Rational Rhapsody can retrieve the Rational
DOORS internal data for a shadow at any time.

Data checking

The Check Data operation checks for inconsistencies between the Rational Rhapsody source
elements and their related shadows in the target Rational DOORS project. Rational Rhapsody
automatically starts the Check Data operation after each successful export operation. You can also
check data independently of an export.

To start the Check Data operation, click Check Data.

If the Check Data operation finds an inconsistency, the Problem Resolution window opens, which
lists any inconsistencies found and offers various ways to deal with the problem.

If you try to re-export the model after closing and then reopening Rational Rhapsody, because the
Export Options window reverts back to the All Types selection, you might receive errors about
elements that have not been exported because they were not among those selected for the earlier
export. To ensure that the export does not give you errors of this kind, be sure to reselect all the
same metatypes as you selected in previous exports.

Problem Description window

The Problem Description window lists inconsistencies discovered by the Check Data operation. To
view the next problem, choose one of the operation buttons, such as Ignore or Update, which are
active when a problem is selected.

Each problem description includes the following information:

� Definition of the problem
� Name of the element in Rational Rhapsody, if applicable
� Type of the element in Rational Rhapsody, if applicable
� Package to which the element belongs in Rational Rhapsody
� Name of the shadow element in Rational DOORS, if applicable
� Type of the shadow element in Rational DOORS, if applicable
� Rational DOORS formal module to which the shadow was exported
1404 User Guide

Rational DOORS information stored in Rational Rhapsody
To handle a particular consistency problem, select the problem in the Problem Description list.
Each type of problem has an appropriate resolution. Rational Rhapsody offers a default resolution
and alternatives, depending on the type of problem. The following table summarizes the types of
problems detected by the Check Data operation and their possible resolutions.

The following buttons are available depending on the appropriate solution for a selected problem:

� Update updates the Rational DOORS project with the current Rational Rhapsody
information so it is consistent in both places. The Update operation also renews the
shadow ID on the Rational Rhapsody side to keep the link to the shadow element current.

Updating is the preferred way to deal with stale data or missing links.
� Delete Shadow(s) deletes the shadow elements in Rational DOORS that are related to the

selected problem.

Deleting shadows is the preferred way to deal with shadows that have invalid names.

Problem Description Possible Resolutions

DOORS element is outdated. Invalid name in Rational DOORS
for an element that was renamed
or otherwise edited in Rational
Rhapsody. The message lists the
element’s name, type, and
package in both Rational DOORS
and Rational Rhapsody for
comparison.

Default: Update Rational
DOORS to match the newer
information in Rational
Rhapsody.

Alternate: Ignore.

DOORS element is not
connected to any Rational
Rhapsody element.

Rational DOORS shadow element
points to a non-existent element in
Rational Rhapsody.

Default: Delete shadows.

Alternate: Ignore.

Package/diagram missing. The package, diagram, or
statechart that existed in the
Rational Rhapsody project when
the information was initially
exported to Rational DOORS no
longer exists in the Rational
Rhapsody project.

Default: Ignore
Alternate: Delete shadows for
all related elements

Missing link in Rational
Rhapsody element.

The Rational Rhapsody element
is not linked to a shadow in
Rational DOORS, although a
shadow exists in Rational DOORS
that matches the element’s unique
Rational Rhapsody identification
information.

Default: Update both the
Rational Rhapsody and
Rational DOORS information.
Alternate 1: Ignore
Alternate 2: Delete the
element in Rational DOORS
and reexport the Rational
Rhapsody project.

Rational Rhapsody element is
not connected to any DOORS
element.

The Rational Rhapsody element
has no link to a Rational DOORS
shadow element.

Default: Export the element.
Alternate: Ignore the error
and export later.
Rational Rhapsody 1405

IBM Rational DOORS interface
� Delete & Create New deletes an existing, erroneous shadow and creates a new, accurate
one.

� Ignore tells Check Data to proceed with the next problem to be resolved without making
any changes to either the Rational Rhapsody or the Rational DOORS project.

Ignoring the inconsistency is the preferred way to deal with missing packages or
diagrams.

Mapping Requirements to imported elements
You map the imported shadow elements to requirements by creating a link module in Rational
DOORS. To create a link module:

1. In the Rational DOORS Project Manager, select New > Link Module.

2. Use the New Link Module window to specify a the name for the link module, its
description, and a mapping value.

3. Click OK to apply your changes and dismiss the window. The Link Module window
opens.

4. Select File > New > Linkset. The New Linkset window opens.

5. Specify the source and target modules, then click OK to create the link.

Rational DOORS creates a new link module in which requirements from the source module line
the left margin of a blank table in the middle of the window, and shadow objects from the target
module line the top margin of the table.

To link requirements to shadow objects:

1. Right-click a blank square in the table and select New Link.

2. In the Edit Link Object window, edit any of the link attributes.

3. Click Close.

That square is marked in blue to indicate that a requirement on the Y-axis is linked to a shadow
object on the X-axis.
1406 User Guide

Ending a Rational DOORS session
Ending a Rational DOORS session
To end a Rational DOORS session, do any of the following actions:

� Click Logout in the Rational DOORS Interface window.
� Close the Rational Rhapsody project.
� Exit Rational Rhapsody.

If you are running Rational DOORS in interactive mode, you can exit Rational DOORS from the
Rational DOORS window.

Rational DOORS with Rational Rhapsody summary
The objective of the Rational DOORS interface is to represent a Rational Rhapsody model in a
Rational DOORS module. The formal module must always contain the most current information
about Rational Rhapsody model elements. Thus, you can treat a Rational Rhapsody project as a
special kind of requirements file filled with model elements. This enables you to link requirements
to actual Rational Rhapsody model elements that fulfill those requirements. Remember that
Rational DOORS is the owner of the requirements. If you need to make changes to requirements,
make them in Rational DOORS.

You can transfer information about complete Rational Rhapsody models or subsets of models into
Rational DOORS. You select elements to transfer by constructing a list using the Rational
Rhapsody browser. In this way, you can only update subsets of the model if it takes too long to
transfer the entire model.
Rational Rhapsody 1407

IBM Rational DOORS interface
1408 User Guide

Rational Rose models
The IBM Rational Rose Importer utility imports models created in IBM Rational Rose into
Rational Rhapsody. Components of the Rational Rose Logical View, such as packages, classes,
and relations between classes, are mapped to similar entities in Rational Rhapsody. Class and state
diagrams from Rational Rose are imported as object model diagrams and statecharts, respectively,
in Rational Rhapsody. In addition, you can import activity, component, sequence, and use case
diagrams, along with templates and template instantiations.

Note
The Rational Rose Importer imports the Rational Rose Logical View, Use Case View, and
Component View. It does not import the Deployment View.

In addition, Rational Rose must be on the Rational Rhapsody host machine for import to
work. It is not sufficient to simply import a model created in Rational Rose without Rational
Rose actually being on the Rational Rhapsody machine.

As well, you can (separately) import the code for your imported Rational Rose model and then
merge the operation and function bodies from that code into the corresponding imported Rational
Rose model. This involves importing the model from Rational Rose (referred to as the imported
Rational Rose model), importing the code (using the Rational Rhapsody Reverse Engineering
tool), and then merging the imported code with the imported Rational Rose model.
Rational Rhapsody 1409

Rational Rose models
Importing a Rational Rose model
You should ensure that your Rational Rose model is correct from the Rational Rose perspective
before you import it into Rational Rhapsody. In addition, a target project must first exist in
Rational Rhapsody before you can import a Rational Rose model.

To import a Rational Rose model into Rational Rhapsody:

1. Before importing a Rational Rose model, verify that the model is correct from the Rational
Rose perspective. Use the Rational Rose check model function and clear all reported
errors in the model before importing it. Attempting to import a model with errors might
result in problems using the Rational Rose Importer.

2. With Rational Rhapsody running, create the new project. For example, choose File > New.
For more information about creating a new Rational Rhapsody project, see Creating a
project.

3. To start the process to import your Rational Rose model, select Tools > Import from
Rose > Import Model.
Notice that Rational Rhapsody automatically opens the Output window for you.

4. To select a Rational Rose model to import, do whichever of the following action is
applicable for you to fill in the File to import box:

� If you have the Rational Rose environment and the Rational Rose model you want
to import open, select the Connect to Running Rose check box to fill in the File
to import box.

� If you do not have the Rational Rose environment open, use the Browse button to
locate the Rational Rose .mdl file you want to import. Or you can type the name,
including the full path, of the Rational Rose model in the File to import box.

5. Once the Rational Rose .mdl filename displays in the File to import box, the Logical
View, Use case View, and Component View branches for the Rational Rose model to be
imported are displayed on the Rose Import window.
1410 User Guide

Importing a Rational Rose model
6. Expand the contents of a view choice and select the elements you want to import. Note the
following information:

� Clicking the check box for the main (top) branch selects or clears all sub-branches
and their elements.

� Clicking the check box for a sub-branch selects or clears that sub-branch and all
its elements.

� Right-clicking a check box either clears or selects that specific element,
depending on its current state.

7. To select your import options, click the Options button to open the Import Options
window:

� Import statecharts and activity diagrams, Import object model diagrams,
Import Associations with no names. Decide (select/clear the check boxes) if
you want to include statecharts and activity diagrams and/or object model
diagrams and/or associations with no names.

� If you want the imported Rational Rose project to have the look-and-feel of a
Rational Rose project, select the Use Rose Look-and-feel check box.

Note: This Use Rose Look-and-feel check box is disabled on the re-import of a
model if the check box was selected on the original import of the model.

� If you want to import properties from the Rose model, select the Import
Properties check box and use the Browse button to point to the needed property
XML map file. See Setting up the XML map file for importing Rational Rose
properties.

Note: Rational Rhapsody will automatically use these settings the next time you do an
import. For example, if you select the Import statecharts and activity
diagrams check box and clear the Import object model diagrams check box,
this setting will be used for all subsequent imports until you change the settings
again.

8. Before you import, you might want to be sure of or do the following information:

� If you are re-importing the same packages from Rational Rose, remember that the
names in Rational Rhapsody and in Rational Rose must be exactly the same.

� If necessary, move the Rational Rose Import window away from the Output
window before you start the import so that you can see any messages as they
occur.

Note: While Rational Rose allows names with spaces, Rational Rhapsody does not.
Rational Rhapsody approximates spaces in names by replacing them with
underscores. For example, a package named “Course roster” in Rational Rose
becomes “Course_roster” when imported into Rational Rhapsody. There are
other characters not allowed in Rational Rhapsody names (such as &, #, $, and
%). For these characters, Rational Rhapsody will use underscores or truncate
the names.
Rational Rhapsody 1411

Rational Rose models
9. To close the Import Options window, click OK.

10. On the Rose Import window, to do the import, click the Import button.

11. If a top-level package with the same name as one you are importing already exists in the
Rational Rhapsody model, the following message displays:

Packages Logical_View, Use_Case_View, Component_View already exist. Do
you want to continue?

To continue with the import, click Yes. This means that any package that is
re-imported will be totally overwritten.

12. The import process begins. Progress meters and possible messages regarding “lost data”
are written to the Output window. The following examples show types of messages:

Error: Can't import association itsTerminal from IControlDevice. It
has only one role.

...

Error: Can't add operation GetPropertyValue to class IControlDevice,
there is a name or signature clash.

...

Error: Can't override statechart for derived class IAlarm.

Note
The import process creates a log file, importRose.log, which is located in the folder of the
active project.
1412 User Guide

Importing a Rational Rose model
Setting up the XML map file for importing Rational Rose properties

You can include the property data for a Rational Rose model when you import it into Rational
Rhapsody. You must define which Rational Rose properties you want to import based on the tool,
metaclass, and property name, which you define in an XML map file. During the set up for the
importing process, you point to the XML map file on the Import Options window (in Rational
Rhapsody).

The Rational Rhapsody product includes sample XML map files that you can use to design the
needed XML map file. The sample XML files, which you can edit with any text editor, are located
in <Rational Rhapsody installation path>/Share/etc.

To design your XML map file:

1. Decide which XML map file you want to use.

– rose_properties_import.xml is the basic map file and within it is a list of
the common values for attributes and a list of the Rose tools.

– rose_properties_import_java.xml is specifically for importing a Java
Rational Rose model.

2. Using any text editor, modify the XML map file. For each property in the XML map file,
you must include its metaclass, tool, and property name for the Rational Rose model, as
shown in the following example:

Note
The default location and name for the XML map file is in the <Rational Rhapsody
installation path>/Share/etc/rose_properties_import.xml path. You can change
this by modifying the RoseInterface::Import::PropertiesXMLPath property to point to
another path for the XML map file.
Rational Rhapsody 1413

Rational Rose models
Incremental import of Rational Rose models
Rational Rhapsody allows you to import Rational Rose models incrementally. This makes it easier
to import large models according to your workflow processes. For example, for a very large
model, you might have more than one team, with each team assigned a specific part of the model.
You can import each part of the model in separate import sessions. For example, you might import
all of Group1, as shown in the following figure:
1414 User Guide

Incremental import of Rational Rose models
Then you could import Group2, as shown in the following figure. Notice also in this example you
can re-import a Rational Rose package (in the Logical View, the Common_Logical_Package has
been selected again for importing). When you import a Rational Rose package that has already
been imported, the incremental import process will completely override the contents of that
package in Rational Rhapsody.

Incrementally imported parts of a Rational Rose model will be integrated correctly in Rational
Rhapsody when possible. An example of when it is not possible: A class has an association with
another class in the original Rational Rose model. During incremental import, only the first class is
imported. The other class is located in another package, which will be imported later. The
association between these classes will remain unresolved (that is, incomplete) until you import the
second class.

Before the import process starts

Prior to the import process, for performance reasons, Rational Rhapsody will close all diagram
windows that might be open (neither saving or unloading diagrams). In this event, the following
message displays:

All opened diagrams will be closed prior to Rose Import.
Please click the OK button to proceed or the Cancel button to cancel import.

Click OK to continue.
Rational Rhapsody 1415

Rational Rose models
About processing time and project size

The internal steps required for this incremental importing process result in slightly longer
processing time as well as slight increases in the size of the project. The size increase is due to the
data that must be saved to allow the importing of further increments of a model. You can use
Tools > Clean Project Import Data to delete the data that was stored in order to allow these
incremental imports. By default, this menu item is not visible. To make this menu item visible, add
the following line to the [General] section of the rhapsody.ini file:

ShowCleanImportData=TRUE

Note
This data is necessary for importing further increments of the model you have imported.
Use this menu option only after you have completely finished importing all of the Rational
Rose model. Once import data is destroyed, incremental import of the particular Rational
Rose model is no longer possible.
1416 User Guide

Code import
Code import
You can import code from a Rational Rose model into your imported Rational Rose model in
Rational Rhapsody. Importing code from a Rational Rose model means creating a temporary
reverse-engineered package from the source code that was generated from Rational Rose and
manually changed after generation.

Note the following points about code import:

� Before doing code import, turn off DMCA and, if open, close the Active Code View
window.

– DMCA (dynamic mode-code associativity) is the function in Rational
Rhapsody that changes the code of a model to correspond to the changes
made to a model in Rational Rhapsody. To turn off DMCA, choose Code >
Dynamic Mode Code Associativity > None.

– To close the Active Code View window, choose View > Active Code View.
(A check mark should not appear next to this menu command when the
window is closed.)

� After you have imported the code for the imported Rational Rose model, do not generate
code for the imported Rational Rose model in Rational Rhapsody while the
reverse-engineered package still exists in the model. You want to avoid situations where,
for example, two classes of the same name try to generate code into the same source file,
which could corrupt the model if the file is then roundtripped. To avoid this problem,
generate code only after the operation bodies have been merged into the imported model
and after the reverse-engineered package has been deleted from the model.

� Be careful as to which classes/objects are assigned to the existing components before code
generation after deleting the imported-code/reverse-engineered package.

To import code from a Rational Rose model, use the Rational Rhapsody Reverse Engineering tool.
To open this tool, choose Tools > Import from Rose > Import Code. For information on how to
use the Reverse Engineering tool, see Reverse engineering.

Once you have imported the code, you can merge it into your imported Rational Rose model. See
Merging imported code to the imported Rational Rose model.
Rational Rhapsody 1417

Rational Rose models
Merging imported code to the imported Rational Rose
model

Once you have imported your Rational Rose model into Rational Rhapsody and separately
imported the code for that imported Rational Rose model, you can merge the operation and
function bodies from the imported code into the corresponding imported Rational Rose model.

Note
This merging process copies the code from all the operations/functions in one top-level
package to another. The merging process does not work for operations/functions that might
be in subpackages (packages under a top-level package). In addition, the destination
package must contain the same class/operation structure as the package that contains the
imported code (though the destination package must have operations/functions with empty
bodies waiting for the imported code).

To merge imported code to its corresponding imported Rational Rose model:

1. With the imported Rational Rose model opened in Rational Rhapsody, choose Tools >
Import from Rose > Merge Model and Code.

2. On the Rose Model and Code Merge Tool window, as shown in the following figure,
choose the code package (the imported code from your Rational Rose model) from the
drop-down list and the model package (in the imported Rational Rose model) to which
you want the imported code.

3. Click Start.

4. Notice that a log of the merge progress prints on the Log tab of the Output window. Upon
successful completion of the merge process, you should see the code for the imported
operations/functions in the applicable package in your imported Rational Rose model.
1418 User Guide

How Rational Rose constructs and options map into a Rational Rhapsody model
How Rational Rose constructs and options map into a
Rational Rhapsody model

The following table shows how various Rational Rose constructs and options map into a Rational
Rhapsody model. For ease of use, the Rational Rose elements are listed in alphabetical order.

Rational Rose Element or
Option

Rational Rhapsody
Element Notes

Abstract class Not imported.

Action Action

Activity diagram Activity diagram

Actor Actor

Anchor note to item Anchor

Association Link, linktype =
association

See Imported association classes.

Cardinality of classes Part Class cardinality refers to the number of
instances of a class that can be created at
run time. A class with exactly one instance
has a cardinality of one.

In Rational Rhapsody, a class’s cardinality
is referred to as its multiplicity. The
Multiplicity box reflects the cardinality of
the class in the original Rational Rose
model.

Category Package

CategoryDependency Dependency

Class Class

Class type Type = class All types of classes are mapped to
classes.

ClassifierRoles ClassifierRoles

Collaboration diagram Collaboration diagram Not imported.

Component Package Package

Component Component Since Rational Rhapsody does not allow
components to be contained in packages,
any imported components will be included
under the project level.

Component diagram Component diagram

Concurrency—sequential, active,
guarded, or synchronous

Concurrency—
sequential or active

Operation concurrency is not imported.

Condition Guard

Constraints Not imported.
Rational Rhapsody 1419

Rational Rose models
Containment—by value,
reference, unspecified

Not imported.

Dependency (UCD) Dependency

Deployment diagram Deployment diagram Not imported.

Derived attributes and relations Not imported.

End state Termination connector

Event Event Events trigger transitions from one state to
another. Events are imported as classes
whose behavior includes triggering state
transitions.

Export control Not imported.

Friend Property

Global package Not imported.

HasRelationship Link, linktype =
aggregation

Inheritance (use cases) Inheritance

InheritRelationship SuperClass, superevent

Initial value of attribute Not imported.

Interface Class Interface classes are imported into
Rational Rhapsody as classes with virtual
operations.

IsConstant (Rational Rose
property)

Not imported.

Link Attribute Not imported.

Link Element Not imported.

Messages Messages

Multiplicity of relations Multiplicity

Navigable relation Feature (from class to
class)

In Rational Rhapsody, you cannot add a
Navigable feature if there is a navigation
(cannot have both Navigable and
aggregation).

Nested class Not imported.

Note Note

Operation type—virtual, static,
friend, abstract, common

Virtual, static

OperationIsConst (Rational Rose
property)

Not imported.

Parameter Argument

Persistence Not imported.

Private implementation Private implementation

Rational Rose Element or
Option

Rational Rhapsody
Element Notes
1420 User Guide

How Rational Rose constructs and options map into a Rational Rhapsody model
Protected implementation Protected
implementation

Public implementation Public implementation

Qualifier/keys Qualifier In Rational Rose, a qualifier might not be a
class attribute. In Rational Rhapsody, a
qualifier must be a class attribute.
Rational Rhapsody approximates
qualifiers depending on whether they are
also attributes in Rational Rose. If the
qualifier is an attribute in Rational Rose, it
is mapped to an attribute in Rational
Rhapsody. Otherwise, Rational Rhapsody
creates an attribute, adds it to the class,
and makes it the qualifier.
Rational Rose allows multiple qualifiers,
whereas Rational Rhapsody allows only
one. Therefore, when you import an
association with multiple qualifiers,
Rational Rhapsody randomly takes the
first one it sees.

Qualifier type Attribute If the qualifier is not a class attribute,
create it.

Relation MetaLink

Relations in UCDs are
imported as relations.

Abstract class.

Relation type—by value, by
reference, unspecified

All three types map to
By reference.

RealizeRelation SuperClass

Role Role

Send argument Action

Send event Action

Send target Action The Rational Rose Send event/argument/
target are mapped to the Rational
Rhapsody action using the following
format:
Sendtarget->GEN(
Sendevent(
Sendarguments))

Sequence diagram Sequence diagram When Rational Rhapsody imports
sequence diagrams from Rational Rose,
the Rational Rose ClassifierRoles are
converted to Rational Rhapsody
ClassifierRoles and Classifiers, and
messages are converted to actual
operations on the target (receiving) class.

Rational Rose Element or
Option

Rational Rhapsody
Element Notes
Rational Rhapsody 1421

Rational Rose models
Space of class Not imported.

Start state Initial Connector Combined with outgoing transition.

State State If there is more than one view for a single
state in Rational Rose, when imported into
Rational Rhapsody, the additional views
will be converted into new states in the
model with the same characteristics (like
you would get with the Copy with Model
feature). The name will indicate that it is a
new state, but the label will be the same.

Static attributes Static attributes

Static relation Static (relation is a static
class member)

StereoType Not imported.

Substate State (with parent) If there is more than one view for a single
substate in Rational Rose, when imported
into Rational Rhapsody, the additional
views will be converted into new substates
in the model with the same characteristics
(like you would get with the Copy with
Model feature). The name will indicate that
it is a new substate, but the label will be
the same.

Templates and template
instantiations

Templates and template
instantiations

Text box Note Same as object model.

Transition Transition The format for an activity flow in the
diagram is as follows:
<Event>[<Guard>]/<Action>

If there is more than one view for a single
transition in Rational Rose, when imported
into Rational Rhapsody, the additional
views will be converted into new
transitions in the model with the same
characteristics (like you would get with the
Copy with Model feature). The name will
indicate that it is a new transition, but the
label will be the same.

Rational Rose Element or
Option

Rational Rhapsody
Element Notes
1422 User Guide

How Rational Rose constructs and options map into a Rational Rhapsody model
Types—predefined (such as int
or float), user-defined, or
class.

Type When you create a user-defined type in
Rational Rose, you can give it a name but
no declaration. Rational Rhapsody
approximates a user-defined type by
adding an on-the-fly type with the new
type name as its declaration.
In Rational Rose, you can also assign a
class type, such as
ParameterizedClass or
InstantiatedClass. Rational
Rhapsody approximates class types by
creating an on-the-fly type with the class
as its declaration.

Use cases Use cases

UseRelation (ClassDependency) Dependency between
packages is saved only
in the graphical
interface.

Rational Rose Element or
Option

Rational Rhapsody
Element Notes
Rational Rhapsody 1423

Rational Rose models
Imported association classes
If a class does not have associations or a statechart, it is imported as an association class;
otherwise, it is imported as a regular class.

Consider the following hospital model:

In this example, Visit Record is a class associated to the Hospital_Patient association.
Therefore, it could be imported as association class.

If the Visit Record class has a statechart or associations with other classes, it will not be
imported as an association class, but will be imported as a class. As shown in the figure, because
Visit Record has an association with class Bill, it will be imported as a regular class. However,
the association Hospital_Patient will have a hyperlink to this class.

If Visit Record does not have associations or a statechart, it is imported as association class. That
means:

� The name of the association Hospital_Patient will be Visit Record.
� The attributes and operations of Visit Record will be displayed under the association

class.
1424 User Guide

XMI exchange tools
XMI (XML Metadata Interchange) is a format specification produced by the Object Management
Group (OMG). The XMI format allows the interchange of objects and models through an XMI
formatted file. This is commonly used to exchange UML models between other tools or software.

In addition to XMI, Rational Rhapsody provides additional tools for developers to examine the
models, such as:

� ReporterPLUS reports in Word, PowerPoint, and HTML format. Reports are created
without any conversion to another format.

� Model simulation capabilities show how the model components work together.
� The COM API exports a set of COM interfaces representing the metamodel objects and

application operational functions.
� Write macros provide a means to examine the model within Rational Rhapsody.

Using XMI in Rational Rhapsody development
The Rational Rhapsody XMI export and import feature facilitates the following development
tasks:

� Export an entire Rational Rhapsody model to XMI to be closely examined as a whole
� Export the whole model to XMI to be searched in an HTML browser
� Export the model to XMI in order to parse the entire model with another UML tool or a

non-UML tool
� Imports XMI models or pieces of other XMI models into Rational Rhapsody models
� Exchange models to or from the Tau system
Rational Rhapsody 1425

XMI exchange tools
Exporting a model to XMI
Engineers, designers, or architects might export a Rational Rhapsody project to an XMI file for
any of the following reasons:

� Share a model with another UML tool
� Create a text file for your model so that it can be parsed
� Create a file that can be searched in an HTML browser

To export a Rational Rhapsody model to an XMI file:

1. Open the model for export in Rational Rhapsody.

2. Choose Tools > Export XMI from Rhapsody.

3. In the XMI Operation area, select whether you are exporting to XMI or to Tau.

4. Then select the UML Format of your project files as either 1.3 or 2.1.

– If you select UML 2.1, the XMI Version is automatically set to 2.1.
– If you select UML 1.3, you can select 1.0, 1.1, or 1.2 as the XMI Version for

your exported file.

5. If you select the UML 1.3 format, you can decide to Handle Diagrams and output the
diagrams for the model in the UNISYS extensions format during the export operation.

6. In the XMI file box, select a directory for the exported file.

7. Click Proceed to export the model as defined.
1426 User Guide

Exporting a model to XMI
8. The system displays any messages relating to the export in a window, as shown in the
following figure:
Rational Rhapsody 1427

XMI exchange tools
Examining the exported file
After exporting a model, you can open the exported file in any standard browser to examine the
details of the model. The following example shows an exported Rational Rhapsody model
displayed in the Windows Internet Explorer browser.

Note
If the UML 1.3 and Handle Diagrams options are selected, the exported file includes the
Rational Rhapsody model diagrams in the UNISYS extensions format.
1428 User Guide

Importing an XMI file to Rational Rhapsody
Importing an XMI file to Rational Rhapsody
Rational Rhapsody has the ability to import a model from an XMI file into Rational Rhapsody for
either of these reasons:

� A file from another UML tool needs to be brought into Rational Rhapsody. For example, a
TAU file could be brought into Rational Rhapsody this way.

� A file from a non-UML tool needs to be brought into Rational Rhapsody.
Important: Normally you would not export and import XMI files between Rational Rhapsody
users. XMI is intended as a means for vendor-neutral data sharing.

To import an XMI file from another source:

1. Create a new Rational Rhapsody project or open an existing Rational Rhapsody project.

2. Choose Tools > Import XMI into Rhapsody.

3. In the XMI Operation area, select whether you are importing from XMI or from Tau.

4. In this window, select the UML Format for the imported file as either 1.3 or 2.1.

5. If you select the UML Format for the imported file as UML 1.3, you can also select
whether or not the import operations should Handle Diagrams.

6. Select the Language for your imported file as C, C++, Ada, or Java.

7. In the XMI file box, select the directory from which to import the file.

8. Click Proceed to import the XMI file as defined and add it to the Rational Rhapsody
project.
Rational Rhapsody 1429

XMI exchange tools
The system displays messages relating to the import in a window, as shown in Exporting a model to
XMI.

More information
For more information about the XMI toolkit features, see the following documentation in
<Rational Rhapsody installation path>\Sodius\XMI_Toolkit\doc:

� User Guide
� Mapping Rules Overview
� Rational Rhapsody Rational Tau Integration
1430 User Guide

Integrating Simulink components
Rational Rhapsody can be used in conjunction with Simulink, the MATLAB extension that allows
modeling of continuous processes using block diagrams.

Rational Rhapsody allows you to integrate Simulink models into Rational Rhapsody designs.
Simulink models are represented as “Simulink blocks” in the UML model, and these blocks can
interact with Rational Rhapsody objects/parts or other Simulink blocks. The integration of
Simulink blocks into Rational Rhapsody uses a “black box” approach, in which only the input/
output ports of the Simulink blocks are exposed, appearing as flowports in the Rational Rhapsody
model. To send/receive data to/from a Simulink block, you use links to connect these flowports to
flowports of other Simulink blocks or of other Rational Rhapsody objects. When code is generated
for a Rational Rhapsody model containing Simulink blocks, the code generated by Simulink is
wrapped into the Rational Rhapsody-generated code.

If changes are made to the Simulink model, you can synchronize the representation of the
Simulink model in your Rational Rhapsody project with the updated model.

In general, the process for including such Simulink components in a Rational Rhapsody model is
as follows:

1. Build the Simulink model using Real-Time Workshop.

2. Import the model into Rational Rhapsody as a SimulinkBlock. The Simulink input and
output ports will appear as atomic flowports on the SimulinkBlock element. (See Flow
ports.)

3. Connect the flowports of the SimulinkBlock element to the flowports of the relevant
elements in the Rational Rhapsody model.

The following software is required for integrating Simulink components into a Rational Rhapsody
model:

� Matlab must be available and licensed (Matlab 7), with Simulink (version 6) and the Real-
Time Workshop component (which generates C and C++ code from Simulink models).

� Rational Rhapsody 7.0 or greater

Note
The ..\Samples directory contains a sample Rational Rhapsody model that includes
Simulink integration.
Rational Rhapsody 1431

Integrating Simulink components
Importing Simulink components
To import a Simulink component, carry out the following steps in Simulink and in Rational
Rhapsody:

In Simulink

1. Create a Simulink model, or open an existing one, and save it in your working directory,
preferably in the same working directory as your Rational Rhapsody model.

2. For generating code, use the following settings (most are the default settings) in the
Real-Time Workshop. You can view the settings by selecting Tools > Real-Time
Workshop > Options.

� Hardware Implementation->Device Type - Unspecified (assume 32bit Generic)
� Real-Time Workshop->System target file - ert.tlc
� Real-Time Workshop->Language - C or C++ (note that the default setting is C)
� Real-Time Workshop->Make command - make_rtw
� Real-Time Workshop->Template makefile - ert_default_tmf

3. Generate code for the Simulink model (Tools > Real-Time Workshop > Build Model).

In Rational Rhapsody

1. Create a new Rational Rhapsody project.

2. Right-click the project name in the browser and select Add to Model > Package.

3. Navigate to your Rational Rhapsody installation’s Share/Profiles/Simulink directory.
Select the Package (*.sbs) for Files of type, as shown in this example.
1432 User Guide

Integration of the Simulink-generated code
4. Select the SimulinkInC.sbs profile if you are using C and Simulink.sbs if you are using
C++. Click Open to add the selected profile to the project. Check the Profiles section in
the browser to be certain that the selected Simulink profile is now displayed.

5. Create an object in an object model diagram, and apply the SimulinkBlock stereotype to it
(in the Features window).

6. Right-click the object and select Import/Sync Simulink Model.

7. In the window that is displayed, provide the following information:

� Simulink Model File. The location of the Simulink model file
� Simulink Generated Source Code. The location of the *.cpp files generated by

the Real-Time Workshop (add all files except ert_main.cpp).
� Simulink Model Sample Time. The interval (in milliseconds) at which Rational

Rhapsody should activate the Simulink engine.
8. Click Import/Sync and wait until Rational Rhapsody creates flowports on the block

representing the input and output of the Simulink model.

9. Once the flowports have been created, you can connect the Simulink block to the
flowports on other Rational Rhapsody blocks.

Integration of the Simulink-generated code
When Simulink components are imported into a Rational Rhapsody model, the .cpp files generated
from the Simulink model using Real-Time Workshop are included as source files in the Rational
Rhapsody-generated makefile.

In terms of Rational Rhapsody-generated code, SimulinkBlock elements in Rational Rhapsody are
classes that are based on a framework class called OMSimulinkBlock. The superclass periodically
calls the method doStep(), which is implemented by the derived class. This method initializes the
input port, calls the step function in the Simulink-generated .cpp file, and sets the value of the
output after the step. (The output is then relayed via the output flow port.)

The doStep() function will be generated once you assign the SimulinkBlock with a Simulink
model and use the Import/Sync Simulink Model context menu command. Note that an
Embedded Coder License (ERT) is required for this operation.
Rational Rhapsody 1433

Integrating Simulink components
Troubleshooting Simulink integration
� If after importing or synchronizing with your Simulink model, you get an error message

about a missing file, langeng.dll, verify that MATLAB’s \bin\win32 folder is in your
PATH environment variable. After adding it, you will have to restart Rational Rhapsody
and try reimporting.

� If you get compilation errors regarding missing include files, look for them in the
MATLAB installation directory. After locating them, you can add them to the include
search path for the Rational Rhapsody configuration.
1434 User Guide

Creating Simulink S-functions
with Rational Rhapsody
Using Rational Rhapsody in conjunction with Simulink
Rational Rhapsody can be used to create Simulink S-functions that can then be plugged into
Simulink models.

The specific steps to carry out to create S-functions in Rational Rhapsody are described in Creating
a Simulink S-function.

For a broader picture of S-function creation in Rational Rhapsody, see S-function creation: behind
the scenes.

Note
This feature is only applicable in Rational Rhapsody Developer for C.

Creating a Simulink S-function
To create a Simulink S-function in Rational Rhapsody and then use it in Simulink:

1. Create a new Rational Rhapsody project.

2. Create a new configuration and apply the stereotype S-FunctionConfig to it.

3. Set the newly-created configuration to be the active configuration.

4. Create a new class, and apply the stereotype S-FunctionBlock to it.

5. Add incoming flowports to the class to represent incoming data.

6. Add outgoing flowports to the class to represent outgoing data.

7. For each of the flowports you added, add an attribute to the class to represent the flowport.
The attribute must have the same name and be of the same type as the corresponding
flowport.

8. Implement a statechart for the class.

9. Generate code for the configuration you created.
Rational Rhapsody 1435

Creating Simulink S-functions with Rational Rhapsody
10. The output directory for the configuration will include the following items:

� generated source files for the model
� Rational Rhapsody framework files (from the Rational Rhapsody IDF framework)
� a Simulink C template file called RhapsSFunc_(the name you gave to the block).c
� a mex options file called MexOpts.txt
� a Simulink model file, representing the S-function block, called RhapSFunc_(the

name you gave to the block)_Model.mdl
11. Open MATLAB and go to the output directory containing the Rational Rhapsody code.

12. Run the command mex @MexOpts.txt.

S-function creation: behind the scenes
When you generate code for an S-FunctionConfig configuration, Rational Rhapsody performs the
following actions:

� Completes the sfuntmpl_basic.c template provided by Simulink, and renames it to reflect
the name you assigned to your S-function block.

� Takes the information you have entered for the S-function block in your project and
creates a corresponding Simulink model file, using the name you assigned to your S-
function block.

� Generates a mex options file, containing the necessary compiler switches and list of source
files to use.

When you run the mex command using the mex options file generated by Rational Rhapsody,
MATLAB’s MEX compiler creates a binary file that can be used by Simulink.

Timing and S-Functions

For time-related events, Rational Rhapsody uses the timing mechanism of the target operating
system. Since Simulink has its own timing mechanism, Rational Rhapsody takes this into account
when generating the S-function code. The Simulink clock is added as an input to the S-function.
This is not visible to the user in Rational Rhapsody, but when the resulting files are imported into
Simulink, you see a clock element in addition to the element representing the defined S-function.
1436 User Guide

S-function creation: behind the scenes
Limitations

When creating Simulink S-functions in Rational Rhapsody, keep the following information in
mind:

� You can only have one S-function per configuration.
� The Rational Rhapsody animation feature does not work with S-function blocks.
Rational Rhapsody 1437

Creating Simulink S-functions with Rational Rhapsody
1438 User Guide

The Rational Rhapsody
command-line interface (CLI)
Rational Rhapsody provides command-line options for individual system features, such as for the
DiffMerge tool functions. You can run the full version of Rational Rhapsody (Rhapsody.exe) from
the command line. To assist with command-line operation, Rational Rhapsody includes a
lightweight non-GUI version of the program (RhapsodyCL.exe), which allows you to use a subset
of the full set of Rational Rhapsody command-line options.

Note
RhapsodyCL.exe is located in the same directory as Rhapsody.exe.

RhapsodyCL
RhapsodyCL allows you to use the Rational Rhapsody code-related functions, such as generate
and make, in contexts where you do not require the GUI elements, for example, as part of a nightly
build procedure. Since RhapsodyCL is designed for tasks such as code generation, it does not
support options relating to diagrams, for example, populating a diagram from the command line. It
also does not support the commands relating to configuration management and running macros.

You can send the RhapsodyCL application commands using any of these four methods:

� Command line
� Batch file
� Interactive mode
� Socket mode
Rational Rhapsody 1439

The Rational Rhapsody command-line interface (CLI)
Interactive mode

In this mode, RhapsodyCL, switches to a “shell mode” using a prompt to enter commands. You
can use either of the following techniques to employ the interactive mode for the Rational
Rhapsody command-line interface:

� Adding the -interactive switch in the command line
� Executing RhapsodyCL with no commands

For every command the user enters in interactive mode, RhapsodyCL performs the following
actions:

1. Executes the command.

2. Wait for more commands from the user.

3. Stop when an exit command is received.

Note
If any commands exist in the command line when the -interactive switch is entered, the
existing commands are executed first, and then RhapsodyCL enters interactive mode.

Socket mode

In this socket mode, RhapsodyCL listens on a socket port (supplied by the user), and any
commands that arrive on that socket are executed immediately. RhapsodyCL stops only when it
receives an exit command. To start the Rational Rhapsody command-line interface in socket
mode, enter this command:

RhapsodyCL.exe -socket <Socket_Port>

The <Socket_Port> is the number of the port that the RhapsodyCL listens to for commands.

Note
If any commands exist in the command line when the -socket <Socket_Port> switch is
entered, the existing commands are executed first, and then RhapsodyCL enters socket
mode.
1440 User Guide

Command-line syntax
Command-line syntax
The syntax for using command-line options is the same for both Rational Rhapsody and
RhapsodyCL.

The options are in the forms of switches and commands, and the syntax is slightly different for the
two groups, as described in the following sections.

Note
Any path names within these commands should not contain spaces. If spaces must be
included in a path, enclose the entire path in quotation marks to direct the command to the
correct location.

Switches

For switches, the general syntax is as follows:

-switchName=parameter

Example

Rhapsody.exe -lang=cpp ...

Commands

For commands, the general syntax is as follows:

-cmd=commandName parameter

Example

Rhapsody.exe -cmd=open modelName.rpy -cmd=generate

For both switches and commands, parameters are separated from the command name or previous
parameter by a space. No quotation marks are used.

Switches and commands are not case-sensitive but parameters are.

Note
In general, the switches refer to global configuration settings such as language, while the
commands represent common actions in Rational Rhapsody such as open or generate.
Rational Rhapsody 1441

The Rational Rhapsody command-line interface (CLI)
Order of commands

All commands must be issued in a logical order. For example, since you must open a project before
you can modify and save it, the open command must precede the save command in the
command-line.

There is no significance to the order of parameters.

Include commands in a script file
The -f switch can be used to call a script file consisting of a number of commands. Within a script
file, there is no need for the “-cmd” before the command name. Comment lines in script files begin
with a pound sign (#).

Sample Script File

This is a sample script file

setlog d:\log.txt

open d:\rhapsody\samples\Dishwasher dishwasher.rpy

generate EXE gui

save

make

Calling a Script File

rhapsody -f script.txt

Exit after use of command-line options
For Rhapsody.exe, you must close Rational Rhapsody after using the options on the command line
in order to close the process, for example:

C:\> rhapsody -f script.txt -cmd=exit

With RhapsodyCL, however, this is not necessary. RhapsodyCL exits as soon as it has finished
carrying out the specified commands.

Note
For Rhapsody.exe (but not RhapsodyCL.exe) make is an asynchronous command and
should be the last command included in a script. You therefore cannot follow a make
command with an exit command to close your project and exit Rational Rhapsody. If you do
so, the make process will end prematurely.
1442 User Guide

Return codes
Return codes
The following return codes are used for command-line options for both RhapsodyCL.exe and
Rhapsody.exe:

� 0: success, no errors occurred
� 100: failed to open the project file
� 101: license not found
� 102: code generation failed
� 103: failed to load the project
� 104: failed to create or write to the code generation folder
� 105: errors were found in check model
� 106: unresolved elements in scope
� 107: error in the name of the component or configuration specified
� 108: build failed

Examples
The following examples show command-line usage with Rational Rhapsody.

C:\> rhapsody d:\rhapsody\samples\Dishwasher\Dishwasher.rpy -cmd=setlog
d:\log.txt -cmd=generate EXE gui -cmd=save -cmd=make

This sample command line performs the following actions:

1. Starts Rational Rhapsody.

2. Opens the Dishwasher sample.

3. Directs the output to the file d:\log.txt.

4. Generates code for an executable component using the gui configuration.

5. Saves the project.

6. Builds the component.

The above example specifies the project to open as a parameter immediately following
“rhapsody”. You can perform the same action using the -cmd=open command.

C:\> rhapsody -cmd=setlog d:\log.txt -cmd=open
d:\rhapsody\samples\Dishwasher\Dishwasher.rpy -cmp EXE –cfg gui –cmd=generate
-cmd=save –cmd=make
Rational Rhapsody 1443

The Rational Rhapsody command-line interface (CLI)
The following example illustrates the use of RhapsodyCL.

RhapsodyCL.exe -lang=cpp -cmd=open
d:\rhapsody\samples\Dishwasher\Dishwasher.rpy -cmd=generate

Command-line switches
The switches that can be used on the command line with Rational Rhapsody are listed here. Unless
otherwise noted, switches can be used with both Rhapsody.exe and RhapsodyCL.exe.

-animport=<Number>

(cannot be used with RhapsodyCL.exe)

Instructs Rational Rhapsody to use an animation port other than the one defined in the
rhapsody.ini file. Using this option allows you to use animation in a number of Rational
Rhapsody instances simultaneously. (See Running on a Remote Target for more details.)

-architect

Runs the architect version of Rational Rhapsody.

-dev_ed (default)

Runs the developer version of Rational Rhapsody (this is also the default value if a specific
version is not specified).

-f

Runs the script provided as a parameter.

-hiddenui

(cannot be used with RhapsodyCL.exe)

Hides the Rational Rhapsody user interface. Can be used for tasks such as generating code.

Note: This switch predated RhapsodyCL. For tasks such as code generation, use
RhapsodyCL rather than running the full version of Rational Rhapsody with
the -hiddenui switch.

-interactive

Switches to a “shell mode” using a prompt to enter commands. See Interactive mode for more
information.
1444 User Guide

Command-line switches
-lang=<language>

Specifies the code language.

-noanimation

(cannot be used with RhapsodyCL.exe)

Disables animation by not attempting to open the TCP/IP animation port. This is useful for
running more than one Rational Rhapsody instance without having to deal with the modal
window that pops up when the animation port is unavailable.

-nodiagrams

(cannot be used with RhapsodyCL.exe)

Loads the specified Rational Rhapsody model without the diagrams it contains.

-profile=<profile name>

Starts Rational Rhapsody with the specified profile.

-root=<pathname>

Specifies the root directory of the Rational Rhapsody installation.

-socket <Socket_Port)

RhapsodyCL listens on the socket port, and commands that arrive on that socket are executed
immediately. See Socket mode for more information.

-system_architect

Runs the System Architect edition of Rational Rhapsody.

-system_designer

Run the Designer for Systems Engineers edition of Rational Rhapsody.

-verbose

Use this switch when you want RhapsodyCL to notify a user about a wrong syntax or
unsupported commands.
Rational Rhapsody 1445

The Rational Rhapsody command-line interface (CLI)
Command-line commands
Unless otherwise noted, commands can be used both with Rhapsody.exe and RhapsodyCL.exe. In
general, the following types of commands cannot be used with RhapsodyCL: diagram commands,
configuration management commands, commands for running macros.

Note also that if you try to use a non-supported command with RhapsodyCL, the following actions
will happen depending on if you have set the -verbose switch:

� If you have set the switch, RhapsodyCL will notify the user and ignore the command.
� If you have not set the switch, RhapsodyCL will simply ignore the command without any

notification to the user.
Note: When making changes to projects under source control, check out the project

before running RhapsodyCL.

-cmd=addtomodel <file location> <withdescendants|withoutdescendants>

Adds to the current model from the specified file location. The default value is
<withoutdescendants>.

-cmd=arccheckout <file name> <label/revision> <locked|unlocked> <recursive|nonrecursive>

(cannot be used with RhapsodyCL.exe)

Checks out a file from the archive.

If you do not want to specify a <label/revision>, use NULL.

-cmd=call <plugin> <parameters for plug in>

(cannot be used with RhapsodyCL.exe)

Calls one of the Rational Rhapsody plug-ins and forwards the provided parameters to the
plug-in.

In contrast to all the other commands, the parameters for this command are provided as a
single string enclosed in quotation marks. The first parameter in the string should specify the
plug-in that is being called. The remainder of the string contains the parameters that should be
sent to the plug-in.

The following examples show the using of this command to run Test Conductor.

� -cmd=call "rtc run <listname>" will execute every test included in the batchlist with
the name <listname>

� -cmd=call "rtc run all" will execute all the test defined in the TC.
1446 User Guide

Command-line commands
� -cmd=call "rtc run <testpath>" will execute only the test which is in the path
<testpath>

For example, Rhapsody D:\RhapsodyModels\Pbx\PBX.rpy -cmd=call "rtc run all"

-cmd=checkin <unit name> <label/revision> <locked|unlocked> <recursive|nonrecursive>
<description> (cannot be used with RhapsodyCL.exe)

Checks in a unit to an archive. If you do not want to specify a <label/revision>, use NULL.

For example, -cmd=checkin p1.sbs NULL locked recursive "my description"

-cmd=checkmodel

Starts a Check Model operation.

Set the current configuration before issuing this command.

-cmd=checkout <unit name> <label/revision> <locked|unlocked> <recursive|nonrecursive>
(cannot be used with RhapsodyCL.exe)

Checks out a unit from the archive. If you do not want to specify a <label/revision>, use
NULL.

-cmd=close <NoSave>

Closes the open Rational Rhapsody model. By default, Rational Rhapsody will automatically
save any changes you have made to the model before closing. If you do not want Rational
Rhapsody to save changes upon closing, use the NoSave parameter.

-cmd=closediagram <diagram type><diagram name>

(cannot be used with RhapsodyCL.exe)

Closes the specified diagram.

The first parameter specifies the type of diagram. This parameter can take one of the following
values: omd, ucd, msc, collaboration, component.

The second parameter is the name of the diagram in the model.

Connecttoarc <archive location>

(cannot be used with RhapsodyCL.exe)

Connects to an archive. <archive location> includes the full path.

-cmd=creatediagram <diagram type><diagram name>

(cannot be used with RhapsodyCL.exe)
Rational Rhapsody 1447

The Rational Rhapsody command-line interface (CLI)
Creates a new diagram.

The first parameter specifies the type of diagram. This parameter can take one of the following
values: omd, ucd, msc, collaboration, component.

The second parameter is the name of the diagram in the model.

-cmd=exit

Closes the project and exits Rational Rhapsody.

-cmd=forceroundtrip

Performs a roundtrip regardless of the timestamps of the files.

-cmd=generate <component> <configuration>

Generates code for the specified component and configuration.

<component> and <configuration> are optional parameters. If not specified, the active
component and configuration are used. Like the generate option in the GUI, this only
generates code for modified elements. To regenerate all code, use the -regenerate command.

For example, -cmd=generate EXE Acme

If you want to generate code for more than one component, or for more than one configuration
for a given component, you must repeat the generate command for each component/
configuration combination, for example:

-cmd=generate compA cfg1 -cmd=generate compA cfg2 -cmd=generate compB cfg1

If you want to generate code for a nested component, use the syntax
outerComponent::innerComponent, for example:

-cmd=generate def::abc DefaultConfig

Note: This command should not be used with RhapsodyCL.exe if you are using
“customized code generation” or if you are generating code for the
INTEGRITY operating system. Use the command with Rhapsody.exe instead.

-cmd=gmr

Performs generate/make/run.

-cmd=import

Imports classes according to the reverse engineering settings stored in the current
configuration. This is equivalent to selecting the Rational Rhapsody command Tools >
Reverse Engineering.
1448 User Guide

Command-line commands
-cmd=make

Builds the application, using the current configuration.

Make is an asynchronous command and should be the last of all commands in a script.

Because exit is a synchronous command, you cannot follow a make command with an exit (to
close your project and exit Rational Rhapsody); doing so will cause the make to cease
prematurely.

If you plan to run the application right after the make, use -syncmake instead of -make. This
waits for the make to complete before running any additional commands.

-cmd=new <project location> <project name>

Creates a new project in the specified location and assigns it the specified name.

-cmd=open <project name>

Opens the specified project. (RhapsodyCL.exe can only open projects. Rhapsody.exe can open
units as well.)

-cmd=opendiagram <diagram type><diagram name>

(cannot be used with RhapsodyCL.exe)

Opens the specified diagram.

The first parameter specifies the type of diagram. This parameter can take one of the following
values: omd, ucd, msc, collaboration, component.

The second parameter is the name of the diagram in the model.

-cmd=populatediagram <diagram type><diagram name>

(cannot be used with RhapsodyCL.exe)

Populates the specified diagram.

The first parameter specifies the type of diagram. This parameter can take one of the following
values: omd, ucd, msc, collaboration, component.

The second parameter is the name of the diagram in the model.

-cmd=printcurrentdiagram

(cannot be used with RhapsodyCL.exe)

Prints the open diagram.
Rational Rhapsody 1449

The Rational Rhapsody command-line interface (CLI)
-cmd=regenerate <component> <configuration>

Generates code for the specified component and configuration.

<component> and <configuration> are optional parameters. If not specified, the active
component and configuration are used. Like the regenerate option in the GUI, this regenerates
all the code, not just the code for changed elements.

If you want to generate code for more than one component, or for more than one configuration
for a given component, you must repeat the regenerate command for each component/
configuration combination, for example:

-cmd=regenerate compA cfg1 -cmd=regenerate compA cfg2 -cmd=regenerate compB
cfg1

If you want to regenerate code for a nested component, use the syntax
outerComponent::innerComponent, for example:

-cmd=regenerate def::abc DefaultConfig

Note: This command should not be used with RhapsodyCL.exe if you are using
“customized code generation” or if you are generating code for the
INTEGRITY operating system. Use the command with Rhapsody.exe instead.

-cmd=report <format> <name + location>

Generates a report.

<format> is the report format (RTF or ASCII). The file extension is added automatically (.rtf
for RTF and .txt for ASCII).

<name + location> specifies the name and location of the report. These parameters are
optional.

If you do not specify a name, the default file name is used (RhapsodyRep.rtf).

If you do not specify a location, the default location is used (the project directory).

Set the current configuration before issuing this command.

For example, -cmd=report RTF myReport

For RhapsodyCL, the report command uses the Rational Rhapsody internal reporter and does
not extract diagrams.

-cmd=roundtrip

Roundtrips code changes back into the model.
1450 User Guide

Command-line commands
Set the current configuration before issuing this command.

-cmd=runexternalprogram

Runs the specified external program.

(with RhapsodyCL.exe, cannot be used to run COM-based programs.)

-cmd=runvbamacro <module name> <macro_name>

(cannot be used with RhapsodyCL.exe)

Runs the specified VBA macro outside an active project. The VBA script must already exist
within a Rational Rhapsody model and be compiled so the file <model>.vba exists.

You can copy a .vba file into your project directory (where the .rpy file is located). For
example, if you have the project file abc.rpy, copy your macro .vba file as abc.vba then use the
runvbmacro command to run the macro.

In VBA, if you do not specify a module name, the default is module1. You cannot pass
parameters to the module.

For example, rhapsody -cmd=open d:\rhapsody\models\hhs.rpy -cmd-runvbamacro
module1 first

-cmd=save

Saves the open project. Can be used after making changes like roundtrip, reverse engineering.

-cmd=saveas <project name>

Saves the project to a specified location. <project name> can include the path.

-cmd=setcomponent <active component name>

Sets the active component.

If you want to make a nested component the active component, use the syntax
outerComponent::innerComponent, for example:

-cmd=setcomponent def::abc

-cmd=setconfiguration <active configuration name>

Sets the active configuration.

For example, -cmd=setconfiguration AcmeDebug
Rational Rhapsody 1451

The Rational Rhapsody command-line interface (CLI)
-cmd=setlog <log file>

Redirects the output normally sent to the output window to the specified log file. If the
parameter does not specify the path, the log file is put in the "current" Rational Rhapsody
directory. If a log file is specified, output is not sent to the standard output.

-cmd=setomroot <alternative OMROOT>

Sets the variable OMROOT to a new location. This variable specifies the root directory of the
Rational Rhapsody installation.

For this command to take effect, this must be the first option specified in the command line.

-cmd=syncmake

Builds the application using the current configuration.

As opposed to the make command, the syncmake command will wait until the make has
completed before running any additional commands. So if you plan to run the application right
after building it, use syncmake instead of make.
1452 User Guide

Rational Rhapsody shortcuts

Rational Rhapsody supports the following kinds of keyboard interaction: accelerator keys,
mnemonics, modifiers, and standard Windows shortcuts.

Accelerator keys

An accelerator key is a keyboard key (or combination keys) designated to achieve a specific
action. For example, the F6 keyboard key is an accelerator for Zoom to fit of a diagram, whereas
Ctrl+A is an accelerator key for Select All. In most cases, the menu option that serves the same
purpose as the accelerator lists the corresponding accelerator, as in this example:
Rational Rhapsody 1453

Rational Rhapsody shortcuts
Mnemonics

Mnemonics are small indicators marked as an underline under a letter in a menu name or on a
button name. This indicator means that clicking Alt and the designated mnemonic letter will result
in activating this menu.

For example, the following figure shows that you can achieve the Zoom to Fit functionality not
only with the accelerator key F6, but also using mnemonics by clicking Alt+{V, Z, F}: Alt+V
opens the View menu, Alt+Z opens the Zoom menu, and Alt+F executes the Zoom to Fit
command.

This document does not describe the complete set of mnemonics because it is clearly visible on the
menus.

Note
Sometimes the underlining is not visible in the menus. If this occurs, try pressing the Alt
key until they are displayed. If you still cannot see them, follow the instructions in Changing
settings to show the mnemonic underlining.

Keyboard modifiers

A modifier is a keyboard key applied to a command to slightly modify its behavior or meaning.
For example, when using your mouse for resizing a shape in a Rational Rhapsody graphic editor,
you can use the Alt key to change the operation behavior from “resize” to “resize without
contained.”
1454 User Guide

Rational Rhapsody accelerator keys
Standard Windows keyboard interaction

Windows applications have an extensive list of standard keyboard shortcuts to common
interactions. For example, Ctrl+Tab toggles through the open windows within an application.
Using this keyboard shortcut in Rational Rhapsody will navigate through the open diagrams and
code editors that are currently open.

Rational Rhapsody accelerator keys
Accelerator keyboard keys can be further broken down into three types:

� Application accelerators activate menu commands.
� Accelerators and modifiers within diagrams assist with drawing activities.
� Accelerators in the code editor assist in coding activities.

Application accelerators

Action Shortcut

Accelerators for mapping and navigation

Locate in Browser Ctrl+L

Search in Model Ctrl+F

Show References Ctrl+R

Animation

Go F4

Go Event F10

Quit animation Shift+F5

Browser navigation

Expand all Numeric block *

Navigate Numeric lock keys

Code

Build F7

Generate Ctrl+F7

Run Ctrl+F5

Stop Make Execution Ctrl+Break

Project
Rational Rhapsody 1455

Rational Rhapsody shortcuts
New Project Ctrl+N

Open Project Ctrl+O

Print Ctrl+P

Redo Ctrl+Y

Save Project Ctrl+S
Although this usually saves the model, if you are
focused on code (for example, using Edit Code),
this shortcut saves the file, not the model.

Undo Ctrl+Z

VBA

Macros Alt+F8

Visual Basic Editor Alt+F11

Window management

Arrange Options Ctrl+W

Show/Hide Active Code View Alt+2

Show/Hide Browser Alt+0 (zero)

Show/Hide Features Alt+Enter

Show/Hide Output Window Alt+3

Help

Help F1

Action Shortcut
1456 User Guide

Rational Rhapsody accelerator keys
Accelerators and modifier usage in diagrams

Action Shortcut

Add a new item to a list compartment (for example,
the attributes compartment of a class box).

Insert

Note that this shortcut works only if you already
have a list. It does not work for the first item in a list.

Change the selection anchor Select + Ctrl

Copy Ctrl+C; Ctrl+Drag
You can also use this shortcut in the Rational
Rhapsody browser.

Create more space in an SD (assuming you are
using a mouse)

Click+Shift and drag the mouse to display a
dashed, horizontal bar. Move the bar down to create
more space, or move it up to eliminate unnecessary
space.

Create or resize elements (by mouse dragging) with
a symmetrical shape

Shift (while dragging)
Note that using the corner anchor and Shift creates
a “lock aspect ratio” sizing.

Create straight lines and arrows that are parallel to
the axis.

Use the Ctrl key while drawing the lines.

Cut Ctrl+X

Delete from Model Ctrl+Delete

Insert a new user point in a line or arrow. Ctrl+Click
Note that this does not apply to rectilinear lines or to
SD messages).

Paste Ctrl+V

IntelliVisor Ctrl+Spacebar

Move shape to the ARROW direction (“nudge”). Ctrl+ARROW (where ARROW could be the up,
down, left, or right arrow key)

Move shape to the ARROW direction without its
contained elements (“nudge”).

Ctrl+Alt+ARROW (where ARROW could be the
up, down, left, or right arrow key)

Refresh F5
Although this usually refreshes the model, if you are
focused on code (for example, using Edit Code),
this shortcut performs a roundtrip.

Remove from View. Delete
Note that sometimes the Delete key deletes the
element from the model, depending on the diagram
context (for example, statecharts).

Removes the selected (clicked) element from the
selection.

Select + Shift
Rational Rhapsody 1457

Rational Rhapsody shortcuts
Code editor accelerators

When you are using the built-in Rational Rhapsody code editor, you can use not only the
predefined accelerators, but an extended set of accelerator keys.

Open the Properties window for the code editor and click the Keyboard tab to view the complete
list of commands supported by accelerator keys, and to extend this list.

Resize box to fit contained. Ctrl+E

Resize without contained elements (assuming you
are using a mouse).

Use the Alt key while stretching the shape.

Scale from the center of the element (instead of
stretching).

Scale + Ctrl

Zoom to Fit. F6

Select All. Ctrl+A

Select next shape (by proximity). Ctrl+Alt+N

Undo Zoom. Shift+F6

Action Shortcut
1458 User Guide

Useful Rational Rhapsody Windows shortcuts
Useful Rational Rhapsody Windows shortcuts
The following table lists some of the more common and useful Windows keyboard shortcuts
available in Rational Rhapsody.

Action Shortcut

Close the currently active window. Ctrl+F4
If you hold down Ctrl+F4, all the Rational
Rhapsody windows close in succession.
Note: This method will not work if you have a
diagram that needs to be saved (for example, an
animated SD).

Enable or disable check boxes. Space key

Get to the Windows menu. Alt+Space
Start IntelliVisor when editing code or names of
graphic elements.

Ctrl+Space

Navigate between open diagrams. Ctrl+Shift+Tab
Navigate between boxes when in a window. Tab

To do the same in reverse order, use Shift+Tab.

Navigate between tabs when in a window (for
example, the Features window).

Ctrl+Tab
To do the same in reverse order, use
Ctrl+Shift+Tab.

Navigate to items in lists (such as the list of element
types in the Search/Replace window) or in the
browser.

Type its name on the keyboard.

Navigate within the browser. Use the up and down keys to move between
nodes.
Use the left and right arrow keys to expand or
collapse tree nodes.

Navigate within the Properties tab for any item. Up and down arrow keys

Toggle between all open windows inside the
application (diagrams, code windows, and so on).

Ctrl+Tab
To do the same in reverse order, use
Ctrl+Shift+Tab.
Rational Rhapsody 1459

Rational Rhapsody shortcuts
In addition, whenever an item is selected (such as a node in the browser or a class in a graphic
editor), you can use the standard Windows keyboard key designated to activate the menu of the
selected item. The following figure highlights this button (but the location might vary, depending
on your keyboard).

The resultant menu can also be used with mnemonics.

Changing settings to show the mnemonic underlining
To expose mnemonic underlining in Rational Rhapsody menus:

1. On your desktop, right-click and select Properties. The Display Properties window opens.

2. On the Appearance tab, click Effects. The Effects window opens, as shown in the
following figure.

3. Clear the last check box to show underlined letters for keyboard navigation.

4. Click OK twice.
1460 User Guide

Technical support
All IBM Rational Rhapsody customers receive support from IBM Rational Software Support and
resources.

Contacting IBM Rational Software Support

If the self-help resources have not provided a resolution to your problem, you can contact IBM®

Rational® Software Support for assistance in resolving product issues.

Prerequisites
To submit your problem to IBM Rational Software Support, you must have an active Passport
Advantage® software maintenance agreement. Passport Advantage is the IBM comprehensive
software licensing and software maintenance (product upgrades and technical support) offering.
You can enroll online in Passport Advantage from http://www.ibm.com/software/lotus/
passportadvantage/howtoenroll.html.

� To learn more about Passport Advantage, visit the Passport Advantage FAQs at http://
www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html.

� For further assistance, contact your IBM representative.
To submit your problem online (from the IBM Web site) to IBM Rational Software Support, you
must additionally:

� Be a registered user on the IBM Rational Software Support Web site. For details about
registering, go to http://www.ibm.com/software/support/.

� Be listed as an authorized caller in the service request tool.
Rational Rhapsody 1461

http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/

Technical support
Contacting Support
To contact IBM Rational Software Support:

1. Locate your ICN (IBM customer number). It is required for support requests.

2. Determine the business impact of your problem. When you report a problem to IBM, you
are asked to supply a severity level. Therefore, you need to understand and assess the
business impact of the problem that you are reporting.

Use the following table to determine the severity level.

3. Describe your problem and gather background information, When describing a problem to
IBM, be as specific as possible. Include all relevant background information so that IBM
Rational Software Support specialists can help you solve the problem efficiently. To save
time, know the answers to these questions:

� What software versions were you running when the problem occurred?

To determine the exact product name and version, use the option applicable to
you:

– Start the IBM Installation Manager and choose File > View Installed
Packages. Expand a package group and select a package to see the package
name and version number.

– Start your product, and choose Help > About to see the offering name and
version number.

� What is your operating system and version number (including any service packs
or patches)?

� Do you have logs, traces, and messages that are related to the problem symptoms?

� Can you recreate the problem? If so, what steps do you perform to recreate the
problem?

Severity Descriptions

1 The problem has a critical business impact: You are unable to
use the program, resulting in a critical impact on operations.
This condition requires an immediate solution.

2 This problem has a significant business impact: The program is
usable, but it is severely limited.

3 The problem has some business impact: The program is
usable, but less significant features (not critical to operations)
are unavailable.

4 The problem has minimal business impact: The problem causes
little impact on operations or a reasonable circumvention to the
problem was implemented.
1462 User Guide

Contacting Support
� Did you make any changes to the system? For example, did you make changes to
the hardware, operating system, networking software, or other system
components?

� Are you currently using a workaround for the problem? If so, be prepared to
describe the workaround when you report the problem.

4. Submit your problem to IBM Rational Software Support. You can submit your problem to
IBM Rational Software Support in the following ways:

� From the Support Web site: Go to the IBM Rational Software Support Web site
at https://www.ibm.com/software/rational/support/ and in the Rational support
task navigator, click Open Service Request. Select the electronic problem
reporting tool, and open a Problem Management Record (PMR), describing the
problem accurately in your own words.

� Request assistance through e-mail: send the e-mail to the support address for
your region:

sw_support_emea@nl.ibm.com

sw_support@us.ibm.com

sw_support_ap@au1.ibm.com

� For more information about opening a service request, go to http://www.ibm.com/
software/support/help.html

� You can also open an online service request using the IBM Support Assistant. For
more information, go to http://www.ibm.com/software/support/isa/faq.html.

� By phone: For the phone number to call in your country or region, go to the IBM
directory of worldwide contacts at http://www.ibm.com/planetwide/ and click the
name of your country or geographic region.

� Through your IBM Representative: If you cannot access IBM Rational
Software Support online or by phone, contact your IBM Representative. If
necessary, your IBM Representative can open a service request for you. You can
find complete contact information for each country at http://www.ibm.com/
planetwide/.

If the problem you submit is for a software defect or for missing or inaccurate documentation,
IBM Rational Software Support creates an Authorized Program Analysis Report (APAR). The
APAR describes the problem in detail. Whenever possible, IBM Rational Software Support
provides a workaround that you can implement until the APAR is resolved and a fix is delivered.
IBM publishes resolved APARs on the IBM Rational Software Support Web site daily, so that
other users who experience the same problem can benefit from the same resolution.
Rational Rhapsody 1463

https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/
http://www.ibm.com/software/support/help.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Technical support
About Rational Rhapsody

Select Help > About Rhapsody (or Help > About DiffMerge if you have launched the Rational
Rhapsody DiffMerge tool outside Rational Rhapsody) to display this information about your
version of Rational Rhapsody (or the Rational Rhapsody DiffMerge tool):

� Product release number
� Build number
� Serial number
� Contact information
� Copyright information

License Details

When you have the About Rhapsody window open, you can click the License button to open the
License Details window. This box lists the information you might need when calling technical
support or upgrading your software:

� Host details for your machine including the Host Name and Host ID
� Software license information

Notice that you can resize the width of the License Details window.
1464 User Guide

Reporting Rational Rhapsody Problems from the Software
Reporting Rational Rhapsody Problems from the
Software

When Rational Rhapsody is running, you might want to use the problem reporting facility from the
Rational Rhapsody Help menu.

To send an automated problem report:

1. In Rational Rhapsody, choose Help > Generate Support Request to open the Generate
Support Request window.

2. If requested, enter your ICN (IBM customer number), select your Geographic Region
and click OK to access the Generate Support Request form.

3. Review the Rhapsody Information and System Information areas to verify the accuracy
of the automatically entered data.

4. From the Impact list, select the severity of the problem.

5. In the Summary box, summarize the problem.

6. In the Problem box, type a detailed description of the problem.

7. If possible, take a snapshot of the problem and attach it to the problem report. Click the
Rhapsody Window Snapshot button or Screen Snapshot button, whichever is
applicable, and select the snapshot file from wherever you have it on your machine.

8. If possible, add the model, active component, files, and/or a video capture by using the
buttons in the Attachment Information area.

9. Include an item description for each item in the Attachment Information area, if needed.

10. Click Preview and Send to submit the report.

The problem report is recorded in the Rational Rhapsody case tracking system and put into a queue
to be assigned to a support representative. This representative works with you to be certain that
your problem is solved.

Note
If your Rational Rhapsody system crashes, it displays a message asking if you want to send
a problem report to technical support about this crash. If you select to send the report, the
system displays the same online form that is available from Help > Generate Support
Request. However, this form contains information about the crash condition in addition the
information that is usually filled in describing your system. Add any more information that
you can to help the support staff identify the problem and then click Preview and Send to
submit the report.
Rational Rhapsody 1465

Technical support
1466 User Guide

Rational Rhapsody glossary
abstract class

A class that cannot be directly instantiated, but whose descendants can have instances.
Contrast with concrete class.

abstract operation

An operation defined, but not implemented, by an abstract class. The operation must be
implemented by all concrete descendant classes.

abstraction

Selecting the essential or common characteristics of an entity that distinguish it from all other
kinds of entities. An abstraction defines a boundary relative to the perspective of the viewer.

action

The specification of an executable statement that forms an abstraction of a computational
procedure. An action typically results in a change in the state of the system, and can be
realized by sending a message to an object or modifying a link or value of an attribute.

action sequence

An expression that resolves to a sequence of actions.

action state

A state that represents the execution of an atomic action, typically the invocation of an
operation.

activation

The execution of an action.

active class

A class whose instances are active objects.
Rational Rhapsody 1467

Rational Rhapsody glossary
active concurrency

The system runs in a distributed environment with many threads. Each active object runs on its
own thread. Active objects are also known as tasks.

active object

An instance of an active class. An active object owns its own thread and can initiate control
activity.

In Rational Rhapsody, active objects are graphically portrayed with thicker borders.

activity

An operation in dynamic modeling that takes time to complete. Activities are associated with
states and represent real-world accomplishments.

activity diagram

A special case of a state machine used to model processes involving one or more classifiers
that involve behavior that is not event-driven. Compare to statechart.

activity final

Signals an exit from the process specified by the activity diagram or flow chart.

actor

A coherent set of roles that users of use cases play when interacting with these use cases. An
actor has one role for each use case with which it communicates.

An actor is an external object that interacts with a use case of the system. In use case diagrams
(UCDs), actors are drawn as stick figures and can populate both use case diagrams and object
model diagrams (OMDs).

actual parameter

A synonym for argument.

aggregate

A class that represents the “whole” in an aggregation relationship.

aggregation

A special form of association that specifies a whole-part relationship between the aggregate
(whole) and a component part.
1468 User Guide

Rational Rhapsody glossary
The Unified Modeling Language (UML) symbol for an aggregation relationship is a line with a
hollow diamond at the end attached to the aggregate class.

analysis

The software development activity for studying and formulating a model of a problem domain.
Analysis focuses on what is to be done; design focuses on how to do it.

analysis time

Refers to something that occurs during an analysis phase of the software development process.
See also design time and modeling time.

ancestor class

A class that is a direct or indirect superclass of a given class.

and state

An orthogonal state.

animation

The act of executing an animated model. During an animation session, Rational Rhapsody
highlights the current states of execution using animated diagrams and views.

Animation is not the same as simulation. The Rational Rhapsody animator actually runs the
real application on the host machine or, if wanted, on the target machine. This gives you a
better idea of the system’s actual behavior than merely simulating it.

API

The Rational Rhapsody Application Program Interface (API) allows you to write applications
that access and manipulate Rational Rhapsody model elements. It facilitates reading,
changing, adding to, and deleting from all model elements that are available in the Rational
Rhapsody browser.

architecture

The organizational structure and associated behavior of a system. An architecture can be
recursively decomposed into parts that interact through interfaces, relationships that connect
parts, and constraints for assembling parts. Parts that interact through interfaces include
classes, components, and subsystems.
Rational Rhapsody 1469

Rational Rhapsody glossary
architecture framework

An architecture framework is a specification of how to organize and present an enterprise
architecture. It provides a means to present and analyze the enterprises problems. It does not
generally tell you how to do something. Architecture frameworks tend to consist of a standard
set of viewpoints that represent different aspects of an organization’s business as it relates to a
particular objective. In the context of MODAF, this implies a systems of systems approach as
the analysis is complex and wide-ranging.

archive

A repository grouping that a configuration management (CM) tool creates to keep track of
different versions of a project’s configuration items. An archive can be a file or directory,
depending on the requirements of the CM system.

argument

A binding for a parameter that resolves to a run-time instance. A synonym for argument is
actual parameter. Compare to parameter.

artifact

A piece of information used or produced by a software development process. An artifact can
be a model, a description, or software. Synonym: product.

association

Defines a semantic relationship between two or more classifiers that specify connections
among their instances. It represents a set of connections between the objects (or users).

An association has at least two ends, each of which is connected to an object. The same object
can be connected to both ends of an association.

An association can be bidirectional, in which the connected objects know about each other, or
directed, in which only one of the objects knows of the other.

An association defines a relationship among instances of two or more classes describing a
group of links with common structure and common semantics.

association class

A model element that has both association and class properties. An association class can be
seen as an association that also has class properties, or as a class that also has association
properties.
1470 User Guide

Rational Rhapsody glossary
association end

The endpoint of an association, which connects the association to a classifier.

attribute

In Rational Rhapsody, an attribute is a feature within a classifier that describes a range of
values that instances of the classifier can hold. An attribute consists of three parts:

� A data member
� An accessor (get) operation for the data member
� A mutator (set) operation for the data member

Attributes are displayed in the object box using the following format:

<attribute_name>:<type>

Contrast with part.

In ReporterPLUS, attributes are the items listed in the attribute view. Attributes represent the
pieces of data that can be extracted from a model. To add model text or diagrams to your
document, you add attributes to the Text tab. ReporterPLUS adds some attributes
automatically when you drag elements to the template view.

Attribute breakpoint condition

Interrupts a running application when any of the object’s member attributes changes value.
Copies of all attribute values are stored as a reference when you set the breakpoint.When any
value changes with respect to the reference, a break occurs. After the break, the latest values
are again stored as a new reference.

attribute view

The upper, right pane in the ReporterPLUS window. Compare with model view. See also
attribute, template node view, and template view.

automatic transition

An unlabeled transition in dynamic modeling that automatically fires when the activity
associated with the source state is completed.
Rational Rhapsody 1471

Rational Rhapsody glossary
AUTOSAR

The AUTOSAR (AUTomotive Open System ARchitecture) standard provides development and
design guidelines and diagrams to streamline and standardize component modeling in the
automotive industry. The Rational Rhapsody AUTOSAR profiles define a new project to use these
AUTOSAR standard-compliant diagrams:

� ECU diagram
� Internal Behavior diagram
� SW Component diagram
� System diagram
� Topology diagram

base-aware comparison

The Rational Rhapsody DiffMerge tool compares two versions of a unit with a baseline
(common ancestor) version of the unit.

base class

A class from which other classes can inherit data and member functions.

batch transformation

A sequential input-to-output transformation in which inputs are supplied at the start and the
goal is to compute an answer. There is no ongoing interaction with the outside world.

behavior

The observable effects of an operation or event, including its results.

behavioral feature

A dynamic feature of a model element, such as an operation or method.

behavioral inheritance

A mechanism by which more specific elements incorporate behavior of more general elements
related by behavior.

behavioral model aspect

A model aspect that emphasizes the behavior of the instances in a system, including their
methods, collaborations, and state histories.
1472 User Guide

Rational Rhapsody glossary
binary association

An association between two classes. A special case of an n-ary association.

binding

The creation of a model element from a template by supplying arguments for the parameters of
the template.

black-box analysis

This type of system analysis defines the system structure and identifies the large-scale
organizational pieces of the system. It can show the flow of information between system
components and the interface definition through ports. In large systems, the components are
often decomposed into functions or subsystems. Basically, it shows the system’s interaction
with the outside world. Using Rational Rhapsody, you can create activity diagrams, sequence
diagrams, and statecharts to communicate this analysis. A white-box analysis shows a system’s
internal and external operations and relationships.

block

In Rational Rhapsody a block is represented as an object. In SysML, a block is the basic unit of
structure and is represented as a class. A systems design block shows the system hierarchy and
system/component specifications.

boilerplate text

In ReporterPLUS, text that has been added to a template by typing in the Text tab.
ReporterPLUS adds some boilerplate text automatically when you drag elements to the
template view. Boilerplate text does not come from the model.

Boolean

An enumeration whose values are true and false.

Boolean expression

An expression that evaluates to a Boolean value.

breakpoint

A useful debugging tool. During animation, breakpoints enable you to inspect data values and
the states of various objects in the system at the time of the break.

You can set a breakpoint on object’s instance or on the object itself. If you set the breakpoint
on an object, it sets the breakpoint on all the object’s instances.
Rational Rhapsody 1473

Rational Rhapsody glossary
browser

Provides an overview of your entire model using an expandable tree structure.

call

An action state that launches an operation on a classifier.

call operation node

Represents a call to an operation of a classifier.

canceled timeout

Timeouts are set to wait for something to happen. If the something happens, the timeout is
canceled. If it does not happen, the object resumes its operation, perhaps with an error
recovery process.

For example, a telephone emits a dial tone while waiting for you to dial. If you dial, the dial
tone is canceled. If you do not dial, the dial tone changes to a repeating beep. Canceled
timeouts are labeled CanTm(n), where n is the length of the time during which the timeout can
be canceled.

cardinality

The number of elements in a set. Contrast with multiplicity.

categories mode

Specifies that metatype nodes are displayed in the browser for all metatypes, such as classes,
packages, and operations, in hierarchical arrangement by ownership.

For example, under the Objects metatype for a package, all objects belonging to that package
are listed. Each object or object_type, in turn, can be expanded into categories for Attributes,
Operations, and Relations belonging to that object or object type.

child

In a generalization relationship, the specialization of another element, the parent. See also
subclass, subtype. Contrast with parent.
1474 User Guide

Rational Rhapsody glossary
class

In object-oriented languages such as C++ and Java, a class is a template for the creation of
instances (objects) that share the same attributes, operations, methods, relationships, and
semantics. A class can use a set of interfaces to specify collections of operations it provides to
its environment. See also interface.

In the Rational Rhapsody Developer for C implementation, classes are replaced by object
types, which are generated into structures. Like classes, object types function as templates in
the creation of objects of explicit type. Although object types differ fundamentally from
classes, from the perspective of the Rational Rhapsody GUI, they are handled almost
identically. Thus, for documentation purposes, any GUI functionality ascribed to classes
applies almost equally as well to object types.

In addition to object_types, Rational Rhapsody Developer for C supports objects of implicit
type. All objects in C, whether objects of implicit or explicit type, are known as objects.
Objects are similar to instances in the Rational Rhapsody C++ implementation, with the
exception that they have a separate identity independent of object types.

For example, objects are listed in their own category under a package in the browser.
Instances, by contrast, appear in the browser under the class that defines it, and only during
execution of the model’s application. Because an object is a permanent instance with class-like
behavior, in many cases, the GUI functionality ascribed to C++ classes also applies to C
objects.

class attribute

An attribute whose value is common to a class of objects, rather than a value peculiar to each
instance.

class diagram

A diagram that shows a collection of declarative (static) model elements, such as classes,
types, and their contents and relationships.

class interface element

Operations, events, and event receptions.

class name

Identifies the class. If you do not explicitly assign a class to a package, Rational Rhapsody
assigns the class to the default package of the diagram. To assign the class to a different
package, use the format <package>::<class> for the name. If this box is also an instance,
use the format <instance>:<class> for the class name.
Rational Rhapsody 1475

Rational Rhapsody glossary
class template

Specifies individual classes constructed using parameterized types. When class templates are
instantiated into template classes, types used in the class are provided as arguments.

The following example declares the class template MyTemplateClass:

Template<class T> class MyTemplateClass {
T* data

public:
T& func()

};

The class template MyTemplateClass can then be used to instantiate a template class and an
object as shown by the following example:

MyTemplateClass<int> int_object

In this example, MyTemplateClass<int> is a template class in which the type int replaces T
in the class template definition. It is then used to instantiate the object int_object.

Rational Rhapsody allows you to create or change an existing class into a class template or
instantiate it into a template class in the Class window.

See also template class.

classification

The assignment of an object to a classifier. See also dynamic classification, multiple
classification, and static classification.

classifier

A mechanism that describes behavioral and structural features. Classifiers include interfaces,
classes, data types, and components.

cleanup operation

Cleans up an instance that is no longer needed. It replaces the concept of a destructor
operation. Instead of cleaning up class instances, a cleanup operation cleans up C objects.

For example, an object can call a cleanup operation to free a dynamically allocated pointer. In
sequence diagrams, a cleanup operation is represented as a dotted red arrow from the destroyer
object to the object being destroyed. Cleanup lines can either be horizontal or point back to the
originating object. Cleanup lines are not labeled.

client

A classifier that requests a service from another classifier. Contrast with supplier.
1476 User Guide

Rational Rhapsody glossary
CM

Acronym for configuration management.

code-centric development

Software development environment that focuses on writing application code rather than using
the Model-driven Development (MDD) method.

code frame

Refers to code generated from OMDs only, without the behavioral input of statecharts and
activity diagrams.

collaboration

The specification of how an operation or classifier, such as a use case, is realized by a set of
classifiers and associations playing specific roles used in a specific way. The term
collaboration defines this interaction. See also interaction.

collaboration diagram

A diagram that shows interactions organized around the structure of a model, using either
classifiers and associations or instances and links. Unlike a sequence diagram, a collaboration
diagram shows the relationships among the instances. Sequence diagrams and collaboration
diagrams express similar information, but show it in different ways. See also sequence
diagram.

comment

An annotation attached to an element or a collection of elements. A note has no semantics.
Contrast with constraint.

compile time

Refers to something that occurs during the compilation of a software module. See also
modeling time, run time.
Rational Rhapsody 1477

Rational Rhapsody glossary
component

A physical, replaceable part of a system that packages implementation and provides the
realization of a set of interfaces. A component represents a physical piece of implementation
of a system, including software code (source, binary, or executable) or equivalents such as
scripts or command files.

The role of the component is important in the modeling of large systems that are comprised of
several libraries and executables. For example, the Rational Rhapsody application itself is
comprised of several dozen components including the graphic editors, browser, code
generator, and animator, all provided in the form of a library.

component diagram

A diagram that shows the organizations and dependencies among components.

component file

Contains elements for a component and can be saved as a unit. In Rational Rhapsody 7.2 or
greater, this type of file is now called a SourceArtifact.

composite aggregation

A synonym for composition.

composite class

A class related to one or more classes by a composition relationship.

composite object

An object that contains one or more other objects, typically by storing references to those
objects in its instance variables.

composite state

A state that consists of either concurrent (orthogonal) substates or sequential (disjoint)
substates. See also subpackage.
1478 User Guide

Rational Rhapsody glossary
composition

A form of aggregation association with strong ownership and coincident lifetime as part of the
whole. Put another way, composition is a strong form of aggregation in which the lifetime of
the whole determines that of its parts. Parts with non-fixed multiplicity can be created after the
composite itself, but once created, they live and die with it (they share lifetimes). Such parts
can also be explicitly removed before the death of the composite. Composition can be
recursive. A synonym for composition is composite aggregation.

The UML symbol for a composition relationship is a line with a filled diamond at the end
attached to the composite class. In Rational Rhapsody, you draw classes as boxes inside the
composite class, rather than using relation lines.

If you want the component class to come into being and die with the composite class as a
whole, use composition. If, however, you want the parts to have lifetimes of their own separate
from that of the whole, use aggregation.

Note the following information:

� By definition, an object that contains another object is a reactive object.
� Composition in Rational Rhapsody Developer for C is a form of containment of

one object by another. An object that contains another is said to be a composite
object.

compound state

A state that contains other nested states.

concrete class

A class that can be directly instantiated. Contrast with abstract class.

concurrency

The occurrence of two or more activities during the same time interval. The activities are said
to be concurrent. Concurrency can be achieved by interleaving or simultaneously executing
two or more threads.

concurrent

Two or more tasks, activities, or events are said to be concurrent when their executions
overlap in time.

concurrent substate

A substate that can be held simultaneously with other substates contained in the same
composite state. Contrast with disjoint substate.
Rational Rhapsody 1479

Rational Rhapsody glossary
condition

In Rational Rhapsody, a condition is a Boolean function in dynamic modeling of object values
valid over an interval of time.

In ReporterPLUS, a condition is a statement that limits the elements ReporterPLUS extracts
from a model for an iteration.

condition mark

A hexagon located on an instance line in a sequence diagram. A condition mark indicates that
the object is in a certain condition or state. The name of the condition often corresponds to a
state name in the object’s statechart.

configuration

Defines the construction of a built component. For example, the configuration determines the
target environment of the component and whether it is instrumented. It specifies which checks
Rational Rhapsody should perform before generating code, which link and compiler switches
to use, any additional libraries, sources, and headers to include in the compilation, and which
initial instances to create in the main program loop. The configuration also allows you to add
custom initialization code to the main() function.

configuration item

A unit of collaboration that developers can exchange among themselves. See also unit.

configuration management

The process of managing a set of classes and other resources selected for compilation
including version control. This is usually managed by software system that requires “check in”
and “check out” procedures for changes to any files managed in the system. Rational
Clearcase and MKS Integrity are both configuration management (CM) systems.

constraint

A semantic condition or restriction. Certain constraints are predefined in the UML, whereas
others are user-defined. Constraints are one of three extensibility mechanisms in the UML.
See also tagged value, stereotype.

In general, UML constraints add semantic information to model elements, which represent
requirements, invariants, and so on. Constraints can be specified in a natural language,
constraint language (such as OCL), or programming language.

A constraint is a model element owned by some other model element. In Rational Rhapsody,
only model elements that have specification windows can own constraints. These include
packages, classifiers, operations, attributes, states, and transitions
1480 User Guide

Rational Rhapsody glossary
Note that the object owning the constraint is not necessarily the object to which the constraint
applies. By default, if there is no “applies to relation” (via a dependency), the constraint
applies to the owner object. This is an optimization, because this would be the common,
default case in which there is no need to apply a dependency relation.

A constraint applies to one or more model elements. A model element can have more than a
single constraint applied to it.

construct

Previously created items, such as files and classes, that can be added to a model or design.

constructor

Called when an object is instantiated. An object can use a constructor to explicitly initialize
object members or dynamically allocate space for member pointers.

In sequence diagrams, a constructor is represented as a dotted green arrow from the creator
object or system border to the object being created. Constructor lines are horizontal.

Convert and copy constructors can have arguments.

In Rational Rhapsody Developer for C, the tasks of constructors are performed by initializers
for the class-like objects and object_types.

container

Can be either of the following types:

� An instance that exists to contain other instances, and provides operations to
access or iterate over its contents. (for example, arrays, lists, and sets).

� A component that exists to contain other components.

containment hierarchy

A namespace hierarchy consisting of model elements and the containment relationships that
exist between them. A containment hierarchy forms a graph.

context

A view of a set of related modeling elements for a particular purpose, such as specifying an
operation.

continuous transformation

A system in which the output actively depends on changing inputs and must be updated
periodically.
Rational Rhapsody 1481

Rational Rhapsody glossary
contract

A contract is a specification of a set of interfaces between elements, which might be either
offered (provided), required, or both. The contract includes the set of operations and events
that constitute those interfaces and features. The important features of the interfaces are the
parameters and their types, return values, and conditions. A port is a named connection point
for a class and a typed interface (contract).

control

The aspect of a system that describes the sequences of operations that occur in response to
stimuli.

control flow

A Boolean value that affects whether a process is executed.

controlled files

Files produced in other programs, such as Word or Excel, that are added to a project for
reference purposes and then controlled through Rational Rhapsody.

data type

A descriptor of a set of values that lack identity and whose operations do not have side effects.
Data types include primitive, predefined types and user-defined types. Predefined types
include numbers, string, and time. User-defined types include enumerations.

decision node

A way of visually representing an if-then-else condition. It splits a single transition in a
statechart or activity diagram into several branch transitions with guards enclosed in square
brackets labeling the branches. Whichever guard is true determines to which element the
object will branch. The following information applies to decision nodes and branches:

� A decision node can have only one entering transition.
� It can branch to any number of "if" conditions, but only one else condition.
� Branching segments can be nested. That is, an activity flow exiting a decision

node can enter another decision node.
� Branches entering a decision node can contain triggers. Labels for transitions into

a condition use the following standard format:
trigger[guard]/action

� Branches exiting a decision node cannot contain triggers. Labels for transitions
into a condition use the following standard format:

[guard]/action
1482 User Guide

Rational Rhapsody glossary
deep transition

A transition from a parent statechart into a nested statechart.

delegation

The ability of an object to issue a message to another object in response to a message.
Delegation can be used as an alternative to inheritance. Contrast with inheritance.

dependency

A relationship between modeling elements in which a change to one modeling element (the
independent element) affects the other modeling element (the dependent element).

In a dependency between elements, the implementation or functioning of one element requires
the presence of another element. Thus, dependency is a directed relationship. For example, an
object might require the definition of another object to compile, similar to when a client
element requires the presence and knowledge of a server element. Stereotypes are used to
denote different types of dependency.

dependent unit

Configuration items that reference another configuration item.

deployment diagram

A diagram that shows the configuration of run-time processing nodes and the components,
processes, and objects that live on them. Components represent run-time manifestations of
code units. See also component diagram.

derived association

An association defined in terms of other associations.

derived attribute

An attribute computed from other attributes.

derived class

A class that inherits data and member functions from a base class (subclass).

derived element

A model element that can be computed from another element, but that is shown for clarity or
included for design purposes even though it adds no semantic information.
Rational Rhapsody 1483

Rational Rhapsody glossary
derived scope

Rational Rhapsody decides which instances to include in the configuration based on the
objects you select in the Initial Instances box. Use the Derived Scope option if you are not
sure which objects to include in the compilation scope.

descendant class

A class that is a direct or indirect subclass of a given class.

design

The part of the software development process whose primary purpose is to decide how the
system will be implemented. It is the software development activity during which strategic and
tactical solution decisions necessary for meeting client functionality and quality requirements
are made. Analysis focuses on what is to be done; design focuses on how to do it.

design time

Refers to something that occurs during a design phase of the software development process.
See modeling time. Contrast with analysis time.

destructor

An operation that cleans up an existing instance of a class (an object) that is no longer needed.

For example, an object can call a destructor to free a dynamically allocated pointer. In
sequence diagrams, a destructor is represented as a dotted red arrow from the destroyer object
to the object being destroyed. Destructor lines can either be horizontal or point back to the
originating object. Destructor lines are not labeled.

In Rational Rhapsody Developer for C, the tasks of destructors are performed by cleanups for
the class-like objects and object_types.

development process

A set of partially ordered steps performed for a given purpose during software development,
such as constructing models or implementing models.
1484 User Guide

Rational Rhapsody glossary
diagram

A graphical presentation of a collection of model elements, most often rendered as a connected
graph of arcs (relationships) and vertices (other model elements).

The UML supports the following types of diagrams:

� Activity diagram
� Collaboration diagram
� Component diagram
� Deployment diagram
� Object model diagram
� Sequence diagram
� Statechart
� Use case diagram

diagram connector

Joins two segments of a statechart. It allows you to separate different segments of the chart
onto different pages to make it easier to read. Matching labels on the source and target diagram
connectors define the jump from one diagram to the next. A statechart can have several source
diagram connectors with the same label, but only one destination connector of each label.
Diagram connectors should have either input transitions or a single outgoing transition.

DiffMerge tool

The Rational Rhapsody DiffMerge tool supports team collaboration by showing how a design
has changed between revisions and then merging units as needed. It performs a full
comparison including graphical elements, text, and code differences.

This tool can be operated inside and/or outside your CM software to access the units in an
archive. The unit only need to be stored as separate files in directories and accessible from the
PC running the DiffMerge tool.

direct instance

An object that is an instance of a class, but not an instance of any subclass of the class.

directed association

A unidirectional relationship between objects (and users). Only the source of the directed
association (client user) knows about the target (the server). The target of the relation can
receive messages without knowing their source.
Rational Rhapsody 1485

Rational Rhapsody glossary
directional relation

A relation that exists in one direction (for example, from source to target), but not in the other.

disjoint substate

A substate that cannot be held simultaneously with other substates contained in the same
composite state. Contrast with concurrent substate.

distribution unit

A set of objects or components allocated to a process or a processor as a group. A distribution
unit can be represented by a run-time composite or an aggregate.

DoDAF

U.S. Department of Defense Architectural Framework (DoDAF) provides an industry
standard for diagrams and notations used for developing DoDAF-compliant architecture
models.

domain

An area of knowledge or activity characterized by a set of concepts and terminology used by
practitioners in that specific area of knowledge or activity.

dynamic classification

A semantic variation of generalization in which an object might change its classifier. Contrast
with static classification.

dynamic model

A description of aspects of a system concerned with control, including time, sequencing of
operations, and interaction of objects.

dynamic simulation

A system that models or tracks objects in the real world.

element

An atomic constituent of a model. See also primary model elements.
1486 User Guide

Rational Rhapsody glossary
element name

Specifies the name of the element. As a benefit of hierarchical arrangement of model
elements, primary model elements can be entered/identified by a path name in the following
format:

<ns1>::<ns2>::...::<nsn>::<name>

In this format, <ns> can be the name of a package or an object. For example, object X in
package P can be entered for a search or specified in an OMD as P::X.

enterprise architecture

Enterprise architecture is the practice of applying a comprehensive and rigorous method for
describing a current and/or future structure and behavior for an organization’s processes,
information systems, personnel, and organization sub-units, so that they align with the
organization’s core goals and strategic direction. It is effectively a structured approach to
describing how a business works or is intended to work so that it can reach its primary
objectives. Enterprise architecture is used typically by the military for capability procurement,
by governments, and by large businesses.

entry action

An action executed upon entering a state in a state machine, regardless of the transition taken
to reach that state.

enumeration

A list of named values used as the range of a particular attribute type. For example, RGBColor
= {red, green, blue}. Boolean is a predefined enumeration with values from the set
{false, true}.

event

The specification of a significant occurrence that has a location in time and space.

Statecharts use events to describe the behavior of objects. In that context, an event is an
instantaneous occurrence that can trigger a state transition in a class.

The use of events facilitates asynchronous collaborations. In other words, objects that generate
events do not need to wait for a response before continuing with their next task.

Because events do not exist as in any programming language, they can be implemented in a
variety of ways.

event attribute

Because an event is a type of object, it has its own data elements called event attributes.
Rational Rhapsody 1487

Rational Rhapsody glossary
Event Received breakpoint condition

Interrupts a running application when the object receives an event.

event reception

Represents an object’s ability to react to an event. In other words, the event can be a trigger in
that object’s statechart.

Event Sent breakpoint condition

Interrupts a running application when the object sends an event to another object.

executable

A file, application, or program that can perform operations when launched. In Rational
Rhapsody, executable components have a file extension defined in the
<lang>_CG::<Environment>::ExeExtension property. A common executable extension is
“.exe.”

exit action

An action executed upon exiting a state in a state machine, regardless of the transition taken to
exit that state.

explicit scope

In Configuration Settings, explicit scope means that you explicitly select which packages and
objects are used for compiling an application.

export

In the context of packages, to export is to make an element visible outside its enclosing
namespace. See also visibility. Contrast with import.

expression

In Rational Rhapsody, an expression is a string that evaluates to a value of a particular type.
For example, the expression (7 + 5 * 3) evaluates to a value of type number.

In Q Language in ReporterPLUS, expressions examine and gather information about the
model. Basic expressions are the fundamental building blocks of all Q language expressions.
They are similar to numbers in arithmetic expressions. Composite expressions are the means
by which larger expressions are constructed from smaller expressions. Hence, they are similar
to arithmetic operators.
1488 User Guide

Rational Rhapsody glossary
Another parallel between arithmetic expressions and expressions in Q is in evaluation. Just as
in arithmetic expressions, the evaluation of an expression proceeds recursively, with each
composite expression evaluating its subexpressions.

extend relationship

A relationship from an extension use case to a base use case that specifies how the behavior
defined for the extension use case augments (subject to conditions specified in the extension)
the behavior defined for the base use case. The behavior is inserted at the location defined by
the extension point in the base use case. The base use case does not depend on performing the
behavior of the extension use case. See also extension points.

extension points

Aspects of a use case that allow it to be extended in the future. To extend a use case means to
inherit one use case from another. Use cases are extended by means of «Usage» or «Extends»
stereotypes. In a «Usage» relationship, the sub-use case depends on the behaviors provided by
the super-use case. In an «Extends» relationship, the subuse case adds its own behaviors to
those of the super-use case.

facade

A stereotyped package containing only references to model elements owned by another
package. It is used to provide a “public view” of some of the contents of a package.

feature

A property like an operation or attribute that is encapsulated within a classifier, such as an
interface, a class, or a data type.

A feature is a modifiable item in a tabbed window. Related features that appear on the same
tab in a window are internally stored in tab groups.

file

Placeholders for generated logical units (such as packages, classes, and so on) and verbatim
code segments. Files exist only within the context of a component.

file diagram

A file diagram shows how files interact with one another. Typically, a file diagram shows how
the #include structure is created. A file diagram provides a graphical representation of the
system structure. The Rational Rhapsody code generator directly translates the elements and
relationships modeled in a file diagram into C source code.
Rational Rhapsody 1489

Rational Rhapsody glossary
final state

A special kind of state signifying that the enclosing composite state or entire state machine is
completed.

fire

Execute a state transition.

fixed-point support

Rational Rhapsody Developer for C supports variables (fixed points) that represent non-
integral values. The user can define the word size and precision of the variable.

flat mode

Specifies that category nodes are not displayed in the browser for most metatypes. Instead,
they are displayed for all first and second-level metatypes: root node, components, diagrams,
and packages. Within these categories, however, all items are displayed alphabetically without
being subdivided according to metatype.

flat statechart

Specifies that states are implemented as simple, enumeration-type variables.

When statecharts are inherited, the implementation is duplicated from the base class. This
strategy is more effective with shallow statechart inheritance hierarchies.

floating-point support

Rational Rhapsody Developer for C supports constants, variables, or expressions that evaluate
to an integer or floating-point number.

flow chart

A flow chart is a schematic representation of an algorithm or a process. In UML and Rational
Rhapsody, you can think of a flow chart as a subset of an activity diagram that is defined on
methods and functions. For more information, see Flow charts.

flow ports

Flowports allow you to represent the flow of data between blocks in an object model diagram
(OMD), without defining events and operations. Flowports can be added to blocks and classes
in object model diagrams. They allow you to update an attribute in one object automatically
when an attribute of the same type in another object changes its value.
1490 User Guide

Rational Rhapsody glossary
focus of control

A symbol on a sequence diagram that shows the period of time during which an object is
performing an action, either directly or through a subordinate procedure.

folder

File subdirectories that appear in the browser under the Files category for a component. They
are set to contain files that are compiled together to build the component.When you assign
(map) generated model elements to a folder, you are telling Rational Rhapsody to place the
generated files for the specified elements in that subdirectory of the project. Elements that are
not assigned to any folder are generated in the configuration directory.

formal parameter

A synonym for parameter.

framework

There are two definitions:

� A stereotyped package consisting mainly of patterns
� An architectural pattern that provides an extensible template for applications

within a specific domain

function template

Specifies individual functions constructed using parameterized types that are supplied as input
parameters when the function is instantiated into a template function.

In the following C++ example, a function template is defined for the global function swap:

template <class T> void swap (T& x, T&y) {
T temp = x;
x=y;
y = temp;

}

Function templates are called the same way ordinary functions are called. This action
generates a template function such as the following code:

int i=22, j=66;
swap(i,j);

Rational Rhapsody allows you to define global function templates through the mechanism for
defining global functions.

generalizable element

A model element that can participate in a generalization relationship.
Rational Rhapsody 1491

Rational Rhapsody glossary
generalization

A taxonomic relationship between a more general element and a more specific element. The
more specific element is fully consistent with the more general element and contains
additional information. An instance of the more specific element can be used where the more
general element is allowed. See also inheritance.

generic element

In ReporterPLUS, an element that represents a type of element that might be found in any
Rational Rhapsody model. See also model element.

global object

In C, all top-level objects are global across the project. Nested objects only have local scope
relative to the object in which they are nested.

Got Control breakpoint condition

Interrupts a running application when the object gets control. An object gets control when it
starts executing a member operation, responds to an event, or when an operation that the
object has called on another object finishes and the object resumes its own execution.

Note
Do not enter any information in the Data box of the Define Breakpoint window for this
condition.

gravity distance

The minimum space, in points, that must always remain between adjacent graphic elements.

guard condition

A condition that must be satisfied in order to enable an associated transition to fire. It is a
Boolean expression in dynamic modeling that must be true for a transition to occur.

Harmony process

Systems engineering steps, a standard, iterative workflow, and SysML diagrams used to
simplify the communication among all of the participating groups in a design project. See the
Harmony Process diagram for a high-level view of this process.
1492 User Guide

Rational Rhapsody glossary
helper applications

Custom programs that you attach to Rational Rhapsody to extend its functionality. They can
be either external programs (executables) or Visual Basic for Applications (VBA) macros that
typically use the Rational Rhapsody COM API. They connect to a Rational Rhapsody object
via the GetObject() COM service.

history connector

Recalls the most recent active configuration of a state and its substates. Each state can have
only one history connector. A history connector transitively restores all the subconfigurations
that originated in the state.

A transition originating in a history connector denotes the history default. The history initial
connector is taken if no history existed prior to entry into the history connector.

host machine

For a node-locked license, the host machine is the machine on which Rational Rhapsody is
running. For a floating license, the host machine is the machine on which the license server is
running.

identity

A distinguishing characteristic of an object that denotes a separate existence of the object,
even though the object might have the same data values as another object.

implementation

A definition of how something is constructed or computed. For example, a class is an
implementation of a type; a method is an implementation of an operation.

implementation inheritance

The inheritance of the implementation of a more specific element. It includes inheritance of
the interface. Contrast with interface inheritance.

implementation method

A style that implements specific computations on fully specified arguments, but does not make
context-sensitive decisions.

import

In the context of packages, import is a dependency that shows the packages whose classes can
be referenced within a given package (including packages recursively embedded within it).
Contrast with export.
Rational Rhapsody 1493

Rational Rhapsody glossary
include relationship

A relationship from a base use case to an inclusion use case, specifying how the behavior for
the base use case contains the behavior of the inclusion use case. The behavior is included at
the location defined in the base use case. The base use case depends on performing the
behavior of the inclusion use case, but not on its structure (that is, attributes or operations). See
also extend relationship.

inherent concurrency

Two objects that can receive events at the same time without interacting have inherent
concurrency.

inheritance

The derivation of one class from one or more other classes. The derived class inherits the same
data members and behaviors present in the parent class. It is the mechanism by which more
specific elements incorporate structure and behavior of more general elements related by
behavior. See also generalization.

initial connector

A transition to the default state of the object. An initial connector can have neither a trigger nor
a guard. It can, however, have an action and load to a decision node, after which there might
be guards.

initial instance

An instance of a class that typically bootstraps the system. To configure a system, this class
must be instantiated first.

initializer

In Rational Rhapsody Developer for C, a non-object-oriented language, an initializer is called
when an object is instantiated much like a constructor is called when a class is instantiated into
an object. A Rational Rhapsody Developer for C object or object_type can specify an
initializer to explicitly initialize object members or dynamically allocate space for member
pointers.

In sequence diagrams, an initializer is represented as a dotted, green arrow from the creator
object or system border to the object being created. Constructor lines are horizontal.
1494 User Guide

Rational Rhapsody glossary
instance

An entity to which a set of operations can be applied and that has a state that stores the effects
of the operations.

An object described by a class.

Instance Created breakpoint condition

Interrupts a running application when the specified class or a subclass of it is instantiated.

For these breakpoints, specify the instance name without an instance number. For example,
you can use the instance name Heater, but not the instance name Heater[0].

Instance Deleted breakpoint condition

Interrupts a running application when an object is deleted.

instance diagram

An object diagram that describes how a particular set of object instances relate to each other.

instance line

A vertical timeline in a sequence diagram that shows the sequence of messages that an object
processes and states that it enters over its lifetime.

instantiation

For classes, this process denotes of creation of objects (instances) from classes. For templates,
this process denotes the creation of a template class from a class template or a template
function from a function template.

interaction

A specification of how stimuli are sent between instances to perform a specific task. The
interaction is defined in the context of a collaboration. See also collaboration.

interaction diagram

A generic term that applies to several types of diagrams that emphasize object interactions,
including collaboration and sequence diagrams.

interaction occurrence

An interaction occurrence (or reference sequence diagram) enables you to refer to another
sequence diagram from within a sequence diagram. This allows you to break down complex
scenarios into smaller scenarios that can be reused. Each such scenario is an interaction.
Rational Rhapsody 1495

Rational Rhapsody glossary
interface

A named set of operations that characterize the behavior of an object.

interface inheritance

The inheritance of the interface of a more specific element. It does not include inheritance of
the implementation. Contrast with implementation inheritance.

internal transition

A transition signifying a response to an event without changing the state of its object.

iteration node

In ReporterPLUS, a template node formed by dragging a generic or model element to the
template view. (An iteration subnode is created at the same time.) The iteration node specifies
what class the iteration pertains to and what element to extract from that class. Iteration nodes
can also specify conditions applied to the iteration, how elements are sorted, what happens
when the iteration does not yield elements from the model, and can contain attributes and
boilerplate text.

iteration subnode

In ReporterPLUS, a template node formed by dragging a generic or model element to the
template view. The iteration subnode specifies the information included in the generated
document for each element extracted by the iteration. Subnodes can contain attributes and
boilerplate text, and might be the parent node to further iterations.

keywords

In ReporterPLUS, reserved words used in Q Language commands that have preset functions.

layer

The organization of classifiers or packages at the same level of abstraction. A layer represents
a horizontal slice through an architecture, whereas a partition represents a vertical slice.

leaf state

A state without And state components and descendants.

library

A library component has a .lib extension.
1496 User Guide

Rational Rhapsody glossary
link

A semantic connection among multiple objects. It is an instance of an association.

link attribute

A named data value held by each link in an association.

link end

An instance of an association end.

Lost Control breakpoint condition

Interrupts a running application when the object loses control. An object loses control when it
finishes executing an operation, finishes responding to an event, or calls an operation on
another object.

Note: Do not enter any information in the Data box of the Define Breakpoint window
for this condition.

merge node

Joins more than one transition into a single, outgoing transition. This enables you to combine
several segments into a single, graphical description or use a common transition suffix.

message

A specification of the conveyance of information from one instance to another, with the
expectation that activity will ensue. A message can raise a signal or call an operation.

message diagram

Message diagrams, available in the FunctionalC profile, show how the files functionality
might interact through messaging (through synchronous function calls or asynchronous
communication). Message diagrams can be used at different levels of abstraction. At higher
levels of abstractions, message diagrams show the interactions between actors, use cases, and
objects. At lower levels of abstraction and for implementation, message diagrams show the
communication between classes and objects.

Message diagrams have an executable aspect and are a key animation tool. When you animate
a model, Rational Rhapsody dynamically builds message diagrams that record the
object-to-object messaging.

Rational Rhapsody message diagrams are based on Sequence diagrams. For more information
about the FunctionalC profile, see Profiles.
Rational Rhapsody 1497

Rational Rhapsody glossary
message passing

The means by which objects communicate with one another to provide information, send
information, and launch actions. Sending messages is how work gets done in an object-
oriented system.

message-to-self

An arrow that bends back onto the originating instance line. The arrow can be on either side of
the instance line. If the message is a primitive operation, it immediately folds back (operations
are synchronous). If it is an event, it can fold back sometime later (events are asynchronous).

metaclass

A class whose instances are classes, meaning a class of classes. In Rational Rhapsody,
metaclasses are used to define properties for whole classes of objects. For example, under the
subject of code generation (CG), there are metaclasses for Class, Component, and
Configuration.

metamodel

A model that defines the language for expressing a model.

meta-metamodel

A model that defines the language for expressing a metamodel. The relationship between a
meta-metamodel and a metamodel is analogous to the relationship between a metamodel and a
model.

metaobject

A generic term for all metaentities in a metamodeling language. For example, metatypes,
metaclasses, metaattributes, and metaassociations.

method

The implementation of an operation. It specifies the algorithm or procedure associated with an
operation.

methodology

A process for the organized production of software using a collection of predefined and
notational conventions.
1498 User Guide

Rational Rhapsody glossary
MODAF

United Kingdom’s Ministry of Defence Architectural Framework (MODAF) provides an
industry standard for diagrams and notations used for developing MODAF-compliant
architecture models. This standard builds on the U.S. DoDAF standard.

mode

The access permission of a unit of collaboration. You can change a read/write (RW) unit, but
you cannot change a read-only (RO) unit. An item is “locked” if it is RW for you and RO for
others.

model

An abstraction of something for the purpose of understanding it before building it. The model
is the overall database of information about your project. Different projects can use the same
model. You perform requirements modeling using UCDs, static object modeling using OMDs,
and dynamic modeling using sequence diagrams and statecharts.

model aspect

A dimension of modeling that emphasizes particular qualities of the metamodel. For example,
the structural model aspect emphasizes the structural qualities of the metamodel.

Model-driven Development (MDD)

This development environment allows designers to visualize a domain, system, product, or
process and create that design in diagrams within a model. Then the modeling tool generates
implementation artifacts for the design for a selected target, such C++ code.

model elaboration

The process of generating a repository type from a published model. It includes the generation
of interfaces and implementations that allows repositories to be instantiated and populated
based on, and in compliance with, the model elaborated.

model element

In ReporterPLUS, an element from a specific model. See also generic element.

model view

The upper, left pane in the ReporterPLUS window. When a model is open, the model view
displays generic and model elements. When no model is open, it displays only generic
elements. Compare with attribute view.
Rational Rhapsody 1499

Rational Rhapsody glossary
model-view controller (MVC)

An architecture that separates the model and its views by allowing certain model elements to
be viewed in different views or not at all.

modeling time

Refers to something that occurs during a modeling phase of the software development process.
It includes analysis time and design time. When discussing object systems, it is often
important to distinguish between modeling-time and run-time concerns.

module

A software unit of storage and manipulation. Modules include source code modules, binary
code modules, and executable code modules. See also component.

multiple classification

A semantic variation of generalization in which an object can belong directly to more than one
classifier. See static classification and dynamic classification.

multiple inheritance

A semantic variation of generalization in which a type can have more than one supertype.
Contrast with single inheritance.

multiplicity

Refers to the number of instances of one class that can relate to a single instance of an
associated class.

n-ary association

An association among three or more classes. Each instance of the association is an n-tuple of
values from the respective classes. Contrast with binary association.

namespace

A part of the model in which the names can be defined and used. Within a namespace, each
name has a unique meaning.

nested unit

An element that is inside an element of the same unit type. For example, a package might
contain another package (or a nested unit).
1500 User Guide

Rational Rhapsody glossary
node

In Rational Rhapsody, a classifier that represents a run-time computational resource, which
generally has at least a memory, and often processing, capability. Run-time objects and
components can reside on nodes.

In ReporterPLUS, this is basically a section in a report that is specified at a heading level in
the report.

node label

In ReporterPLUS, the text next to the template node icon in the template view. The node label
describes what the node does and what part of the model it is from. ReporterPLUS adds a
default label automatically; you can change it in the User-defined label box on the Properties
tab.

non-public inheritance

The subclass inherits only the public attributes and operations of the superclass.

null transition

A transition with a guard and an action, but no trigger. Null transitions can be useful when you
want to allocate a resource that might not be available. In this case, you might branch based on
some entry action or join transition.

object

An entity with a well-defined boundary and identity that encapsulates state and behavior. State
is represented by attributes and relationships, whereas behavior is represented by operations,
methods, and state machines.

An object is an instance of a class.

In Rational Rhapsody Developer for C, an object consists of a C struct that is mapped, via
naming conventions, to operations (functions). This unifies attributes (data) and operations
(functions) under one element, a C object, which displays as a primary element in both the
browser and OMD. A Rational Rhapsody Developer for C object can be defined as an object
of implicit type or an object of explicit type.
Rational Rhapsody 1501

Rational Rhapsody glossary
object box

In an OMD, a rectangle with three compartments (unless it is a simple object box). The first
compartment contains the object name, the second contains the attributes, and the third
contains operations.

The symbol for a simple object is simply a rectangle without compartments. An object and
simple object are semantically equivalent.

object design

A stage of the development cycle during which the implementation of each class, association,
attribute, and operation is determined.

object diagram

A diagram that encompasses objects and their relationships at a point in time. An object
diagram can be considered a special case of a class diagram or a collaboration diagram. See
class diagram and collaboration diagram.

object execution framework (OXF)

Rational Rhapsody has one central run-time library, the OXF, that provides all the services
required by the generated code in the running application. All the other libraries are related to
animation or tracing in one respect or another. See also framework.

object flow state

A state in an activity graph that represents the passing of an object from the output of actions
in one state to the input of actions in another state.

object group

Consists of several objects that are examined together as a unit for the purpose of comparing
two sequence diagrams. This enables you to compare, for example, a black box diagram
showing messages to and from the system as a whole to a gray or white box diagram showing
messages to and from the individual parts. For example, given a model of an oven consisting
of Oven, Timer, and Display objects, you can create both a black box sequence diagram
showing an Oven object and a white-box sequence diagram showing objects of all three.

Without object groups, you could compare only the Oven objects in the two diagrams, omitting
from the comparison any messages to or from the Timer and Display. Using an object group,
you can compare messages to and from the Oven in the black box diagram to those to and from
the Oven, Timer, and Display in the white box diagram because they are considered to be a
single unit. This results in fewer discrepancies and simplifies the comparison.
1502 User Guide

Rational Rhapsody glossary
object lifeline

A line in a sequence diagram that represents the existence of an object over a period of time.
See also sequence diagram.

object model

A description of the structure of the objects in a system including their identity, relationships
to other objects, attributes, and operations.

object model diagram (OMD)

Show the logical views of a system. OMDs are static, structural diagrams that show the parts
of a software system and the relationships that exist between them. These parts can include
classes (in C, objects and object types), packages, and actors.

OMDs include objects that appear in related scenarios, which are described using sequence
diagrams. OMDs show all relationships, including inheritance, dependencies, compositions,
and associations between collaborating objects.

OMDs are constructive in that Rational Rhapsody generates code based on what you draw in
them.

object modeling technique (OMT)

An object-oriented development methodology that uses object, dynamic, and functional
models throughout the development life cycle.

object of explicit type

In Rational Rhapsody Developer for C, an object of explicit type is defined by a single
reference to an object type that defines the object. If an object A is based on an object type B,
this is expressed as “object A is of type B.” The name of the object A displays in an OMD as
A:B.

Objects of both implicit and explicit types show all or part of their object type-related
properties as part of their object appearance. However, objects of explicit type cannot alter or
add directly to their object type-related properties. In other words, an object of explicit type is
explicitly and completely defined by its object type.

Objects are set as implicit or explicit type through the Is Of Type check box in the Object
window. If, for a particular object, this box is checked and an object type is specified in the
adjacent box, the object is an explicit object. Otherwise, the object is an implicit object.

You can convert objects of explicit type to objects of implicit type through the Create Type-
less Object feature. This option copies all properties (functions, statechart, and so on) of the
object’s object type to a new object of implicit type.
Rational Rhapsody 1503

Rational Rhapsody glossary
object of implicit type

In Rational Rhapsody Developer for C, objects of implicit type are defined only by the
attributes, operations, objects, and object types that they contain. You can display these
elements in the box representation of the implicit object base.

Both implicit and explicit objects show all or part of their object type-related properties as part
of their object appearance.

You can convert an implicit object to an explicit object and object type through the Expose
Object Type feature.

object-oriented

A software development strategy that organizes software as a collection of objects that contain
both data structure and behavior.

object type

Rational Rhapsody Developer for C uses object types as templates for defining objects. For
example, if A is an object type, object B can be defined as an object of type A, also referred to
as B:A.

operation

A service that can be requested from an object to affect behavior. An operation has a signature,
which might restrict the actual parameters that are possible.

Operation breakpoint condition

Interrupts a running application when the object starts executing a member operation.

Operation Returned breakpoint condition

Interrupts a running application when a member operation of the object returns.

origin class

The top-most class that defines an attribute or operation.

orthogonal state

Two or more independent states that an object can be in at the same time. This is also known
as an And state. For example, a clock radio can be counting the time and playing music at the
same time, states that can be completely independent of each other. Dotted lines separate the
compartments of orthogonal states in an And state.
1504 User Guide

Rational Rhapsody glossary
output type

In ReporterPLUS, the format of the generated document. ReporterPLUS can produce
documents in five output types: Microsoft Word, Microsoft PowerPoint, HTML, Rich Text
Format (RTF), and text. You select the output type in the Generate Document window.

override

Replace an inherited method for the same operation, or replace the default value of a property
with a new value.

package

A general-purpose mechanism for organizing elements into groups. You can think of a system
as a single, high-level package, with everything else in the system contained in it. A package is
a collection of packages, classes (in C, objects and object types), events, diagrams, globals,
types, use cases, and actors.

Because packages can be nested with other packages, they enable you to partition a system
into smaller subsystems. Thus, package nesting provides a way to organize large projects into
package hierarchies.

You can import packages into your project from other projects using File > Add to Model.

panel diagram

A panel diagram provides you with a number of graphical control elements that you can use as
a graphical user interface (GUI) to monitor and regulate an application. Each control element
can be bound to a model element (variable/attribute/event/state). During animation, you can
use the animated panel diagram to monitor (read) and regulate (change values/send events)
your user application.

Panel diagrams are intended only for simulating and prototyping, and not for use as a
production interface for the user application. In addition, panel diagrams can only be “used”
on the host and can be “used” only from within Rational Rhapsody

parameter

The specification of a variable that can be changed, passed, or returned. A parameter can
include a name, type, and direction. Parameters are used for operations, messages, and events.
See also formal parameter. Contrast with argument.

parameterized element

The descriptor for a class with one or more unbound parameters. Also referred to as a template.
Rational Rhapsody 1505

Rational Rhapsody glossary
parent

In a generalization relationship, the generalization of another element (the child). See also
subclass, subtype. Contrast with child.

part

A part is a role that an instance of that class plays in a context. Meaning it is a stand-in for an
object.

Note that attributes, when used by value, will be generated like a part. However, if its type is
reactive, then the attribute would be missing the reactive code (startbehavior call, and so on).

Use a part (rather than an attribute) if it is to be used as an stand-in for an object. The
advantage of using a part is that it can be drawn on a diagram, you can connect parts using
links, and also view ports, attributes, operations, and so on. See also class, package, and
component. Contrast with attribute.

participation

The connection of a model element to a relationship. For example, a class participates in an
association, whereas an actor participates in a use case.

pattern

A template collaboration.

partition

There are two possible definitions:

� A portion of an activity graph that organizes the responsibilities for actions. See
also swimlane.

� A set of related classifiers or packages at the same level of abstraction or across
layers in a layered architecture. A partition represents a vertical slice through an
architecture, whereas a layer represents a horizontal slice.

partition line

A red, horizontal line dividing a sequence diagram into vertical segments indicating different
phases of the sequence. The text note that accompanies a partition line is initially positioned at
the left end of the line. You can move the note anywhere in the diagram, but it always remains
associated with the same partition line.
1506 User Guide

Rational Rhapsody glossary
periodic actions

To model periodic actions that repeat as long as a state is active, you can use a transition that
loops back to the same state with a timer as a trigger. For example, to define an action that
should repeat once every second while an object is in some state, set the trigger on the loop
transition to tm(1000) and set the action on entry to the statements to be executed at that
interval.

persistent object

An object that exists after the process or thread that created it has ceased to exist.

physical system

Either of the following items:

� The subject of a model.
� A collection of connected physical units, which can include software, hardware

and people, that are organized to accomplish a specific purpose. A physical
system can be described by one or more models, possibly from different
viewpoints. Contrast with system.

pinned window

In “pinned” mode, the information displayed in the “pinned” Features window remains
displayed and accessible from all of the window tabs even when a different element is
selected. This allows multiple windows to be displayed and the contents reviewed together.
The pin icon in the upper right corner of the window controls this feature.

plug-in

A Rational Rhapsody plug-in is a user Java application that Rational Rhapsody loads into its
process. While a plug-in is loaded, Rational Rhapsody supports it with an interface to the
hosting Rational Rhapsody application.

Use a plug-in to extend the Rational Rhapsody features with customized functionality by
adding menus to the Rational Rhapsody IDE or reacting to Rational Rhapsody events, such as
code generation and model check.

polymorphism

A way of simplifying communication between objects by hiding different implementations
behind a common interface. For example, defining multiple print methods behind one print
command.
Rational Rhapsody 1507

Rational Rhapsody glossary
port

As in the standard Unified Modeling Language (UML), a port is a named connection point for a
class, object, or a block. It is a distinct interaction point between a class and its environment or
between (the behavior of) a class and its internal parts. A port allows you to specify classes
that are independent of the environment in which they are embedded. The internal parts of the
class can be completely isolated from the environment and vice versa. A port can have either
of these interfaces: required or provided.

postcondition

A constraint that must be true at the completion of an operation.

precondition

A constraint that must be true when an operation is launched.

predefined types

The Rational Rhapsody predefined types include int, char, double, void, OMBoolean, long,
OMString, and void*. They do not belong to the Default or any other user-defined package.
Rather, they belong to the PredefinedTypes package, which is part of every model, albeit
hidden (in the PredefinedTypes.sbs file in the Share\Properties directory). Thus, clashes
are prevented between user-defined and predefined types with the same name.

primary model elements

Primary model elements within the browser are packages, classes, OMDs, associations,
dependencies, operations, variables, events, event receptions, triggered operations,
constructors, destructors, and types. Primary model elements in OMDs are packages, classes,
associations (links), dependencies, and actors.

Rational Rhapsody Developer for C and C++ classes and their instances are replaced by C
equivalent object types and objects, respectively. Similarly, class constructors and destructors
are replaced by initializers and cleanup operations.

primitive operation

An operation whose body you write yourself. Rational Rhapsody automatically generates
bodies for all other types of operations.

primitive type

A predefined, basic data type without any substructure, such as an integer or a string.
1508 User Guide

Rational Rhapsody glossary
private

When referring to an attribute or operation of a class, private means accessible only by
methods of the current class.

process

Has the following meanings:

� A heavyweight unit of concurrency and execution in an operating system.
Contrast this with thread, which includes heavyweight and lightweight processes.
If necessary, an implementation distinction can be made using stereotypes.

� A software development process; the steps and guidelines by which to develop a
system.

� To execute an algorithm or otherwise handle something dynamically.

profile

A special kind of package that is distinguished from other packages in the browser. You
specify a profile at the top level of the model. Therefore, a profile is owned by the project and
affects the entire model. By default, all profiles apply to all packages available in the
workspace, so their tags and stereotypes are available everywhere. A profile is similar to any
other package; however, profiles cannot be nested. You might select a specific profile when
you create a project and add profiles to existing projects, and Rational Rhapsody automatically
adds profiles required for add-on products. See Profiles for more information.

project

Overall set of artifacts describing the system being modeled across all developers. The terms
project and model are interchangeable in Rational Rhapsody.

projection

A mapping from a set to a subset of it.

property

A named value denoting a characteristic of an element. A property has semantic impact. The
UML predefines some properties; others are user-defined. The definitions of Rational
Rhapsody properties are displayed in the Properties tab of the Features window.

See also tagged value.
Rational Rhapsody 1509

Rational Rhapsody glossary
protected object

In a system with several threads of control, there can be contentions where different threads
apply messages to the same passive object. A protected object serves only one message at a
time. In other words, an object applying a message to a protected object will be blocked until
the protected object processes the message.

provided event

An event to which a class responds. It is defined with the class or its superclass.

pseudo-state

A vertex in a state machine that has the form of a state, but does not behave as a state. Pseudo-
states include initial and history vertices.

public

Accessible by methods of any class.

public inheritance

The subclass inherits all attributes and operations of the superclass.

Q Language

In ReporterPLUS, the language used to write advanced conditions and create advanced
statements about attributes.

qualifier

An association attribute or tuple of attributes whose values partition the set of objects related
to an object across an association.

qualified association

An association that relates two classes and a qualifier; a binary association in which the first
part is a composite comprising a class and a qualifier, and the second part is a class.
1510 User Guide

Rational Rhapsody glossary
reactive object

A class (in C, an object or object type) is reactive if:

� It has a statechart.
� It is a composite.
� It has an event reception.

Most reactive objects and object types have statecharts to define their behavior. The presence
of a statechart for an object or object type is indicated by the appearance of a small overlaid
mini-statechart icon in the browser, OMD, and sequence diagrams.

read-only mode

You can view an item, but cannot modify it.

real-time model

Runs the instrumented application in quasi-real time in which timeouts and delays are
computed based on the system clock.

read/write mode

You can modify an item.

receive a message

The handling of a stimulus passed from a sender instance. See also sender object, receiver
object.

receiver object

The object handling a stimulus passed from a sender object. Contrast with sender object.

reception

A declaration that a classifier is prepared to react to the receipt of a signal.

refactoring

Search and replace mechanism to rename an element in the user code when the engineer has
renamed it in the Rational Rhapsody project.
Rational Rhapsody 1511

Rational Rhapsody glossary
reference

Has the following definitions:

� A denotation of a model element
� A named slot within a classifier that facilitates navigation to other classifiers

Also called a pointer.

reference class

Classes that are included in the model by reference only, without specifying any of their
internal details, such as attributes. For example, you can include the MFC classes for
reference, merely to show that they are acting as superclasses or peer classes to other classes in
your model, without including any specific information about the MFC classes themselves.

refinement

A relationship that represents a fuller specification of something that has already been
specified at a certain level of detail. For example, a design class is a refinement of an analysis
class.

relation

Elements can be related to each other in different ways. The relationships that can exist
between software entities are modeled on relationships that exist in the real world, as follows:

� Association
� Directed association
� Dependency

Relation breakpoint condition

Interrupts a running application when the object modifies a relation in any way. In other
words, the application breaks if the object connects to, disconnects from, or clears a relation.

Relation Cleared breakpoint condition

Interrupts a running application when the object clears a relation. To clear a relation means to
disconnect from all instances on the relation and clear the relation itself.

Relation Connected breakpoint condition

Interrupts a running application when the object connects to a relation.
1512 User Guide

Rational Rhapsody glossary
Relation Disconnected breakpoint condition

Interrupts a running application when the object disconnects from a relation. To disconnect
from a relation means to disconnect from one individual instance on the relation. Connections
to other instances on the same relation remain intact.

relationship

A semantic connection among model elements. Examples of relationships include associations
and generalizations.

ReporterPLUS template

A set of instructions that tells ReporterPLUS what data to extract from a model and how that
data should be formatted. You can build your own ReporterPLUS templates or use the ones
provided with ReporterPLUS.

repository

A facility for storing object models, interfaces, and implementations. Repository files are in
ASCII format for easy storage and differentiation by a CM system.

The repository can also be defined as a subdirectory inside the project directory containing all
configuration items in the project, such as diagram, class, and package files. The directory
name consists of the project name followed by _rpy.

required event

An event that a class knows how to generate. It is not defined with the class, but with the target
of the event.

requirement

A wanted feature, property, or behavior of a system.

respect mode

In C++ projects, Rational Rhapsody preserves (respects) the changes to the model and other
information changes through subsequent code generations.

responsibility

A contract or obligation of a classifier. It defines what the system expects from an object.
Rational Rhapsody 1513

Rational Rhapsody glossary
reusable statechart

With reusable statechart implementation, states are implemented as class types derived from
the abstract state classes defined in the implementation framework. When statecharts are
inherited, states are reused by instantiating the same state object from a base class. This
strategy is more effective with deep statechart inheritance hierarchies.

reuse

The use of a pre-existing artifact.

role

The named specific behavior of an entity participating in a particular context. A role can be
static (for example, an association end) or dynamic (for example, a collaboration role).

In the case of an association, a role specifies how each object relates to the object at the other
end of the association.

root state

The default state of a statechart.

roundtrip

The action taken to update a Rational Rhapsody model based on changes made to code
previously generated by Rational Rhapsody.

run time

The period of time during which a computer program executes. Contrast with modeling time.

SCC

Abbreviation for the Microsoft Common Source Code Control.

scenario

A specific sequence of actions that illustrates behaviors. A scenario can be used to illustrate an
interaction or the execution of a use case instance. See also interaction.

semantic variation point

A point of variation in the semantics of a metamodel. It provides an intentional degree of
freedom for the interpretation of the metamodel semantics.
1514 User Guide

Rational Rhapsody glossary
send a message

The passing of a stimulus from a sender instance to a receiver instance. See also sender object,
receiver object.

sender object

The object passing a stimulus to a receiver object.

sequence diagram

A diagram that shows object interactions arranged in time sequence. In particular, it shows the
objects participating in the interaction and the sequence of messages exchanged between them.
Vertical lines represent the objects and arrows are drawn to represent the messages.

Unlike a collaboration diagram, a sequence diagram includes time sequences but does not
include object relationships. A sequence diagram can exist in a generic form (describing all
possible scenarios) and in an instance form (describing one actual scenario). Sequence
diagrams and collaboration diagrams express similar information, but show it in different
ways.

In addition to drawing sequence diagrams, Rational Rhapsody also creates animated sequence
diagrams from your running application so you can see that your code is really working the
way you want it to.

sequential concurrency

The system runs on a single thread and all operations are executed in sequential order. A
sequential object either exists within a composite, or can be a global instance.

Service Oriented Architecture (SOA)

SOA projects are business-centric and facilitate an effective IT infrastructure to help
streamline and improve processes across the enterprise. See Domain-specific projects and the
NetCentric profile for more information.

signal

The specification of an asynchronous stimulus communicated between instances. Signals can
have parameters.

signature

The name and parameters of a behavioral feature. A signature can include an optional,
returned parameter.
Rational Rhapsody 1515

Rational Rhapsody glossary
simulated time model

A virtual timer orders timeouts and delays, which are posted when the system completes a
computation.

single inheritance

A semantic variation of generalization in which a type can have only one supertype. Contrast
with multiple inheritance.

singleton

An object type that, by definition, has exactly one instance. It is designated by a small “1” in
the upper, right corner of the object type box in an OMD.

SourceArtifact

A Rational Rhapsody element that contains code respect information for reverse engineering
and roundtripping.

Note that previous to Rational Rhapsody version 7.2, a SourceArtifact was referred to as a
component file. While component files still exist, they now refer to elements under the
Components category in Rational Rhapsody. When component files are located under
packages or classes, and so on, they are referred to as SourceArtifacts.

specification

A declarative description of what something is or does. Contrast with implementation.

spontaneous transition

A transition in dynamic modeling that fires only if a guard condition is true.

state

An abstraction of the mode in which the object finds itself. It is a condition or situation during
the life of an object during which it satisfies some condition, performs some activity, or waits
for some event.

Messages, events, timeouts, and the satisfaction of conditions can cause an object to transition
from one state to another. Statecharts define an object’s behavior by specifying messages,
events, timeouts, and conditions that must occur to cause the object to transition from one state
to another.
1516 User Guide

Rational Rhapsody glossary
state awareness

Rational Rhapsody shows the configuration management “state” if elements in the browser
with icons for the elements. The icons provide the following configuration management
information about the individual items:

� Under source control
� Not under source control
� Checked out
� Checked in with changes
� Deleted from source control

State breakpoint condition

Interrupts a running application when the object changes state.

State Exited breakpoint condition

Interrupts a running application when the object exits a state.

state machine

A behavior that specifies the sequences of states that an object or an interaction goes through
during its lifetime in response to events, together with its responses and actions. In Rational
Rhapsody, the state machine is diagrammed in a statechart.

statechart

Defines the behavior of reactive objects by specifying how they react to events or operations.
The reaction can be to perform a transition between states and possibly to execute some
actions. When running in animation mode, Rational Rhapsody highlights the transition taken
and the entered state to show transitions between states.

statechart diagram

A diagram that shows a state machine.

static classification

A semantic variation of generalization in which an object cannot change classifier. Contrast
with dynamic classification.
Rational Rhapsody 1517

Rational Rhapsody glossary
static structure

Used to describe an OMD. An OMD shows the relationship between instances at any given
time during a system’s operation. Therefore, the structure displayed by an OMD is timeless, or
static.

stereotype

A type of modeling element that extends the semantics of the metamodel. Stereotypes must be
based on certain existing types or classes in the metamodel. Stereotypes can extend the
semantics, but not the structure of pre-existing types and classes. Certain stereotypes are
predefined in the UML, whereas others are user-defined. Stereotypes are one of three
extensibility mechanisms in UML. See also constraint and tagged value.

Stereotypes allow extension of the UML metamodel by “typing” different UML entities.
Entities that allow stereotypes in Rational Rhapsody are use cases, packages, classes, (objects
and object types in Rational Rhapsody Developer for C) and dependencies. See Stereotypes
for more information.

stimulus

The passing of information from one instance to another, such as raising a signal or invoking
an operation. The receipt of a signal is normally considered an event. See also message.

string

A sequence of text characters. The details of string representation depend on implementation,
and can include character sets that support international characters and graphics.

structural feature

A static feature of a model element, such as an attribute.

structural model aspect

The model aspect that emphasizes the structure of the objects in a system, including their
types, classes, relationships, attributes, and operations.

subactivity state

A state in an activity graph that represents the execution of a non-atomic sequence of steps that
has some duration.

subclass

In a generalization relationship, the specialization of another class; the superclass. See also
generalization. Contrast with superclass.
1518 User Guide

Rational Rhapsody glossary
submachine

A statechart that is a decomposition of a containing state referred to as a submachine state.
Viewing the submachine state in submachine view displays the contents of the submachine
state, referred to as a submachine.

submachine state

A state in a state machine that is equivalent to a composite state, but whose contents are
described by another state machine.

A submachine state is a composite state that is decomposed to a submachine. The submachine
state is in the parent statechart.

subpackage

A package that is contained in another package.

substate

A state that is part of a composite state. See also concurrent substate and disjoint substate.

subsystem

A grouping of model elements that represents a behavioral unit in a physical system. A
subsystem offers interfaces and has operations. In addition, the model elements of a subsystem
can be partitioned into specification and realization elements. See also package and physical
system.

subtype

In a generalization relationship, the specialization of another type; the supertype.

subunit

An element that is nested inside another element. For example, a package B that is nested
inside a package A is considered a subunit of A.

superclass

In a generalization relationship, the generalization of another class; the subclass. See also
generalization. Contrast with subclass.

A superclass is a base class from which another class derives. A superclass is created when
you draw an inheritance relation from one class to another in an OMD.
Rational Rhapsody 1519

Rational Rhapsody glossary
supertype

In a generalization relationship, the generalization of another type, the subtype.

supplier

A classifier that provides services that can be started by others. Contrast with client.

swimlane

A partition on an activity diagram for organizing the responsibilities for actions. Swimlanes
typically correspond to organizational units in a business model. See also partition.

symmetric relation

Both entities know about and can send messages to each other. Also known as a bidirectional
association.

synch state

A vertex in a state machine used for synchronizing the concurrent regions of a state machine.

SysML

Systems Modeling Language (SysML) is a domain specific modeling language for systems
engineering applications. It supports the specification, analysis, design, verification and
validation of a broad range of systems and systems-of-systems. These systems might include
hardware, software, information, processes, personnel, and facilities. SysML’s goal is to allow
systems engineers to define their designs with precision, conciseness, consistency and
understandability and to be able to test the designs for correctness. See Systems engineering
with Rational Rhapsody for more information.

system

A top-level subsystem in a model. Contrast with physical system.

System Architect (SA)

IBM® Rational® System Architect® software provides the tools for you to build a Business
and Enterprise Architecture, a fully integrated collection of models and documents across five
keys domains: Strategy, Business, Information, Systems, and Technology. System Architect
software creates a shared workspace for all team members to understand how to improve the
company’s architecture and overall business. DoDAF data can be imported from SA into
Rational Rhapsody as SysML. See Importing DoDAF diagrams from Rational System Architect
for more information.
1520 User Guide

Rational Rhapsody glossary
system border

Represents the environment outside the system under design. In a sequence diagram, the
system border is indicated by a column of short diagonal lines. Messages that originate outside
the system or subsystem shown in the sequence come from the system border.

table node

In ReporterPLUS, an iteration node that produces a table rather than paragraphs of text. The
information on the table node is formatted into column headings in the generated document,
whereas the information on the iteration subnodes beneath the table node is formatted into
table rows.

tagged value

The explicit definition of a property as a name-value pair. In a tagged value, the name is
referred to as the tag. Certain tags are predefined in the UML; others are user-defined. Tagged
values are one of three extensibility mechanisms in UML. See also constraint and stereotype.

target environment

Rational Rhapsody is used to develop real-time application software to run in different
operating system environments that rely on different software compilers.

Rational Rhapsody distinguishes these environments based on a combination of compiler and
operating system (some compilers can compile for several operating systems). See the IBM
Rational Rhapsody ReadMe (release notes) for information on the supported target
environments.

template

A parameterized element. Rational Rhapsody provides two types of templates: class and
function. See also template instantiation and template parameters.

For ReporterPLUS, see ReporterPLUS template.

template class

The C++ language enables you to instantiate a class template into a template class using types
passed to the class template as arguments. Rational Rhapsody allows you to create or change
an existing class into a class template or instantiate it into a template class in the class window.

See also class template.

template function

Generates a template function based on the data types passed to it as arguments.
Rational Rhapsody 1521

Rational Rhapsody glossary
Consider the following function template:

template <class T> void swap (T& x, T&y) {
T temp = x;
x=y;
y = temp;

}

When the function template is called (the same way ordinary functions are called), a template
function is generated, as follows:

int i=22, j=66;
swap(i,j);

template instantiation

Rational Rhapsody provides C++ template instantiation in the following two cases:

� Class templates can be instantiated into template classes using the Instantiation
radio button.

� Function templates are instantiated into template functions, using the
Is Template check box on the global function window.

In Rational Rhapsody, the following features and limitations apply to class template
instantiation:

� A new class is declared as a class template or instantiated template in the browser.
� An instantiation of a template must be full, all template parameters must have

values.
Template instantiation is a named instantiation interpreted as a “typedef” of a real
instantiation. The following examples demonstrate the Rational Rhapsody generated code for
an instantiated class template:

typedef vector<int> vec_int_inst;
typedef MyTemplateClass<int> MySimpleIntInstance;

In the examples, the class vec_int_inst is equivalent to the class vector<Cstring> and the
class MySimpleIntInstance is equivalent to the class MyTemplateClass<int>.

� Operations and attributes cannot be added to an instantiation.
� A model element can be a template (by having template parameters), an

instantiation (by having instantiation parameters), or neither one.
� See also template parameters and template specialization.

template node (or section)

In ReporterPLUS, refers to any node in the template view. Template nodes form the structure
of the generated document, and hold the attributes, boilerplate text, format commands, and
other information that ReporterPLUS needs to generate a document from a model.
1522 User Guide

Rational Rhapsody glossary
template node view

In ReporterPLUS, the lower, right pane in the ReporterPLUS window. The template node
view has six tabs, which show information about the nodes in the template view. Compare
with template view. See also attribute view and model view.

template parameters

When templates are instantiated into template classes or template functions, the types used in
the defined body are provided as parameters. In Rational Rhapsody, the following features
apply to template parameters and their scope:

� A template can define some of its parameters with default values.
� Template parameters can be class or metaclass, as shown by the following

examples:
template<int> class x;
template<class T> class x;

� Inside a template object, metaclass template parameters are treated as regular
types/classes. Consider the following class template definition:

template<class T> class x;

� In this template, x can have an attribute of type T.
� Inside a template object, template parameters are treated as expressions for the

purpose of instantiation. For example:
template<class T> class x {

vector<T> a;
}

� In this example, T can be a metaclass or type parameter.
� The name of a metaclass can be used as a class of another parameter. For example:

template <class T, T t> class C {};

� This can be done only in the browser, not in the OMD.
� When adding a superclass, metaclass template parameters are available. For

example:
template <class T> class C : public T {...};

� This can be done only in the browser, not in the OMD.
See also template instantiation and template specialization.

template specialization

Allows specific instantiations to override the content of the general template.

For member operations, set the value of the Specialization property for the operation to the
text of the instance (for example, vector<CString>...). For functions, the only difference
Rational Rhapsody 1523

Rational Rhapsody glossary
between the original template function and the specialized function is that the return type,
arguments, and so on. of the specialization are instantiations with the type chosen for
specialization.

Consider the template global function, f:

1. Define f<T> and in it write the general body.

2. In the same scope, define the specialized function (for example, f<int>{. . .}) and in it
write the specialized body.

See also template instantiation and template parameters.

template view

The lower, left pane in the ReporterPLUS window. The template view displays the currently
open ReporterPLUS template. This view is empty when ReporterPLUS first starts. Compare
with template node view. See also attribute view and model view.

termination breakpoint condition

Interrupts a running application when an object reaches a termination connector in its
statechart. The application does not break if the object is deleted in any other way than by
entering a termination connector.

termination connector

“Suicide” or “self-destruct” connectors used in statecharts. A transition to a termination
connector causes an object to delete itself.

Although termination connectors have the same appearance as termination states in activity
diagrams, final activities do not destroy the object they are in.

A termination connector cannot have any outgoing transition.

text node

In ReporterPLUS, a template node (or section) that holds attributes and boilerplate text. Text
nodes can stand on their own, serve as subnodes under iteration subnodes, or serve as parent
nodes for iteration nodes. They cannot hold iterations.

thread of control

A single path of execution through a program, dynamic model, or some other representation of
control flow.

In addition, a stereotype for the implementation of an active object as a lightweight process.
See also process.
1524 User Guide

Rational Rhapsody glossary
time event

An event that denotes the time elapsed since the current state was entered. See also event.

time expression

An expression that resolves to an absolute or relative value of time.

time interval

A vertical annotation that shows how much (real) time should pass between two points on an
instance line in a sequence diagram. The label is free text and is not limited to a number or unit
of any kind.

timeout

Used in sequence diagrams when an object should wait a set amount of time before continuing
its operation. A timeout is shown as a message-to-self on an instance line with a small box at
the start end of the message line. Timeouts are labeled Tm(n), where n is the length of the
timeout. Normal timeouts such as these cannot be canceled and must run to completion.

timing mark

A denotation for the time at which an event or message occurs. It is used in sequence diagrams
to show how much real time passes between two points in a scenario.

tooltips

Text displayed when the cursor is moved over an interface element. For example, the full path
name of an element is displayed in a tooltip when the cursor is over that element.

trace

A dependency that indicates a historical or process relationship between two elements that
represent the same concept, without specific rules for deriving one from the other.

tracing

Displays trace messages during program execution.

transient object

An object that exists only during the execution of the process or thread that created it.

transition

A relationship between two states indicating that an object in the first state will perform
certain specified actions and enter the second state when a specified event occurs and specified
Rational Rhapsody 1525

Rational Rhapsody glossary
conditions are satisfied. On such a change of state (first state to second state), the transition is
said to fire.

A transition can have a trigger, a guard, and an action, which is formatted in the transition
label as follows:

trigger[guard]/action

Transitions usually consist of at least a trigger and an action. A trigger can be either an event
or a triggered operation. A transition can be qualified by a guard condition, meaning that the
guard must be true for the transition to be taken.

transition context

The scope in which message data (parameters) are visible. Any guard and action can inherit
the context of a transition determining the parameters that can be referenced within it.

trigger[guard]/action

An expression attached to a transition that determines the followingfollowing actions::

� What event will fire the transition (trigger)?
� Under what condition the transition will be allowed (guard)?
� What action code will be executed when the transition takes place (action)?

triggered operation

A synchronous communication between objects (between a client object and a server object).
It has a body of operation defined by the statechart actions that it triggers, and can return a
value.

A triggered operation is a cross between an operation and an event. It is started by another
object to trigger a state transition and its body is executed in response to the transition taken.
Because it is a synchronous event, the sending object waits for the execution of the triggered
operation.

The body of a triggered operation is set in the statechart of the receiving object by the action
language associated with a transition. Thus, the body of the same triggered operation can be
different based on the state of the object when the triggered operation is launched.

Because its activation is synchronous, an operation can return a value to the client object. To
return a value from a triggered operation, use the REPLY(VARIABLE) macro inside the body of
the triggered operation.

A statechart consumes one event at a time. Until an event is consumed, no subsequent event
can be consumed. Because triggered operations inject events (and “wait” until they are
consumed), two triggered operations must run sequentially.
1526 User Guide

Rational Rhapsody glossary
type

A stereotype of class used to specify a domain of instances (objects) together with the
operations applicable to the objects. A type cannot contain any methods. See also class and
instance. Contrast with interface.

type expression

An expression that evaluates to a reference to one or more types.

Unified Modeling Language (UML)

The UML is a third-generation language for describing complex systems using models. This
language allows system architects and engineers to work at a high level of abstraction and to
communicate design intent effectively. Using UML models allows system simulation so that
errors to be found and corrected early in the development process.

uninterpreted

A placeholder for types whose implementation is not specified by the UML. Every
uninterpreted value has a corresponding string representation.

unit

A composite model element stored in its own file that you can check in and out of a CM
system. A model element can be made into a unit as long as it can be saved as a separate file.
Some elements that can be saved as units are the entire model, packages, classes (in C, objects
and object types), any type of Rational Rhapsody diagram, and components. The project,
represented by the root node displayed in the browser, is always a unit.

The primary purpose of units is to support collaboration with other developers. You have
explicit control over unit files and modification rights (RO versus RW), and you can check
unit files in and out of a CM system. You can also compare units using the Rational Rhapsody
DiffMerge tool.

unresolved reference

A reference between two configuration items that have become disconnected, possibly by one
having been moved to a different workspace.

usage

A dependency in which one element (the client) requires the presence of another element (the
supplier) for its correct functioning or implementation.
Rational Rhapsody 1527

Rational Rhapsody glossary
use case

The specification of a sequence of actions, including variants, that a system (or other entity)
can perform by interacting with actors of the system.

A use case is one way in which a user, or external actor, might interact with a system. For
example, the user of a railcar system might want to call a car. This main use of the system can
be represented in a use case named “Call Car.” Each use case belongs to a package, as
reflected in the browser.

A use case can be referred to from other packages, but can belong to only one package at a
time. The same holds true for types.

use case diagram (UCD)

A diagram that shows the relationships among actors and use cases within a system.

UCDs describe a high-level functional analysis of the system. They enable users to specify
major system requirements. For example, user requirements for a VCR system might be to set
up the system, play back and record video cassettes, set the time, and store channels into
memory. These main uses of the system can be represented by the use cases Setup, Playback,
Record, SetTime, and AutoProgram. Use cases represent the externally visible behaviors, or
functional aspects, of the system.

Actors are added to the UCD to show the external entities interacting with the system.

use case instance

The performance of a sequence of actions being specified in a use case. An instance of a use
case.

use case model

A model that describes a system's functional requirements in terms of use cases.

user-defined type

A type defined by a user, not a predefined type. Types allow for meaningful interpretation of
fixed-length bit sequences. Common predefined types include integer (int), char (characters),
and float (floating-point).

utility

A stereotype that groups global variables and procedures in the form of a class declaration.
The utility attributes and operations become global variables and global procedures,
respectively. A utility is not a fundamental modeling construct, but a programming
convenience.
1528 User Guide

Rational Rhapsody glossary
value

An element of a type domain.

variable

A storage place within an object for a data element. The data element can be a data type such
as a date or number, or a reference to another object.

VBA project

A VBA project is a file container for other files and components that you use in Visual Basic
to build an application. After all the components have been assembled in a project and code
written for it, you can compile the project into an executable file.

Each Rational Rhapsody project is associated with a single VBA project that contains all the
VBA artifacts (scripts, forms, and so on) you created within a Rational Rhapsody project. This
project file has the name <project name>.vba, located in the same directory with the
Rational Rhapsody project file (<project>.rpy). If present, this binary file is loaded with the
Rational Rhapsody project and saved when you press the Save button in Rational Rhapsody or
the VBA IDE.

vertex

A source or a target for a transition in a state machine. A vertex can be either a state or a
pseudo-state. See pseudo-state and state.

view

A projection of a model seen from a given perspective or vantage point that omits entities that
are not relevant to this perspective. This could be a picture of existing model information
consisting of a diagram or statechart.

Different views display different sets of information. A class comprises the sum of its
appearances in all views. The browser shows a complete view of a class, as does the generated
code.

view element

A textual or graphical projection of a collection of model elements.

view projection

A projection of model elements onto view elements. A view projection provides a location and
a style for each view element.
Rational Rhapsody 1529

Rational Rhapsody glossary
virtual base class

An indirect descendant inherits only one set of members from a virtual base class through
multiple, intermediate inheritances.

virtual instance

An instance group named like a single instance, but actually containing several instances.

visibility

An enumeration whose value (public (+), protected (#), or private (-)) denotes how the model
element it refers to can be seen outside its enclosing namespace.

Visual Basic for Applications

Visual Basic for Applications (VBA) is an OEM version of Microsoft Visual Basic integrated
as an automation engine into the Microsoft Office family and ultimately wanted for all
Microsoft tools.

white-box analysis

This analysis decomposes the system’s functions into subsystem components or the internal
“logical subsystems.” It describes how they relate to each other and to the outside world. A
white-box analysis use case is different from a black-box analysis use case in that the black-
box is used only to show the interactions with the outside world. The white box shows
interactions both internal and external.

wizard

A small program or macro designed to perform repetitive or simple tasks automatically. See
the Rational Rhapsody installation instructions and see Systems engineering with Rational
Rhapsody for examples of Rational Rhapsody wizards.

workspace

A project in Rational Rhapsody that contains a subset of the project artifacts on which a single
user works.
1530 User Guide

Index
Symbols
"And" line 758
#define 999
#endif directive 949
#if...#ifdef...#else...#endif 1000
#ifdef directive 949
#include structure 1489
#pragma directive 949
$archive keyword 163
$archiveddirectory keyword 163
$Arguments keyword 163
$attribute keyword 164
$base keyword 164
$CheckOut keyword 164
$class keyword 164
$ClassClean keyword 164
$cname keyword 164
$coclass keyword 164
$CodeGeneratedDate keyword 164
$component keyword 164
$ComponentName 164
$ConfigurationName keyword 164
$datamem keyword 164
$DeclarationModifier keyword 164
$Description keyword 164
$executable keyword 164
$FILENAME keyword 165
$FullCodeGeneratedFileName keyword 165
$FULLFILENAME keyword 165
$FullModelElementName keyword 165
$FullName keyword 165
$id keyword 165
$IDInterface keyword 165
$ImplName keyword 967
$index keyword 165
$item keyword 166
$iterator keyword 166
$keyname keyword 166
$label keyword 166
$log keyword 166
$Login keyword 166
$LogPart keyword 166
$makefile keyword 166
$maketarget keyword 166
$member keyword 166
$mePtr keyword 166

$mode keyword 166
$ModePart keyword 167
$Name keyword 167
$OMAdditionalObjs keyword 167
$OMAllDependencyRule 167
$OMBuildSet keyword 167
$OMCleanOBJS keyword 167
$OMConfigurationCPPCompileSwitches keyword 167
$OMConfigurationLinkSwitches keyword 167
$OMContextDependencies keyword 167
$OMContextMacros keyword 168
$OMCPPCompileCommandSet keyword 168
$OMCPPCompileDebug keyword 168
$OMCPPCompileRelease keyword 168
$OMDEFExtension macro 169
$OMDllExtension macro 169
$OMExeExt keyword 169
$OMFileCPPCompileSwitches keyword 169
$OMFileDependencies keyword 169
$OMFileImpPath keyword 169
$OMFileObjPath keyword 170, 171
$OMFileSpecPath keyword 170
$OMImpIncludeInElements keyword 170
$OMImplExt keyword 170
$OMInstrumentation keyword 170
$OMLibExt keyword 170
$OMLibs keyword 170
$OMLinkCommandSet keyword 171
$OMLinkDebug keyword 171
$OMMakefileName keyword 171
$OMModelLibs keyword 171
$OMObjectsDir keyword 171
$OMObjExt keyword 171
$OMObjs keyword 171
$OMROOT keyword 167
$OMSourceFileList keyword 172
$OMSpecExt keyword 172
$OMSpecIncludeInElements keyword 172
$OMTargetMain object 172
$OMTargetName keyword 172
$OMTargetType keyword 172
$OMTimeModel keyword 172
$opname keyword 172
$opRetType keyword 172
$package keyword 172
$PackageLib keyword 172
Rational Rhapsody 1531

Index
$ProgID keyword 172
$projectname keyword 172
$Property keyword 172
$RegTlb keyword 173
$RhapsodyVersion keyword 173
$rhpdirectory keyword 173
$Signature keyword 173
$Target keyword 173
$target keyword 173
$targetDir keyword 173
$ThreadModel keyword 173
$tlbPath keyword 173
$Type keyword 174
$type keyword 174
$TypeName keyword 174
$unit keyword 174
$VersionIndepProgID keyword 174
$VtblName keyword 174
%s character 108
.clb files 264
.cls files 264
.cmp files 264
.csv files 236
.ctd files 264
.dpd files 264
.ehl file 265
.hep files 476
.msc files 264
.omd files 264
.rpw file 265
.rpy file 264
.sbs files 264
.sdo file 711
.ucd files 264
.vba file 265
_auto.rpy file 264
_bak1.rpy file 264
_bak2.rpy file 264
_DEBUG, compiling with 949

Numerics
64-bit targets 916

A
Accelerator keys 1453, 1455, 1457, 1458

Ctrl-R for relations 213
Accelerators

application 1455
for code editing 1458
in diagrams 1457

AcceptChanges property 1054, 1057, 1061, 1212, 1214
Access privileges 255
Accessor implementation file 939
Accessors 67, 69
Acquisition viewpoint (MODAF) 1346

Action blocks 628, 660
creating 628, 660
creating subactivities from 629

Action field 737, 1279
Action flows

completion 663
default for flow chart 664
join for flow charts 665
loop for flow chart 664

Action language 1277, 1279
arithmetic operations 1279
assignments 1279
basic syntax 1277
C code generation 974
checking 1280
example 1279
reserved words 1278

Action on entry field 729
Action on exit field 729
Action pins 648, 650

adding to diagram 648
displayed in search 650
graphical characteristics 649
modifying features 649

Action states 1260
defining 1279

Actions 621, 622, 623, 625, 656, 658, 659
block 621, 628, 656, 660
blocks 623, 1265
creating 625, 659
display options 626, 660
drawing 622, 658
expression 749
flow charts 658
showing attributes 626, 660

Active
class 770
component 860
configuration 861
project 11, 244, 245
state configuration 761
thread 1100

Active Code View 33
Active code view 33

code generation 915
edit code in 610
line numbers 922
show/hide 39
window 17, 33

ActiveStackSize property 1100
ActiveThreadName property 1100
ActiveThreadPriority property 1100
Activities 1226

initial flow 1261
Activity diagrams 4, 5, 157, 621, 1257

accept event action 623
accept time event 623
1532 User Guide

Index
action block 628
action blocks 623
action pins 623, 1259
action states 1260
action types 1257
actions 622, 623
activity flow 624
activity flows 634
advanced features 622
algorithm 621
browser icon 301
call behavior 623
call behaviors 634, 646
call operation 623, 1259
code for operations 652
code generation 652
code generation limitations 654
code generation scope 653
code generation values returned 653
connectors 636
create new 577
creating 44, 623
creating in SysML 1258
creating new 409
decision node 624
decision nodes 637
decision points 621
defining an action 1279
dependency 624, 1259
diagram connectors 624
drawing tools 623
final activities 631
flow of control 1257
fork node 624, 1259
generating sequence diagram from 1263
initial flow 624, 635
IntelliVisor information 466
join node 624, 1263
limitations 654
link wizard 1240
main behavior 621
merge node 624
mode 651, 732
modifying called behaviors 647
object node 632
object nodes 624
properties for SysML 1258
Send Action 756
send activity 624
send activity state 1260
setting activity parameters 623, 1259
setting initial flow 1261
similarity to flow charts 656
states 622
subactivities 624
subactivity 630, 1261
swimlanes 624, 1260, 1262

synchronization bars 638
SysML behavior interconnections 1257
system engineering options 1234
systems engineering drawing icons 1259
transition labels 623, 636
transitions 634, 1261

Activity Final 623, 662
Activity flows 634, 663

creating flow chart 663
Activity frames 626
Activity parameters 648, 650

graphical characteristics 649
modifying 649

Activity view 1232, 1234
consistency checks 1235
copy 1234

ActivityReferenceToAttributes property 653
Actors 524, 577, 841, 1252

attributes 525
browser icon 299
collaboration diagram 841
concurrency 524
creating in OMD 577
creating UCD 524
drag and drop 331
drawing 524
elements 321
external interfaces 1264
generate code for 863
generating code for 863, 926
generating code for UCDs 526
limitations on characteristics 927
line creating 695
owner 525
use cases 524, 1254

Actual Call window 534, 833
Ada language 2

code generation profile 207
code generator symbols 1052
composite types 106
conditions 110
roundtripping 86
SPARK profile 208
static models 113
variant record keys 110

Add New menu 501, 504, 505
bottom (groups/categories) portion 502
common list portion 501
middle portion 501

Add On products
Rational Gateway 1242
Rational Rhapsody Gateway 1242, 1243
System Architect 1293

Add To common list option 182
Adding

properties to the common view 182
Additional keywords (reverse engineering) 1001
Rational Rhapsody 1533

Index
Additional Sources
configuration option 864
field 851

AdditionalBaseClasses 965
AdditionalHelpersFiles property 512
AdditionalKeywords property 1001
AdditionalNumberOfInstances property 960
AddNewMenuStructure property 501, 503, 504, 505
Address spaces, sending events across 752
Advanced button 866
Aggregates property 1376
Aggregation 559, 560
Aggregation Kind field 557
Algorithms 962

activity diagram 621
flow chart 655
sequence comparison 707

All Include Files option 1004
All view properties filter 180
All Views view (DoDAF) 1313
All Views viewpoint (MODAF) 1345
Allocations

block definition diagram 1267, 1273
in SysML 1226

AlternativeDrawingTool property 495
Analysis 7

black-box 7, 715, 1265
field 410
mode 672
object 8
recursive mode 1004
requirements 7
trade in Harmony 1237
white-box 9, 715

AnalyzeGlobalFunctions property 1017
AnalyzeGlobalTypes property 1017
AnalyzeGlobalVariable property 1017
AnalyzeIncludeFiles property 1004
Anchored Elements box 369
Anchors 370, 371
And state, code generation 733
Animated browser 1115
Animated sequence diagrams 1115, 1119
Animated statecharts 1119, 1124
AnimateSDLBlockBehavior property 293
Animation 146, 198, 1079, 1080

automatic for sequence diagrams 703
automatic scripts 1128
black-box 157, 1130
breakpoints 1102, 1103, 1104
calling operations 692, 867, 1108
command bar 1095
configurations 1083
creating initial instances 1094
debugging applications 148
ending 1092
exception handling 1136

highlighting 1124
hints 1136
in Eclipse 131
injecting events 1095
instance lines on sequence diagrams 1117
instrumentation mode 1084
keyboard shortcuts 1455
lifeline 1135
limitations 1110
local host 1086
locating ports automatically 1088
mainThread 1099
messages 1121
MicroC target monitoring 21
modes 972, 1112
overriding 1137
panel diagrams 791, 794
partial 1089, 1090, 1110
port number 196
preparing for 147, 1080
properties 1130
remote targets 1087
return values 691
running 147, 1080, 1086
running without Rational Rhapsody 1141
scripts 1126
SDLBlock 293
selective instrumentation 866
sequence diagrams 1116
serialization functions 1138
settings 1137
stand-alone text version 1143
statecharts 1124
suppress animated sequence diagram messages 1123
synchronization with application 1136
testing library 1089
threads 1098
toolbar 40, 1093
ViewCallStack variable 198
ViewEventQueue variable 198
viewing 1113

Animation tab 32
AnimationPortNumber 1088
AnimationPortRange 1088
AnimSerializeOperation property 1138
AnimUnserializeOperation property 1140
Annotations 368, 1052, 1215

creating 366
Java 1215
modeled versus graphical 366
symbols 87
types 365

Anonymous instance 954
API

annotations supported by COM 374
exporting COM interfaces 1425
ports 101
1534 User Guide

Index
sending events across address spaces 753
Applications 148, 299

animating steps 1093
development cycle 1
external 102
helper 477
monitor and control 1143
OSEK21 adaptor 1381

AR macro 174
Architect for Software edition 2, 240

creating a new project 240
primary implementation language 240
samples 240
using NetCentric profile 275

Architect for System Engineers edition 239
creating a new project 239

Architect for Systems Engineers edition 2
command line switch 1445
no development language used 239
project profiles 239
using NetCentric profile 275

Architectural design
UML 8

Architectural Design Wizard 1238
Architecture

AUTOSAR 1377
block definition diagrams 1265
high-level diagram 1265
multi-threaded 1
service oriented (SOA) 272
static 959

Archive 149, 221
ARFLAGS macro 174
Arguments 76

comparing 713
creating 76
displaying 682
field 684
roundtripping 1054
variable length list 935

Arrange toolbar 448
Arrows

creating 693
dependency 573
destroying 693
drawing 419
naming 421

Artifacts 1322, 1355
Asian languages 327
Associate

image file with element 336
stereotype with element 385

Association classes 1424
Association Ends field 554
Associations 527, 563

aggregation 560
bi-directional 552

block definition diagram 1266
block definition diagrams 1266
changing underlying 844
Complete Relations 569
composite 561
composition 561
consist of 554
container 563
creating 552
directed 558, 559
display options 563
displaying in the browser 562
features 527
icon in browser 300
implementing 563
in collaboration diagram 841
modifying features 553
navigability 557
qualified in OMDs 557
roundtripping 1054
selecting in OMDs 564
UCD 527

Asynchronous events 681
ATG 265
Attribute types 69
Attributes 67, 68, 69

accessor 939
action 626, 660
actor 525
adding to OMD 530
classes 67
display options 89
editing 333
initializing 78
listed in table views 224
mutator 939
private 67
protected 67
protected icon 67
reversed 94
roundtripping 1054
static 71, 934
use case 521
value 537

Auto Enlarge 434
AutoCopied property 378
Auto-creating instance lines on sequence diagrams 1117
Auto-indent text 398
AutoLaunchAnimation property 703
Automatic

animation of sequence diagrams 703
ANSI-compliant code generation 1
code generation 15, 914
diagram population 43
instance lines on sequence diagrams 1117
refresh rate 1194
requirement sequences comparison 9
Rational Rhapsody 1535

Index
save 206, 218
Automatically show this window check box 616
Automotive development 1377

AUTOSAR profiles 207, 1377
C profile 207
OSEK21 adaptor 1380

AutomotiveC profile 207, 1377, 1380
code generation 1303
stereotypes 1382

AutoReferences property 379
AUTOSAR 2, 1377

C language only 207
import/export 1379
profiles 207

Autosave 218
directory 264
file 264

AutoSaveInterval property 218
AvailableMetaclasses property 490

B
Back button 39
Backup 220

BackUps property 220
directory 264
file 264
loading 221
project 220

Backward compatibility 927, 976
code generation in C 976
for pre-3.0 Rational Rhapsody models 930
issues 1044
profiles 377

Bar layout
Bar variable 199
BrowserFloating variable 199
BrowserVisible variable 199
FeaturesFloating variable 199
FeaturesVisible variable 199
ScreenCX variable 199
ScreenCY variable 199

BaseNumberOfInstances property 960
Batch mode 1047
Behavioral port 103
Behaviors

activity diagrams 621
attribute 94
classes 85
dynamic views 5
ports 80
time-based 1

Bidirectional option 1049
Binding 808

connectors 1266, 1273
embedded objects 1190
layout and view 234

SysML value 1226
Bitmaps 364

associating with stereotypes 387
transparent background 388

Black-box
analysis 7, 1265
animation 1130
testing 1134

Black-box animation 157
Block definition diagrams 1265, 1268

aggregations 1266
allocation 1267
association 1266
binding connector 1266
block 1266
connector 1266
constraint block 1266
constraints 1266
create package 1266
dependency 1266
dimension 1267
directed associations 1266
directed composition 1266
drawing tools 1266
executing actions 1265
flow 1266
flow port 1266
flow specification 1266
graphics in 1268
inheritance 1266
NetCentric 273
part 1266, 1273
perform trade analysis in Harmony 1237
problem satisfaction 1267
rationale 1267
reference properties 1264
standard port 1266
starting point 1225
structural properties 1264
unit 1267
value properties 1264
value type 1267

BlockIsSavedUnit property 258
Blocks 1226, 1264, 1265

action 628
behavior 1265
constraint 1226, 1266, 1272, 1273, 1274
create test bench from 1235
Java initialization 969
properties 1264
Rational Statemate 1385
SDL 208, 292

Bookmark 407
Border, system 676
Boundary box 520, 1252
Bounded relation 961
Box
1536 User Guide

Index
boundary 520
drawing 418
naming 421
selection handles 431

Break 1095
break command 1148
Breakpoints 289, 1101

creating 1102
deleting 1105
deleting tracer 1148
enabling 1104
reasons for 1103

Browse From Here browser 304
BrowserIcon property 493
Browsers 22, 130, 295

active component icon in 299
activity diagram icon in 301
actor icons 299
animated 295
Asian language support 327
association icon in 300
basic icons 299
Browse From Here browser 304
class icons 299
collaboration diagram icon in 301
comments icon 301
component diagram icon in 301
component icons 299
constraint icon in 300
controlled file icon in 300
copy elements in 332
copy multiple elements 22
create objects in 318
create package in 317
creating classes 65
delete multiple elements 22
deleting categories 333
deleting items 306
dependency icon in 300
deployment diagrams icon in 301
display modes 296
display stereotype or model element 335
displayed in Eclipse 130
drag and drop elements in 331
editing code 331
event icon in 300
executables icon 299
file icon 299
filter 21
filtered views 302
filtering by views 34
filtering views 302
flow port icon in 300
folder icon 299
HTML 1428
hyperlinks folder icon 299
initial connector icon 300

keyboard shortcuts 1455
link to editor 144
locate diagram element in 45
menu commands for Harmony 1234
multiple projects in 244
object model diagrams icon in 301
opening 296
opening multiple instances 22
part icon in 299
profile icon in 300
profiles 215
profiles displayed in 375
Rational Rhapsody 295
removing elements 333
requirement icon in 300
requirements diagram icon in 301
sequence diagrams icon in 301
Settings folder 314
state icon in 300
statechart icon in 301
stereotype icon in 300
structure diagram icon in 301
superclass icon 300
tag icon in 300
type icon in 300
unit icon 299
use case diagram icon in 301
use case icon in 300
view overridden properties 302
viewing swimlanes 644

Bubble Knob control 796
Build

diagram 44
failed error 1443
Set field 853
tab 29
target component 916

Button Array control 805
Button Array tool 795

C
C language 2

adding external file 830
animation 1137
automotive development 1377
automotive profile 207
automotiveC profile 1380
AUTOSAR 207
backward compatibility 976
code generation customization 977
code generator symbols 1052
component file type 852
create file model elements icon 530
creating a hierarchy of packages 607
enumeration types property 112
FunctionalC profile 44, 207
Rational Rhapsody 1537

Index
FunctionalC profile diagrams 14
interfaces 974
interrupt-driven framework 217
MicroC profile 21, 208
optimization for ports 975
OXF 217
packages 205
panel diagrams 792
partial animation 1089
ports 974
preserving comments 1039
projects in Eclipse 127, 280
Rational Statemate blocks 1385
Rational Statemate code generation 1385
RespectProfile 208
reverse engineering 985
reverse engineering legacy code 601
roundtripping 86
Send Action code generation 757
serialization properties 970
simplifying code generation 979
Simulink profile 1433
SimulinkInC profile 208
statechart serialization 970
static models 113
strings in Web-managed devices 1173
target monitoring 21
undefined symbols in reverse engineering 1000
Visual Studio 288

C++ language 2
call stack 1114
calling operation calls during animation 1108
class implementation 78
code generator symbols 1052
CodeCentric profile 207
component file type 852
composite types 106
constant 110
constructs in reverse engineering 1045
dialects in reverse engineering 1002
enumeration types property 112
for action language 1277
functor-based code generation 652
inheritance 970
library for reverse engineering 1023
packages 205
panel diagrams 792
partial animation 1089
preserving comments 1039
projects in Eclipse 127, 280
RespectProfile 208
reverse engineering 985
roundtripping 86
Send Action code generation 757
serialization properties 970
Simulink profile 208, 1433
SPT profile 277

statechart serialization 970
static models 113
template limitation in Web-managed devices 1173
undefined symbols in reverse engineering 1000
variables 319
Visual Studio 288

Call behaviors 634
in activity diagram 646

CALL command 1151
Call Graph diagram 45
CALL macro 692
Call operations 623, 1108, 1259

in animation 867
nodes 622

Call stack variable 198
Call stack view 1114
CALL_INST macro 692
CALL_SER macro 692
Called behaviors

displaying features 647
limitations 647
modification 647

Calls
in activity diagrams 623

Cancel
changes in Features window 49
timeout 694

Categories
deleting 333
mode 296, 1474

Change
applying 48
elements 433
hyperlink 58
line shape 420
order of types 115
property values 177

Change to Package option 378
Change to Profile option 378
Check

for consistency in activity diagrams 1235
for static memory allocation 963

Check Data 1404
Check model 140
Check Model tab 26
Check Model tool 882, 885

list of checks 889
sample check projects 888
user-defined checks 886

Checks 881, 886
activity view 1235
swimlane consistency 1234

Checks tab 882
Class

$class keyword 164
Class Type field

actor 525
1538 User Guide

Index
ClassCentricMode property 672
ClassCodeEditor 924
Classes 65, 531, 545, 680, 1235

active without statecharts 770
aggregated associations 560
as containers 326
attributes 67, 68
base for rapid ports 98
behavior 85
bi-directional association 552
browser 320
browser icons 299
code structure 932
collaboration diagram for multiple objects 840
composite 530, 546, 830
composite associations 561
constructor arguments 76
constructors 76, 77
converting to objects 535
create test bench from 1235
creating 65, 545
creating in OMD 545
default name 65
defining features 65
deleting 90
dependencies between 572
derivation 84
destructors 79
directed association 558
display name 88
display options 87
drag and drop 331
editing code 86
editing multiple 333
files 264
functor 652
Generic Class 122
header file 932
importing as a type 1023
in collaboration diagram 840
inheriting from external 549
instances 1125
mapping to types and packages 1008
modeling for reverse engineering 1023
naming guidelines 251
nested 67, 126
nested roundtripping 1054
object node association 633
opening the main diagram 87
operations 71
ports 80
primitive operations 72
properties 83
reactive 773
reactive and refining the hierarchy 778
receptions 73
reference 1018

regular 66
relations 80
relations, show all 82
removing 90
roundtripping 1050, 1054
roundtripping supported modifications 1053
solutions 1237
structured 457
superclass 300, 341, 545, 548
swimlane association 642
tags 83
Template Class 122
template instantiation 66
templates 66, 122
triggered operations 75

Classifier role 840
Classifier role names 679
Classifier roles 677
ClassIsSavedUnit property 258
CLASSPATH 997
Cleaning

delete redundant code files 926
delete sequence diagram messages property 672
old objects 917
redundant source files 926

CleanupRealized property 672
Clipboard, consistency check results to 1235
coclass

keyword 164
Code 6

active view 922
associated with element 144
clean 917, 921
compilation errors 920
displaying 33
DMCA 143
documentation system 944
documentation systems 944
editing 921
editing from a diagram 143
editing from browser 331
editing in Eclipse 143
editing with an external editor 925
editor, Eclipse 143
editor, internal 395
elaborative generation 910
exporting to Eclipse 135
external 994
for actors 526
for classes 86
generate for actors 863
generated 921
generating 141, 142
generating for files 593
generating for relations 611
generation 85
generation for actors 926
Rational Rhapsody 1539

Index
generation of individual elements 919
generation results 920
inlining 786
keyboard shortcuts 1455
legacy 9, 994
line numbers 922
renaming in user 219
return from command-line 1443
reverse engineering in Eclipse 136
roundtripping 1048
roundtripping class code 86
source import 136
structure of generated 932
toolbar 37
translative generation 910
viewing 921
wrapping with #ifdef #endif 949
writer 980

Code centric 206
Code check box 346
Code editor, Eclipse 143
Code editor, external 395, 925
Code generation 15, 141, 142, 909

activity diagrams 652
ANSI-compliant 1
automatic 914
automotiveC 1303
backward compatibility 976
change order of operations/functions 942
component diagrams 928
customizing C 977
customizing using properties 977
customizing using rules 977
dynamic model -code associativity 914
ExternalGenerator variable in .ini file 198
flow charts 666
for links 570
for Send Action 756, 757
for templates 126
forcing complete 913
guidelines 914
incremental 912
JavaAnnotations 1220
limitations 976
macros 1043
ModelCodeAssociativityMode variable 198
option 1049
options 142
restrictions in activity diagrams 654
restrictions in flow charts 666
simplified models 979
stereotype-based 968
stop 915
transformation phase 977
writing phase 977

Code respect 1063
activating 1064

reverse engineering 909, 1037, 1044
roundtripping 909, 925, 1047, 1058, 1063
SourceArtifact 1065
where code respect information is defined 1065

Code writer 980, 981
Co-debugging 290
CodeCentric

profile 207
Code-centric mode 1069
CodeGeneratorTool property 979, 1039
CodeTEST 865
Collaboration diagrams 4, 5, 837

actors in 841
browser icon 301
changing underlying association 844
classifier role 840
creating 44, 410
creating links in 842
creating messages in 845
define for core cases 9
editor 13
files 264
IntelliVisor information 464
link 841
message numbering 837
messages 844
multiple objects 840
specifying behavior 7
tools 839

CollectMode property 1042
Color 395

coding in editor 395
default settings 396
in sequence diagram comparisons 709
set diagram fill 417

Command line 1441, 1442, 1444, 1446
Command Prompt tool 1095
Command-line interface 1439

commands 1441, 1446
exiting 1442
interactive mode 1440
interactive switch 1440
methods of operation 1439
order of commands 1442
path names 1441
quotation marks in commands 1441
return codes 1443
scripts using commands 1442
socket mode 1440
switches 1441, 1444
syntax 1441

Commands 1441, 1446
examples for running Rational Rhapsody 1443
order of 1442
tracer 1145, 1148

Comment specification search option 346
Comments 365, 1039
1540 User Guide

Index
added to components 859
adding to properties files 189
anchoring 370
browser icon 301
floating 1039
in tracer commands 1145
limitations 1040
preserving (reverse engineering and

roundtripping) 1039
reverse engineering 1039
specification 346

Common drawing tools 41
Common view

changing 182
CommonList property 505
Communicate with ports 102
Compare

features 51
Names and Values option 714
Names Only option 714
sequence diagram excluding a message 713
sequence diagram instance groups 715
sequence diagram’s algorithm 707
sequence diagrams 711

Compartments 530
display stereotype for elements in list 454
show label 88

Compatibility
automatic settings 377
profiles for backward 377

Compiler
messages 916
specific keywords 938

Compiler Switches field 853
Compilers 31

adding keywords 949
MATLAB MEX 1436

Complete Relations
associations 569

Complete Relations option 461
Complex parameters

overriding 1137
ComplexityForInlining property 787
Component diagrams 4, 5, 848

browser icon 301
code generation 928
components 850
creating 44, 410
dependency 857
drawing tools 849
editor 14
elements 850
files 852
files extension 264
folder 855
IntelliVisor information 464

Component instances

deployment diagrams 875
modify features 877

Component interface 857
creating 857

Component Type field
component instance 877

Component View 1409
ComponentIsSavedUnit property 258
Components 205, 315, 850

$ComponentName keyword 164
active 299, 860
adding file to 852
browser icons 299
building 916
comments added to 859
configuration 315
controlled files added to 859
creating 850
creating interface 857
deleting composite 955
directory 265
file 264
files 315
icon 850
importing from Simulink 1432
interface 847
options 859
view 302

Components (subsystems) 1081, 1286
creating 1081, 1286
creating configuration 1083
features 1287
setting features 1082

Components-based development in C 973
Composite association 561
Composite class 457, 530, 546, 830
composite stereotype 1249
Composite type 106

properties 111
Composition association 561
Composition option 557
Compound transition 738
Concurrency field

actor 524
block 534, 832

Concurrent Versions System (CVS) 132
Condition mark 693
Configuration 1083, 1174

$ConfigurationName keyword 164
time model setting 172

Configuration for Simulink 1436
Configuration management 355

not for project list files 250
Configuration management (CM) 149

DiffMerge tool 153
performing operations in Eclipse 152
preferences 152
Rational Rhapsody 1541

Index
Rational Rhapsody and Eclipse 150
Configuration Management tab 32
Configurations 147, 315, 860, 1287

active 136, 861
active Eclipse 141
active state 761
automotiveC stereotypes 1382
checks 865
clean 921
component 859
convert to Eclipse 281
creating animation 1083
default 1287
Eclipse 280
features 862
generate main option 861
generating 861
initialization search option 346
menu 861
partial animation 1090
regenerating 913
scope 863
Seat as Active option 861
settings 864
Web components property 1174
Web-enable 1288

Conflict transition 768
Conform 1226, 1228
Connect

objects using ports 102
ports 97
to filtered views 1177
to model from the Web 1176
to model from the Web, troubleshooting 1177

Connectors
activity diagram 636, 638
binding 1266, 1273
block definition diagram 1266
condition 637, 665
default 750
diagram 624
flow charts 664
history 727
initial in statecharts 750
junction for statecharts 727
statechart 728
termination 727

Consists of field 554
Constant modifier 70
ConstantVariableAsDefine property 999
Constraint specification search option 346
Constraints 320, 365, 1228

anchoring 370
binding 1276
block 1266, 1273
block definition diagram 1266
blocks 1272, 1274

browser icon 300
editing text 366
finding references 370
parameters 1273, 1276
properties 1274, 1275
property 1273
specification supports Asian languages 346
SysML 1226

Constructor Arguments window 76
Constructors 76

Features window 77
implementation file 939
roundtripping 1054

Constructs added to Model option 1035
Constructs Analyzed option 1035
Container 563
Containment by value 962
Content window 23
Contract tab 94
Contracts 80

specifying 94
Control

model from the Web 1183
point 434

Control Properties window 809
Controlled files 349

browse to 351
configuration management 355
creating 350
features 352
limitations 357, 359
tags 354
troubleshooting 356

Convert
class to object 535
external elements 608
file 592
note to comment 370
object types 535
package to profile 378
profile to package 378

Conveyed information 582
Copy

actor menu option 577
Copy with Model 447
Copying 246

between Features windows 51
element in browser 332
elements 445
elements to other projects 247
format from one element to another 440
instance line menu option 433

CORBA 10
check 889
inheritance 613
limitation 115

CP macro 174
1542 User Guide

Index
CPP_EXT macro 174
CPPCompileCommand property 917
CPU 873, 874
Create Reference Sequence Diagram option 699
CreateDependencies property 1004
CreateReferenceClasses property 1017
Custom help file 379
CustomHelpMapFile property 381, 382
CustomHelpURL property 380, 382
CustomizableTableAndMatrixLayoutsPkg 1362
CustomizableTableAndMatrixViewsPkg 1366
CustomizedStereotypesPkg 1363
Customizing

Add New menu 501, 504
C code generation 977
C rules with RulesComposer 981
code generation rules with RulesComposer 981
keyboard mappings 400
linking to helper applications 477
navigation to your Web GUI 1182
new diagrams 493
profile 486
Rational Rhapsody Web server 1193
Tools > Diagrams menu 503
Web interface 1184
with properties 155

Cut option
actor menu 577
instance line menu 433

CVS 132

D
Data

checking 1277
export to Excel 236
flow 674
manage from table or matrix 236
query in table 226
vendor-neutral sharing 1429

Dataflows 696, 1123
DataTypes property 1023
Debugger 290
Debugging 146, 1080

animated applications 148
perspective 146

Decision node 727
Decision nodes 637, 665
Decision points 621, 656
DeclarationModifier keyword 164
Decomposed field

instance line 678
Decomposition 700

limitations 700
Default flows

flow chart 664
DefaultDirectoryScheme property 258

DefaultProvidedInterfaceName property 98
DefaultReactivePortBase property 98
DefaultReactivePortIncludeFile property 98
DefaultRequiredInterfaceName 98
Define View page 1180
Defined In field 369

actor 525
Defined symbol 998
DEGREES_PER_RADIAN variable 319
Deleting

after search 212
anchors 371
anonymous instances 955
breakpoint 1105
breakpoint tracer 1148
categories 333
classes 90
composite components 955
elements from file 854
elements from model 451
from model 306
hyperlinks 59
instance groups 717
message groups 724
old objects 917
redundant code files 926
redundant source files 926
reference classes 1018
remarks 373
sequence diagrams 706
stereotypes 388
swimlane dividers 644
swimlane frames 645
tags 393
using the Edit menu 333

Dependencies 320, 528, 572, 573
across packages 316
activity diagrams 624, 1259
adding stereotype 1256
arrow 573
between remarks 367
block definition diagrams 1266
browser icon 300
component diagrams 847, 857
creating 573
deployment diagrams 878
friend 976, 1058
from Includes option 1012
in UCD elements 528
Link wizard 1240
modifying features of 575
new 859
parametric diagrams 1273
relationships 1248
requirement diagrams 1247
statecharts 728
structure diagram 835
Rational Rhapsody 1543

Index
system engineering 1264
system engineering requirements 1248

Dependencies Linker (MODAF) 1372
Dependency

on library component 171
Depends On field 575
Deployment diagrams 4, 871

assigning a package 880
component instances 875
creating 410
dependencies 878
drawing tools 872
editor 14
elements 873
files 264
icon in browser 301
IntelliVisor information 465
node owner 874
nodes 873
UML 5

Derivation 84
Derivation in requirement diagrams 1247
derive stereotype 1249
Derived scope 863
Descendants

include in views 226, 230
Description tab 56
Descriptions

adding hyperlinks in 55
mass edit 333
search option 346

DescriptionTemplate 945
DescriptionTemplate property 1209, 1211
Design

architectural 8
basic requirements 7
details of 9
mechanistic 9
mode 672
option 410
requirements for SysML 1249
SysML requirements in use cases 1255

Designer for System Engineers edition
command line switch 1445
project profiles 237

Designer for Systems Engineers edition 2, 237
samples 238
structure diagrams 238

Destination of transition 735
Destructors 79

implementation file 939
roundtripping 1054

Developer edition 2, 3, 237
using NetCentric profile 275

Development
analysis phase 7
design phase 8

environments 127
implementation phase 9
methodology 7
parallel 149
phases of 7
testing phase 9

Devices
managing remotely 1171
setting name in Web pages 1193
Web-enabled 1171, 1177, 1178
Web-enabled, adding files to model 1184
Web-enabled, connecting to from the Web 1176
Web-enabled, controlling 1183
Web-enabled, customizing the GUI 1184
Web-enabled, Define View page 1180
Web-enabled, name/value pairs 1183
Web-enabled, Personalized Navigation page 1181
Web-enabled, setting as 1172
Web-enabled, using properties 1175
Web-enabled, viewing 1183

Diagram connectors 638
Diagram editor

grid 428
properties for 417

DiagramIsSavedUnit property 254, 258
Diagrams 6, 409

accelerators 1457
active resizing 456
activity 4, 5, 44, 621, 1257
adding 134, 322
adding elements 322
adding new customized 493
adding remarks to 365
automatically populating 412
AUTOSAR 1378
block definition 273, 1225, 1265
Build 44
Call Graph 45
close all 220
collaboration 4, 5, 44, 837
comparing 55
component 4, 5, 44, 847
connector 728
creating 43, 409
deployment 4, 5, 871
drawing area 130
editing 6
editing code from 143
exporting as images 364
external block 1264, 1265
File 45
flow chart 4, 45, 655, 658
for FunctionalC profile 44
fully constructive 6
high-level architecture 1265
in reports 153
internal block 1235, 1264, 1269
1544 User Guide

Index
locate element in browser 45
locating element in IDE 279
locating elements 323
Message 45
naming 43
navigator 459
object model 4, 5, 44, 529
OpenDiagramsWithLastPlacement property 263
opening 411
output to UNISYS extensions format 1426, 1428
OV-1 High Level Operational Graphic 1325
OV-2 Operational Node Connectivity 1325
OV-4 Organizational Relationships 1325
OV-5 Operational Activity 1325
OV-6a Operational Rules Model 1325
OV-6c Operational Event-Trace Description 1325
OV-6c Operational State Transition Description 1325
panel 44, 791
parametric 1272, 1275
partially constructive 6
populate 1245
printing 360
Project Overview 1325
requirements 1245
SA DoDAF import 1293
saving 256
scaling 457
sequence 4, 5, 44, 669, 1263
set fill color 417
standard toolbar 41, 455
statecharts 4, 5, 44, 725, 726, 1286
structure 4, 5, 44, 238, 239, 829
SV-10b System State Transition Description 1326
SV-10c System Event-Trace Description 1326
SV-11 Physical Schema 1326
SV-2 System Communication Description 1326
SV-4 System Functionality Description 1326
SV-8 System Evolution Description 1326
SysML from SA data 1296
systems engineering 1223
test context 1235
UML 4, 205
use case 4, 5, 44, 517, 1242, 1251
view 302

DiagramsToolbar property 494, 496
Dialect 1002
DiffMerge tool 149, 153, 266

annotations 374
hyperlinks 55
no project list support 250
supports action pins 650
supports activity parameters 650
templates 122
version conflicts 1302

Digital Display control 801
Digital Display tool 795
Directed association 558, 559

creating 558
Directed composition 1266
Direction field

flow 581
Directories

autosave 264
backup 264
component 265
containing reference classes 1019
DefaultDirectoryScheme property 258
flat structure 258
hierarchical structure 259
project 264
root for RE 1014
saving units in separate 258
structure in RE 1014

Directory
$rhpdirectory keyword 173
$targetDir keyword 173
field 851, 864
structure 258

Dismiss
IntelliVisor 462

Display
associations 562
browser modes 296
code 33
messages-to-self 1130
port interfaces 95
stereotype in compartment lists 454
stereotype of element in browser 335

Display options
actor menu 577
annotations 372
attributes 89
class name 88
default options 445
Enable Image View 1268
equations 1276
file 588
flow menu 583
general selections 88
operations 89

DisplayMessagesToSelf 1130
DisplayMode property 296
Distributed team 149
Dividers, swimlane 643
DLL_CMD macro 174
DLL_FLAGS macro 174
DMCA 143, 1049

mode 1049
roundtripping 87

Docking the Features window 50
Documentation note, converting to comment 370
Documentation system

sample 944
DoDAF 2, 1311, 1322
Rational Rhapsody 1545

Index
All Views 1313
architectural model 1331
artifacts 1322
compared to MODAF 1341
creating a project 1322
helpers 1335
importing SA diagrams 1293
limitations 1333
Operational view 1312
OV-1 High Level Operational Graphic 1325
OV-2 Operational Node Connectivity 1325
OV-3 matrix 1329
OV-4 Organizational Relationships 1325
OV-5 Operational Activity 1325
OV-6a Operational Rules Model 1325
OV-6c Operational Event-Trace Description 1325
OV-6c Operational State Transition Description 1325
OV-7 Logical Data Model 1325
profile 207, 1311
Project Overview 1325
reports 1321, 1331
SA encyclopedia 1295
setup packages 1320
SV-1 System Interface Description 1325
SV-10a Systems Rules Model 1326
SV-10b System State Transition Description 1326
SV-10c System Event-Trace Description 1326
SV-11 Physical Schema 1326
SV-2 System Communication Description 1326
SV-4 System Functionality Description 1326
SV-8 System Evolution Description 1326
System Architect (SA) diagrams 1293
Systems view 1313
tags 1327
Technical view 1313
troubleshooting 1334, 1337
utilities 1318
verifying installation 1334
views 1312

Domain checks 883
Domain Specific Language 1322
Domain Specific Language (DSL) 2, 1322, 1355
DOS 1141
doStep() function 1433
Doxygen

template-based comments 945
using 944

Drag and drop in browser 331
Drawing

arrows 419
boxes 418
elements 417
mode 417
state 728

Drawing area 23
displayed in Eclipse 130

Drawing tools 17

DrawingShape property 495
DrawingToolbar property 493, 496
DrawingToolIcon property 493, 494
DrawingToolTip property 494
DSL 1322, 1355
dxlapi.dll 1392
Dynamic behavior views 5
Dynamic model-code associativity 914, 1049

code generation 914
roundtripping 87

Dynamic Model-Code Associativity (DMCA) 143
Dynamic Object Oriented Requirements System (Ratio-

nal DOORS) 1391

E
Eclipse 127, 129, 280

animation 146
as IDE 279
build project 145
code editor 143
configurations 141
confirming Rational Rhapsody Platform

Integration 128
content management operations with Rational

Rhapsody 150
create IDE project 141
debug project 146
Developer edition 2
disassociating project from Rational Rhapsody 287
DMCA 143
Dynamic Model-Code Associativity (DMCA) 143
edit Rational Rhapsody project with 286
export Rational Rhapsody code 135
importing projects into Rational Rhapsody 281
importing Rational Rhapsody units 136
locating Rational Rhapsody code in 286
Model browser 150
open existing configuration 286
performing CM operations 152
perspectives 129, 141
Platform Integration 127
projects 133
properties 285
Rational Rhapsody Platform Integration 127
reports 153
repository 128
reverse engineering 136
reverse engineering source code 136
Rhapsody Debug perspective 130
Rhapsody Log 142
Rhapsody Modeling perspective 129
Rhapsody perspectives in 129
Select with Descendents in Unit View 150
sharing a Rational Rhapsody model 151
source code import 136
Unit View 150
1546 User Guide

Index
viewing code 144
work area 133
Workflow Integration 127

Edit Code option 577
Edit Configuration Main File option 861
Edit Makefile option 861
Edit menu

Complete Relations option 461
Format option 436
selecting elements 430

Edit Type Order option 116
Editable list 68
Editing

code 921
constraint text 366
diagrams 6
elements 433
features 216
hyperlink 58
implementation code 616
multiple elements 333
Rational Rhapsody project 215
remark text 368
text 452
undo/redo 216
using mouse 405

EditorCommandLine property 855, 925
Editors

accelerators 1458
associating files with 924
collaboration diagram 13
component diagram 14
deployment diagram 14
drag and drop to 331
Eclipse 143
graphic 327
object model diagrams 13
opening 86
Rational Rhapsody internal 395
Rational Rhapsody internal code editor 395
selecting 855
sequence diagram 13
set scope 921
show in browser feature 144
statechart 13
use case diagram 13
XML for SA map 1293

Eelements
constraint 1228

Elaborative code generation 910
Element types 489
Elements 205, 215, 313

adding 134, 215, 313
adding hyperlinks 55
adding points to 420
adding to file 853
arranging 448

associated with code 144
associating with image file 336
associating with stereotype 385
based on new term stereotypes 386
cell types in matrix views 228
changed to units 254
changing common operations 433
changing in Features window 48
changing the format 436
classes 320
code for external 610
code generation 919
comment 1228
component diagram 850
conform 1228
constraints 320
copy in the browser 332
copying 247, 445
create for customized diagram 494
defining tag for 391
deleting from model 451
deleting using the Edit menu 333
dependencies 320
dependency 1228
deployment diagram 873
diagram editing 433
diagrams 322
display stereotype in browser 335
drawing 417
editing in component diagram 854
editing multiple 333
events 320
exposing on the Web 1174
external 599, 608, 994
external and creating by modeling 605
external and generating code 611
external source path 609
files 321, 587
finding usage 342
functions 318
generating code for relations 611
graphical 336
identification 326
in profiles 207
labels 327
locate from code 923
locating in the browser from the code editor 144
locating on diagram 323
making a unit 255
mapped to the folder field 856
matrix view of 230
moving in browser 331
moving in graphic editors 435
new in block diagrams 1228
NewTerm stereotype 53
nodes 321
non-rectangular 431
Rational Rhapsody 1547

Index
objects 318
operations on a group 22
package 205
package types 316
paths 326
pinned features’ display 50
problem 1228
project 205
rationale 1226, 1228
realization 1228
realizing 617
receptions 73
receptions, browser icon 320
references 342
refinement 1226, 1228
removing from view 451
removing points from 420
removing with browser 333
renaming 332
renaming new 314
re-ordering in browser 334
resizing 434
saved as units 246
search 348
searching 137, 345
searching for 210
selecting 430
selecting multiple 431
selecting to import (Rational Rose) 1410
selection handles 431
Send Action 756
set display default options 445
set element size as default size 445
set formatting 445
setting as Web-manageable 1172
show in browser from editor 144
special characters in names 251
stereotypes for SysML 1226
SysML 1293
table and matrix views 222
types 320
units 253
usage 342
use cases 321
variables 319
viewpoint 1228
viewpoints 1226
views 1226

Elements box 853
ElementsMap.xml 1298, 1299
Else branch 760
Embeddable object 1190
Embedded Coder License (ERT) 1433
EMF image format 364
Enable Docking by Drag option 51
Enable Operation Calls field 867
EnableMultipleAnimation 1088

End1 and End2 tabs 556
EnterExit points 763

Updating 764
EntryPoint property 290
Enumerated type

creating 107
reverse engineering 1038

Enums, Java 120
Environment

field 853
Recent file list 200
variable used by Rational Rhapsody 196
variable using with reference units 260

Environment settings
Rational Rhapsody Affinity 197

Environment Settings group box
configuration 865
files 853

Equations 1276
Error

checking 920
parsing 1031

ERT (Embedded Coder License) 1433
Event Generator 1106
Events 320, 687

accept event action in systems engineering 1259
accept event actions 623
accept time 623
adding operations to 744
allocated to subsystems 1238
browser icon 300
class hierarchy 742
destruction 675
Features window 329
generating in animation 1106
generating, gen method 743
generating, tracer 1153
generating, using friendship 743
History list 1107
history list file 265
in interrupt handlers 961
injecting 1095
internal 743
name in notation 757
naming conventions 252
pooling 960
private 743
queue 743
queue view 1114
receptions 73, 75
roundtripping 1055
semantics 743
Send Action 756
Sending across address spaces 752
statechart 751
triggers 742
usage 742
1548 User Guide

Index
ExcludeFilesMatching property 992
Executable

extension 169
files to include 167
language 1258
running 918

ExecutionModel property 1303
Exiting command-line interface 1442
Explicit

object 531
scope 863

Exporting 1425
diagrams as images 364
files 135
labels 1398
models 1426
projects 1400
Rational Rhapsody model files 1428
to Rational DOORS 1391, 1397
VBA macros 485

ExportPictures property 1398
extend stereotype 1249
Extensions

executables 169
libraries 170
object files 171
of implementation files 170
specification files 172

External
checks 881, 886
class, inheriting from 549
code editor 925
code writer 980
files 590
hyperlink 55

External block diagrams 1264, 1265
External code editor 925
External code writer 980
External elements 599

accessing the code 610
converting 608
creating by modeling 605
creating in pre-V5.2 models 604
generating code 611
limitations 612
relations, generating code 611
viewing the source path 609
visualization 994

External modeling 605

F
Favorites 11, 306
Favorites browser 11, 306

creating list 308
folders 309
hierarchical structure 309

limitations 312
removing items 311
re-ordering items 310
showing/hiding 307
toolbar 40, 307

Features window 48, 130, 156, 177
action in activity diagram 625
action in flow chart 659
applying changes 48
Asian language text 327
attributes 68, 69
buttons 50
cancelling changes 49
changing property values 185
classes 65
comparing elements 51
component instance 877
configuration 862
constructors 77
copying text from 51
define Send Action 756
displaying properties 49, 177
docking 50
edit table and matrix data 222
editing 216
editing multiple elements 333
event 329, 687
file 590
Filter Properties 181
flow 581
Flowitem 584
Functions tab 591
General tab 49, 66, 93
hiding tabs 53
Instrumentation Mode 147
messages for associations 843
objects 534
opening 48
opening multiple instances 51
Operations tab 71
overridden properties 183
package 547
pinned mode 50
port 93
Ports tab 80
property search 178
receptions 75
Relations tab 80
tag 390
toolbar 50
undocking 51
Variables tab 590

Fields, search in 346
File diagrams 45, 1489
File extensions 134
File Type field 852
FileIsSavedUnit property 258
Rational Rhapsody 1549

Index
FileName property 549
Files 587, 852

$FullCodeGeneratedFileName keyword 165
$OMImplExt keyword 170
.hep 476
.rpy 264
.sbs 378
.sdo 711
.wsdl 276
adding 134
adding elements 853
adding text 854
adding to component 852
associating with an editor 924
autosave 264
backup 264
class 264
collaboration diagram 264
component 264
component diagram extension 264
connecting 592
controlled 859
controlled icon in browser 300
converting 592
creating 588, 852
delete redundant code 926
deleting elements 854
deployment diagram 264
display options 588
element 854
events history list 265
examining exported XMI 1428
Excel .csv 236
excluding from reverse engineering 992
export 135
extensions 264
external features 590
Features window 590
filesTable.dat 264
filtering out types 134
folders 855
FS and RES 1189
functions 591
generating code for 593
header 1005
header structure 932
implementation 321, 331, 938, 1054
imported shown in browser 299
in components 315
include for rapid ports 98
include in executable 167
include in reverse engineering 1003
list analyzed for reverse engineering 1007
load log 265
object 171
object file extensions 171
object model diagram 264

ownership 589
package 264
paths 590
project 264
project list 250
PRP including other 191
reverse engineering 1009
reverse engineering log 265
ReverseEngineering.log 197, 265
rhapsody.ini 196, 250, 1088
save log 265
SD comparison options 711
sequence diagram 264
server 1186
specification 321, 331, 1054
specification extensions 172
store.log 265
structure diagram 264
support for add-on tools 595
target for hyperlinks 56
types 853
types of controlled 352
unit 255
use case diagram 264
variables 590
VBA project 265
Windows 352
workspace 265
WSDL 208, 272
WSDLDiagrams

block definition 273
Files property (for reverse engineering) 991
filesTable.dat file 264
Fill color set 417
Filtering properties 180
Filtering tab 1016
Filters

browser views 34, 302
model view 1177

Final activities 631
activity diagram 631
creating 631, 662
flow chart 662

Final states 650
Find element usage 342
Fixed relation 961
FixedPoint profile 207
Fixed-point Variables 117
Flat mode 258, 1490

browser display 296
Flip Right/Left options 640
Floating comments 1039
Flow 578, 579

adding information element to 585
conveyed information 582
creating 579
displaying the keyword 580
1550 User Guide

Index
features 581
menu commands 583
sample 579

Flow charts 4, 655
action block 660
actions 658
activity flows 663
algorithm 655
code generation 666
code generation limitations 666
connectors 664
creating 45, 657, 658
decision points 656
drawing tools 657
final activity 662
limitations 666
Send Action 756
similarity to activity diagrams 656

Flow Ends field 581
Flowitem 583, 584
flowKeyword 580
Flowports 597

and Simulink 1435
atomic 597
attributes 598
block definition diagram 1266
dataflows 696, 1123
names 598
non-atomic 598
Rational Statemate 1388
StatemateBlock 1388

Flows 1264
activity 624, 663
block definition diagram 1266
data 674
embedded 586
in structure diagrams 835
in SysML 1226
initial 624, 1261
initial for activity diagram 635
initial in activity diagram 1261
limitations 586

Focus
thread in animation 1098
thread in tracer 1158

Folders 855
in browser 299

Fonts 395
Kanji characters 327

Footers 938
Force

complete code generation 913
roundtripping 1050

Fork 739
synchronization bar 638, 639

Fork node 1263
Form field 372

Formal modules 1397
Format option 436
Formats

copy from one element to another 440
default formatting 445
exported diagram images 364
reports 1195
toolbar 42, 439

Forward button 39
Frames

activity 626
Frames, swimlane 643
Framework

OMReactive class 743
support for 965

Free shapes 42, 422
Free text check box 346
Friend dependency 976, 1058
Friendship 743
FS file 1189
FullTypeDefinition property 111
Fully constructive diagrams 6
Functional C 2
FunctionalC profile 44, 207, 587
Functions 318

changing order in generated code 942
roundtripping 1055
tab 591

Functor class 652

G
Gateway 1394
Gauge control 797
Gauge tool 795
GEN macro

events with arguments 1096
standard operations 964
statechart 743
static memory allocation 961
tracer 1153

General tab 862
Features window 49, 66
port 93

Generalizations 527
Generate

class code 85
code for actors 926
code for actors in UCDs 526
code for component diagrams 928
code for links 570
code for objects 536
code incrementally 912
code with names 1252
complete code 913
event for statechart 743
event, tracer 1153
Rational Rhapsody 1551

Index
formal reports 1195
makefiles 914
package 913
report 1203

Generate code
elements 919

Generate option 577
GeneratedCodeInBrowser 1058
GeneratedCodeInBrowser property 925
GenerateDirectory property 602, 607, 612, 1010
GeneratePackageCode 913
Generation

configuration 861
main configuration 861

GeneratorRulesSet property 984
Generic Class 122
Global

functions 318
tags 391
variables 319

Glossary 1467
Go Event command 1154
Go Idle command 1154
Go Step command 1154
Graphic editors 13, 62

collaboration diagram 13
component diagram 14
deployment diagram 14
drawing area 23
object model diagram 13
sequence diagram 13
statechart 13
use case diagram 13
using IntelliVisor 462

Graphical annotations 366
Graphics

block definition diagrams 1268
Grid option 428
Groups

instance 715
message 720, 722

Guard 747
field 737

Guidelines for naming model elements 251

H
H_EXT macro 174
Handles, selection 431
Harmony 1234

Architectural Design Wizard 1238
auto-rename actions 1234
Copy MOEs from Base option 1235
Copy MOEs TO Children option 1235
generate N2 matrix 1235
Link Wizard 1240
measure of effectiveness (MOE) stereotype 1235

measures of effectiveness (MOE) 1233
measures of effectiveness (MOE) stereotype 1235
profile 208, 240, 1232, 1245
project type 1232
special menu commands 1234
test bench statechart 1235
trade analysis 1235, 1237

Harmony process 1230
HasIDEInterface property 291
Header file 932
Header property 999
Headers 938
Heaps 959
Help 1456

custom file 379
generate support request 1465

Help applications
submenu structure 472

help command 1155
Helper applications 470

.hep files 476
adding links to VBA macros 479
deleting links to 470
examples of menu command links 474, 475
for MODAF 1342, 1372
icons on the Helpers window 470
linking to external programs 472
linking to Rational Rhapsody Tools menu 472
modifying 478
modifying links to 478
moving position of links on Rational Rhapsody Tools

menus 470
samples 476

Helper utilities 1318
Helpers

arguments variable 197
command variable 197
initialDir variable 197
isMacro variable 197
isVisible variable 197
name setting 197
name variable 197
numberOfElements variable 197

Helpers window 470
HelpersFile property 478
HideCellNames property 232
HideEmptyRowsCols property 232
Hierarchical

directory structure 259
relation type 412
requirements 367

Hierarchical mode 258, 259
changing to flat 259

Hierarchy
property inheritance 192

Hierarchy of reactive classes 778
History connector 727
1552 User Guide

Index
Home page
changing using the GUI 1174
changing using the webconfig.c file 1194

Horizontal message 683
HTML 1195, 1200

browser to examine exported models 1428
viewing reports in 1201

Hyperlinks 55
changing tag value 59
creating in browser 57
creating in Description tab 56
deleting 59
editing 58
following 58
icons for targets 57
limitations 59
return to origin point 20
tag values 59
target files 56

I
IBM

Passport Advantage 1461
technical support 1461

ICN 1465
IDE 279

locating element in 279
synchronize 279
Visual Studio 288

IDE menu commands 290
IDEConnectParameters property 291
IDEInterfaceDLL property 291
Identification

$id keyword 165
IDF 217
IDFProfile 208
Image View field 88
Images

associate with element 336
formats 364

ImpIncludes property 938, 1013
Implement

base classes 613
relation 563

Implement Base Classes option 614
ImplementActivityDiagram property 652
Implementation 78

code, editing 616
composite types property 111
file structure 938
phase 9
property 563

Implementation files 1054
inline keyword 1055

ImplementationEpilog property 949
ImplementationExtension property 988

ImplementationProlog property
#ifdef-#endif 949

ImplementBaseClasses environment variable 616
ImplementFlowchart property 666
ImplementWithStaticArray property 563, 961
Implicit

contracts 91
object 531

Import as External 1009
ImportDefineAsType property 999
Imported macros

limitations 1043
Importing 1425

Eclipse projects 281
from Rational Rose 1410, 1411, 1412
incrementally Rational Rose models 1414
language selection 1429
models 1429
Rational Rhapsody model into Teamcenter 1300
Rational Rose association classes 1424
requirements into Rational Rhapsody with Rational

Rhapsody Gateway 1243
SA DoDAF 1293
Simulink components 1432
VBA macros 485

ImportJavaAnnotation property 1220
In property 111
Include

other PRP files 191
Include file

for rapid ports 98
Include Path field 851

configuration 864
Include statements

reverse engineering 1004
IncludeScheme property 612
Increment/decrement operators 1278
Incremental code generation 912
Information

conveyed by flow 582
element 585

Inheritance 548
activity diagrams 621, 654
adding a level 778
block definition diagram 1266
from an external class 549
from external class 549
of properties 192
overriding for statechart 776
removing a level 780
rules for statechart 773
statechart 771
stereotypes 389
superclass 548

Initial connector
statechart 750

Initial flows
Rational Rhapsody 1553

Index
activity diagram 635
Initial Instances field 863
Initial value search option 346
Initial Values 70
Initialization

block 969
field, for blocks 534, 832
tab 863

Initialization code field 863
InitializationBlockDeclaration 969
Initialize

attribute 78
static attribute 934
static attributes 71

Initializer box 78
InitialLayoutForTables 234
Inject event 1095
Inlining 786
InOut property 112
input command 1155
Inserting projects 245
Installation

root directory 427
systems engineering 1223
verifying DoDAF 1334
verifying MODAF 1374

Instance group 715
Instance groups

adding instances to 719
creating 717
deleting 717
modifying 718
resetting 719

Instance lines
creating 677, 1116
options 680

Instances 674
adding to instance group 719
anonymous 954, 955
component 1125
component in deployment diagrams 875
creating 693
names of 1125
navigation expressions 1126
specifying the value of 537
specifying value 537

Instantiation
class templates 66

Instrumentation 170
field 864
header file 933
implementation file 940
mode 864, 1084
selective 866

Instrumentation Mode 147
Instrumentation Scope field 867
Integrate

CodeTEST 865
Integrity checks 883
IntelliVisor 462

activating 462
dismissing 462
information, activity diagrams 466
information, collaboration diagrams 464
information, component diagrams 464
information, deployment diagrams 465
information, OMDs 463
information, sequence diagrams 465
information, statecharts 466
information, structure diagrams 468
information, UCDs 468

Interaction occurrence 698
creating 698
menu 699

Interaction Operators
creating 701

Interactive mode
command-line interface 1440

Interface 847
adding new 94
component 857
component, creating 857
provided 90
provided for rapid ports 98
required 90
required for rapid ports 98

InterfaceGenerationSupport property 976
Interfaces 973

automatic creation of 1236
C language 974
command-line 1439
in C 973
naming conventions 252
naming guidelines 251
realizing 973
service contract 275
virtual tables 973

Internal
checks 881
code editor 395
event 743
hyperlink 55
text editor 392

Internal block diagrams 1235, 1264, 1269
drawing tools 1270

Internal code editor 395
auto indenting text 398
bookmarks 407
color-coding 395
keyboard shortcuts 399
printing 408
property 395
searching 406
split views 403
1554 User Guide

Index
using Undo/Redo 405
view options 395
window properties 395

Interrupt handler
static memory 961
using 785

Interrupt-driven framework 217
Intertask communication

generating code without 912
InvokeMake property 915
IS_COMPLETED() macro 651
IS_IN query 781
IsCompletedForAllStates property

IS_COMPLETED macro 651
local termination code 733

J
JAR files 1214
Java

annotations 1215
generating JAR files 1214
reference model 1221
static blocks 1213
static import 1212

Java 5 concepts 1215
Java language 2, 1207

annotations 1215
call stack 1114
code generator symbols 1052
component file type 852
composite types 106
enums 120
inheriting from an external class 549
initialization blocks 969
interfaces 613
modeling constructs 115
no flow port support 597
packages 205
port code generation 105
projects in Eclipse 127, 280
reverse engineering 985
roundtripping 86
SA post processing plug-in 1297
Send Action code generation 757
specify include classpath 997
static models 113
template limitation 126

JavaAnnotation property 1221
JavaAnnotations 1215

adding 1216
code generation 1220
creating 1215
limitations 1221
reverse engineering 1220
sample code 1219
using 1217

Javadoc comments 1207
JavaDocProfile 1209
Join synchronization bars 638, 639
Join transitions

activity diagram 636
statecharts 747

Joins 739
flow chart 665
MISRA rule 33 739

JPEG 364
Junction connector 727

K
Keyboard

accelerator keys 1453, 1455, 1457
application accelerators 1455
code editor accelerators 1458
mnemonics 1454, 1460
modifiers 1454
shortcuts 68, 399, 400, 1459
shortcuts, standard Windows 1455

Keywords
$(Name) 967
$Arguments 966
$Attributes 966
$Base 966
$ClassClean 164
$OMAllDependencyRule 167
$OMBuildSet 167
$OMCleanOBJS 167
$OMConfigurationLinkSwitches 167
$OMContextDependencies 167
$OMContextMacros 168
$OMCPPCompileCommandSet 168
$OMFileDependencies 169
$OMFileImpPath 169
$OMFileObjPath 170
$OMFileSpecPath 170
$OMImpIncludeInElements 170
$OMLibExt 170
$OMLinkCommandSet 171
$OMSourceFileList 172
$OMSpecIncludeInElements 172
$Relations 966
activity 1257
additional user-defined (reverse engineering) 1001
compiler specific 949
compiler-specific 938
custom 176
expanding properties 967
in standard operations 966
inline 1055
predefined 163

Kind box 106
Knob tool 795
Rational Rhapsody 1555

Index
L
Labels 327

assigning 329
display options 297
in Asian languages 327
mode 330
removing 330
search option 346
show compartment 88
supported elements 327
transition 636
transition, statecharts 741

Languages 127
Asian supported 327, 346
independent type 113
Japanese 327
more than one in projects 268
primary implementation for Architect for Software

edition 240
selecting during import 1429
type 108, 109
WSDL 272

Layout menu
Grid option 428
Replicate option 446

Layouts
matrix views 228
table view 223

Leaf state 726
LED control 802
LED tool 795
Legacy code 994, 1030

reverse engineering 600
Level Indicator control 799
Level Indicator tool 795
LIB_CMD macro 175
LIB_EXT macro 175
LIB_FLAGS macro 175
LIB_NAME macro 175
LIB_POSTFIX macro 175
LIB_PREFIX macro 175
Libraries 299, 1089

add 1023
for SysML models 1226
model 1267
units 1267

Libraries box
in configuration Settings tab 864
in Features window 851

Library
$OMLibs keyword 170
$OMModelLibs keyword 171
component dependency 171
extensions 170
linking additional 170

License information 1464

Licensing 128
SA Importer 1293

Lifecycle 537
Lifeline

animation 1135
Limitations

activity diagrams 654
actors characteristics 927
animation 1110
Browse From Here browser 305
called behaviors 647
CM for project list files 250
code generation 976
code generation for activity diagrams 654
code generation for flow charts 666
comments 1040
controlled files 357
CORBA 115
customized diagrams with custom elements 493
decomposition 700
DiffMerge 250, 359
DoDAF 1333
Eclipse 127
Eclipse workflow integration 287
external elements 612
Favorites browser 312
flow diagrams 666
flows 586
hyperlink tags 59
imported macros 1043
importing diagrams (reverse engineering) 1034
JavaAnnotations 1221
joins and MISRA rule 33 739
locating elements on a diagram 325
no Java flow ports 597
no Linux forward and back 39
panel diagrams 828
project 249
properties for only active projects 250
Rational Rhapsody Gateway 1244
Rational Rose import views 1409
reverse engineering 985
roundtripping 1048
roundtripping for Send Action 757
roundtripping restricted mode 1060
search and replace 359
show transitions states on animated sequence

diagrams 1120
Simulink 1437
static memory allocation 963
subactivities 1261
swimlanes 645
Teamcenter and Rational Rhapsody 1302
templates 126
Undo 216
Web-enabled devices 1173

Line numbers in code 922
1556 User Guide

Index
Lines
anchor 370
changing shape 420
maintaining shape 435
selection handles 431

Link
additional libraries 170

Link modules 1401
Rational DOORS 1406

Link Switches field 853
Link with editor 144
LINK_CMD macro 175
LINK_FLAGS macro 175
Linking data in Rational DOORS 1400
LinkModuleName property 1401
Links 565, 841, 842, 1271

creating in OMD 565
generating code for 570
in collaboration diagrams 842
messages 844
modify features 843
structure diagram 835

Linux
no forward & back navigation 39
not supported on Eclipse 127
viewing reports 1201

Lists, edit 68
LmLicenseFile property 1392
Load

backup 221
log 265
option settings 711
units 262

load.log file 265
Local

heaps 959
host 1086
tag 391
termination code 733

Local termination rules 651
Local termination semantics 650
LocalizeRespectInformation property 1065
LocalTerminationSemantics property

activity diagrams 631
flow charts 662
statecharts 732

Locate element from code 923
Locate On Diagram command 323
Log tab 25, 1035
LogCmd 1156
Logical file type 853
Logical files mode 1003
Loop activity flows 664
Loop transitions 635
Lost constructs 1045

M
MacroExpansion property 1043
Macros 482, 1043

$OMDEFExtension 169
$OMDllExtension 169
AR 174
ARFLAGS 174
CALL 692
CALL_INST 692
CALL_SER 692
CP 174
CPP_EXT 174
custom properties 176
DLL_CMD 174
DLL_FLAGS 174
GEN, standard operations 964
H_EXT 174
imported 1043
importing and exporting VBA 485
IS_COMPLETED() 651
LIB_CMD 175
LIB_EXT 175
LIB_FLAGS 175
LIB_NAME 175
LIB_POSTFIX 175
LIB_PREFIX 175
LINK_CMD 175
LINK_FLAGS 175
OBJ_EXT 175
OBJS 175
OM_RETURN 691
PDB_EXT 175
RM 175
RMDIR 175
saving 484
to examine models 1425
VBA 479

main 172
Main Diagram field

actor 524
block 832

MaintainWindowContent property 23
mainThread 1099
MakeFileContent property 915
Makefiles 913, 914

files to include in executable 167
library component dependency 171
linking additional libraries 170
object files 171

Manage Web-enabled devices 1171
Map

custom properties to macros 176
Map to Package option 1010
Mapping rules for Rational Rose 1419
Marshalling 964
MARTE
Rational Rhapsody 1557

Index
profile 208
Mathematical relationships 1272
MATLAB 1436
MATLAB MEX compiler 1436
Matrices 222, 1329
Matrix Display control 800
Matrix Display tool 795
Matrix views 222, 230

binding view and layout 234
cell element types 228
customize for MODAF 1360
export data 236
from and to values 228
layouts 228
manage data 236
toggle empty rows filter 232

MaximumPendingEvents property 961
Measures of effectiveness (MOE) 1233, 1235
Mechanistic design 9
Memory

allocation 962
allocation algorithm 962
fragmentation 959

Memory allocation algorithm 962
Memory pools 960
Merge nodes

activity diagram 636
flow charts 665

Merging existing packages 1033
Message diagram 45
Message diagrams 669, 1497
Message groups 720

adding messages to 722
creating 722
deleting 724
modifying 724
removing messages from 722

Message icon 681
Message Type field 684
Messages 845, 1121

arguments, displaying 682
arrival times 710
code output 920
code to pass 1277
collaboration diagram 844, 845
collaboration diagrams 837
copying 686
creating 681
cutting 686
data 783
exchanging, port 101
excluding from a comparison 713
formal parameters 783
found 675
horizontal 683
IDE 279
link 844

lost 675
menu 684
moving 686
names 682
numbering 837
pasting 686
reply 674
reverse link 844
selecting 685
sequence diagrams 674, 681
slanted 683
statechart 751
suppressing in animated sequence diagrams 1123
tab for associations 843
to self 683
to self, displaying 1130
tracer 1167
types 687

Metaclasses 156, 159, 490
Meter control 798
Meter tool 795
Methodology

development 7
MicroC 207
MicroC profile 21, 208, 1303

target monitoring 21
Microsoft

Excel 1235, 1237
PowerPoint 1195, 1200
Word 331, 1195, 1200, 1205

Ministry of Defence Architecture Framework 1341
MISRA rule 33 739
MISRA98

profile 208
MISRA-C 1998 739, 909
MKS Source Integrity 149
Mnemonics 1454, 1460
MODAF 2, 1341, 1342

Acquisition viewpoint 1346
All Views viewpoint 1345
architectural conformance 1374
artifacts 1355
checking your model 1374
creating a project 1355
CustomizableTableAndMatrixLayoutsPkg 1362
CustomizableTableAndMatrixViewsPkg 1366
CustomizedStereotypesPkg 1363
customizing table and matrix views 1360
Dependencies Linker 1372
Domain Specific Language 1355
Drawing toolbar 1374
general troubleshooting 1374
helper applications 1342, 1372
Java plug-ins 1374
ModafReport.tpl 1370
Network Enabled Capability (NEC) 1341
Operational viewpoint 1345
1558 User Guide

Index
products 1347
profile 208, 1342
quality of service requirements 1349, 1353
ReporterPLUS template 1368
Strategic viewpoint 1345
Systems viewpoint 1346
Technical viewpoint 1346
troubleshooting with Check Model 1374
troubleshooting, Dependencies Linker 1373
troubleshooting, general 1374
troubleshooting, ReporterPLUS 1371
UML 1342
verifying installation 1374
viewpoints 1343
views 1347

ModafReport.tpl 1370
Mode

activity diagram 651, 732
analysis 672
design 672
drawing 417
Flat 258
flat 258
Hierarchical 259
hierarchical 258
instrumentation 864
operation 410
pinned 50, 52
rapid 97
repetitive drawing 418
stamp 440
statechart 650, 725, 732
Workbar 20

Model
$FullModelElementName keyword 165

Model as language types option 1020
Model browser 150
Model Update Failure option 1031
Model Updating tab 1033
ModelCodeAssociativityFineTune property 1049
ModelCodeAssociativityMode property 1049
Model-driven Development (MDD) 1041, 1377
Modeled annotations 366
Modeled operation 652
Modeling class type 1023
Modeling policy 1009
Modeling toolbar 40
Models 205

actor element 577
adding new elements 134
adding units to 136
animation 1113
animation (partial) 1089
checking 140, 884, 885
classes 1023
connecting to from the Web 1176
connecting to from the Web, troubleshooting 1177

creating actions 1277
data analysis 222
define environment 1252
deleting elements 451
deleting items 306
designing 7
elements 490
elements aggregation 559
elements associations 552
elements classes 545
elements inheritance 548
elements, composite classes 546
examining 1425
examining in HTML browser 1428
execution 1277
exporting to XMI 1426
exposing to the Web 1174
find elements 345
importing XMI 1429
in a Web browser 1291
library for SysML 1226
locating type of items in 213
management views 5
minimum requirement 7
naming guidelines 251
one-way association 558
packages 547
print to screen 1278
properties 220
search and replace 137, 209
search in 35
searching 342
searching for text 344
simplified 979
specifying with Rational Rhapsody 7
SysML stereotypes for elements 1226
validation 1080
warnings 881
Web-enable 1288
XMI 1425

Modes 1499
animation 972, 1112
batch 1047
categories 1474
DMCA 1049
flat 1490
logical files 1003
recursive analysis 1004
silent 1094, 1112
watch 1094, 1112

Modifiers 1454
attributes 70
Constant 70
declaration 164
destructors 80
primitive operations 73
Reference 70
Rational Rhapsody 1559

Index
Static 70
Modifying

data types 70
instance groups 718
message groups 724
reference class 1019

ModuleNameFromProject property 1402
Monitor Web-enabled devices 1171
Monitoring

target 21
Mouse, select and editing with 405
Moving

control point 434
element in graphic editor 435
elements between projects 248
elements in browser 331
messages 686
synchronization bar 640

MSVC60 dialect 1002
Multiple projects 244
Multiple selection 22
Multiplicity

array index 756
attributes 70
ports 80, 93

Multiplicity field
association 556
block 534, 832

Multi-threaded architecture 1
Mutator

implementation file 939
MutatorGenerate property 111
Mutators 67, 69
Mutex 961

N
Name

$ComponentName keyword 164
$ConfigurationName keyword 164
$FullCodeGenerationFileName keyword 165
$opname keyword 172
$projectname keyword 172
$TypeName keyword 174
FullModelElementName keyword 165
target 172

Name search option 346
Name/value pairs

for Web GUI 1183
Names 251

boxes and arrows 421
class, default 65
guidelines for model elements 251
instance 1125
message 682
project 219

roles for classifiers 679
special characters in 251
thread in animation 1099
thread in tracing 1147
view field 1181

Namespace 326
Naming conventions

for Rational Rhapsody 251
for Rational Rose 1411

Navigable field 557
Navigate

from Rational DOORS to Rational Rhapsody 1396
hyperlinks 58
to reference SD 699

Navigation
customizing 1182
personalized 1194

Nested classes 67
Nested packages 67

exporting to Rational DOORS 1397
Nested types 67
NetCentric profile 208, 272

Architect for Software edition 240
creating projects using 275
generating WSDL file 275
generating WSDL output 276
service provider 272
WSDL output 276

Network Enabled Capability (NEC) 1341
New Attribute option 577
New element types 489
New Operation option 577
New Reception window 74
New Statechart option 577
New Term stereotype 385, 505
NO_OUTPUT_WINDOW 1036
NO_OUTPUT_WINDOW variable 197
Nodes 321, 873

call operation 622
decision 624
deployment diagrams 873
features 874
fork 624
join 624
merge 624
merge for activity diagram 636
merge for flow charts 665
owner 874

Notes 365
converting to comments 370
Rational Rose 374

NotifyOnInvalidatedModel property 1059
Null transitions 747

activity diagrams 650
statecharts 747

Null trigger 747
1560 User Guide

Index
O
OBJ_EXT macro 175
Object

files 171
files to include in executable 167

Object analysis 8
Object Management Group 3
Object Management Group (OMG) 1425
Object model diagrams 4, 5

adding operations and attributes 530
automatically populating 412, 415
compared to structure diagram 829
creating 44, 410
drawing icons 530
editor 13
files 264
flowports in 597
icon in browser 301
importing by reverse engineering 987, 1034
IntelliVisor information 463
perform trade analysis in Harmony 1237

Object nodes 632
associated with class 633

ObjectIsSavedUnit property 258
Objects 1, 318, 531

changing order of 833
changing the order of 537
concurrency 534, 832
converting types 535
creating in browser 318
creating in OMD 532
dependencies between 572
destroying 693
features 534
generating code for 536
in activity diagrams 624
in structure diagram or OMD 831
linking to ports 103
modifying 832
multiple 840
relations, show all 82
show status 1159
specifying the value of 537
StatemateBlock 1386
structure diagrams 831
types of 531

OBJS macro 175
OM_RETURN macro 691
OMDOCROOT variable 196
OMG 3

SysML profile 208
testing profile 209

OMMemoryPoolIsEmpty() operation 962
OMReactive class 743
OMROOT

setting 196

OMSimulinkBlock 1433
On/Off Switch control 803
On/Off tool 795
Only from file list option 1004
Only header file with the same name option 1003
Open

Active Code View 33
animated sequence diagram 1116
browser window 296
editor 86
existing diagrams 411
main diagram 87
multiple Features windows 51
multiple projects 244, 245
OpenDiagramsWithLastPlacement property 263
OpenWindowsWhenLoadingProject property 263
parent statechart 765
project 209
project with workspace information 263
subactivity diagram 630
submachine 765
workspace 263

Open Main Diagram option
actor 577

Open Reference Sequence Diagram option 680, 699
OpenDiagramsWithLastPlacement property 263
OpenWindowsWhenLoadingProject property 263
Operation bodies search option 346
Operation mode 410
Operational view (DoDAF) 1312
Operational viewpoint (MODAF) 1345
Operations 688

adding to events 744
adding to OMD 530
adding to use case 522
call 623, 1259
calls 867
calls, during animation 692, 1108
changing order in generated code 942
code generation in activity diagram 652
contracts allocation 1238
display options 89
editing in multiple elements 333
generated 925
implementation file 939
modeled 652
naming conventions 252
primitive 72
receptions 73
roundtripping 1054
roundtripping triggered 1055
standard keywords in 966
statechart 751
that cannot be undone 216
triggered 75, 688, 745

Operations tab 71
Operator, overloading 949
Rational Rhapsody 1561

Index
Or state 726
code generation 732
local termination code, flat 733

Order
of types, changing 115
of variables 319

Ordered to-many relations 957
Organize tree 296
Orthogonal

relation type 413
OSEK Adaptor 1380

hardware and software 1381
Out property 112
Output 209

command 1157
consistency checking results 1235
reports 153
search results 137

Output window 24, 130
Animation tab 32
Build tab 29
Check Model tab 26
Configuration Management tab 32
display search results 343
displayed in Eclipse 130
Log tab 25
Search Results tab 32

Output Window option 1036
OV-1 High Level Operational Graphic 1325
OV-2 Operational Node Connectivity 1325
OV-4 Organizational Relationships Diagram 1325
OV-5 Operational Activity Diagram 1325
OV-6a Operational Rules Model 1325
OV-6c Operational Event-Trace Description

diagram 1325
OV-6c Operational State Transition Description

diagram 1325
OV-7 Logical Data Model 1325
Overridden properties view 302
Override properties 183
Overwriting existing packages (during reverse

engineering) 1033
Owners

actor 525
node 874

OXF 909
in a C project 217
libraries 1090

P
PackageIsSavedUnit property 258
Packages 316, 526, 547

adding 134
as containers 326
assigning to a deployment diagram 880
converting to profile 378

creating hierarchy in C 607
creating in browser 317
creating in OMD 547
cross-package initialization 930
default systems engineering 1224
dependencies 572
drag and drop 331
editing multiple 333
elements 205
elements types 316
files 264
guidelines for creating 316
in requirements diagrams 1247
in UCD 526
naming guidelines 251
nested 67
Rational DOORS 1397
relations, show all 82
roundtripping supported modifications 1055
setup DoDAF 1320
stereotypes 385
storing in directories 258, 259
SysML profile 1226
units 253
views 1227
WSDL stereotyped 276

Pan 41, 455
Panel diagrams 791

animation 791, 794
attribute types 810
binding 808
binding (mapping) table 810
Bubble Knob control 796
Button Array control 805
Button Array tool 795
caption for Push Button control 811
changing control flow 811
changing display name options 827
changing graphical properties of a control

element 812
changing settings 811
color schemes for Matrix Display and Digital Display

controls 811
Control Properties window 809
creating 44, 410, 794, 795
Digital Display control 801
Digital Display tool 795
drawing icons 795
features 792
Gauge control 797
Gauge tool 795
graphical settings for Button Array control 827
Knob tool 795
LED control 802
LED tool 795
Level Indicator control 799
Level Indicator tool 795
1562 User Guide

Index
limitations 828
Matrix Display control 800
Matrix Display tool 795
Meter control 798
Meter tool 795
minimum and maximum values for controls 811
On/Off Switch control 803
On/Off switch shape styles 811
On/Off tool 795
properties for Bubble Knob control 812
properties for Digital Display control 822
properties for Gauge control 814
properties for LED control 823
properties for Level Indicator control 820
properties for Matrix Display control 822
properties for Meter control 817
properties for On/Off Switch control 824
properties for Slider control 825
Push Button control 804
Push Button tool 795
Select tool 795
Slider control 807
Slider tool 795
Text Box control 806
Text Box tool 795

Parallel development 149
Parameters

formal message 783
Webify 1174

Parametric diagrams 1272
adding equations 1276
allocation 1273
binding connector 1273
block 1273
constraint binding 1276
constraint block 1273
constraint blocks for 1274
constraint parameters 1273
constraint properties 1274, 1275
constraint property 1273
create package 1273
dependency 1273
drawing tools 1273
problem satisfaction 1273
showing constraints 1275

params
pseudo-variable 749

params-> pseudo-variable
message parameters 783

Parent statechart 765
ParserErrors property 1059
Parsing Errors option 1031
Part 457, 531, 546, 1506

and composite class 546, 559, 561
decomposition 700
relation to whole 534, 832

Partial animation 1089

per configuration 1090
Partially constructive diagram 6
Partition line 698
Parts

browser icon 299
systems engineering 1264

Passport Advantage 1461
Path field 590, 856

file 852
folder 856

Paths 326
names in commands 1441
relative 260
specifying physical 378

Pause Animation command 1095
pc_server.dxl 1392
PDB_EXT macro 175
Personalized bottom navigation 1194
Personalized Navigation page 1181
Perspectives 129, 141

Debug 131, 146
Modeling 130

PI variable 319
Platform Integration (Rational Rhapsody and

Eclipse) 127
Plug-ins

MTT variable 199
Rational Rhapsody 507

Points (adding to arrow) 420
Pooling events 960
Populate Diagram 1245
Populate Diagram feature 412, 415
Ports 92

API for C++ 101
atomic flow 597
automatic creation of 1236
behavior attribute 94
C language 974
C language optimization 975
code generation in Java 105
code generation(C) 104
communicating with ports with multiplicity 102
connecting 97
connecting objects via ports 102
creating 92
creating programmatically 103
definition 90
display in the browser 97
display options 95
exchanging messages 101
features 93
field 89
flow 597
flow for StatemateBlock 1388
IDE 279
implicit contracts 91
in structure diagrams 835
Rational Rhapsody 1563

Index
in SysML 1226
linking objects via ports with multiplicity 103
linking to owning instance 103
links 1271
listing 213, 1201
multiplicity 93
non-atomic flow 598
properties 96
rapid 91, 97, 974
reversed attribute 94
SDLBlock behavior 293
service 973
show all 1269
show in views 233
specifying contract 94
standard 1266, 1271
tab 80

Ports tab
behaviors 80
contracts 80
multiplicity 80
reversed 80

PowerPoint 1195, 1200
PreCommentSensibility property 1039
Predefined checks 881
Predefined type 113
PredefineIncludes property 1059
PredefineMacros property 1059
Preprocessing

reverse engineering 995
symbol 998

Primary model elements 326
Primary templates 123
Primitive operation 688
Primitive operations 72
Print

diagrams 360
from internal code editor 408

Print to screen 1278
Priority

thread 1100
transition 768

Private
attributes 67
event 743

Problem (diagram element for SysML profile) 1226
Problems

found by Check Data 1404, 1405
Simulink 1434

Process tab 1031
Product lines 241
Profiles 2, 206, 207, 275, 375, 505

AdaCodeGeneration 207
adding to existing project 215
Architect for Software edition 240
as packages 205
as settings 314

AutomotiveC 207, 1377, 1380
AUTOSAR 207, 1377
backward compatibility 377
browser icon 300
CodeCentricCPP 207
compatibility settings 314
converting to package 378
creating your own 486
default 207
diagrams available for 43
DoDAF 207, 1311
enabling access to custom help file 379
FixedPoint 207
FunctionalC 14, 44, 207, 240, 587
Harmony 208, 240, 1232, 1238, 1245
IDF 208
JavaDocProfile 1209
MARTE 208
MicroC 21, 208, 1303
MISRA98 208
MODAF 208, 1342
NetCentric 208, 240, 272
new term 385
properties 378
Rational Rhapsody predefined 207
RespectProfile 208
re-using customized 487
RoseSkin 208
Schedulability, Performance, and Time (SPT) 208,

277
SDL 208
Simulink 208, 1433
SPARK 208
SPT 208, 277
StatemateBlock 208, 1386
stereotypes 385
SysML 208, 240, 1224, 1225, 1238, 1245, 1267
Testing 1235
TestingProfile 209
UPDM 209
when not needed 376

Programs
command-line Rational Rhapsody 1439
external 472
files from Word or Excel 300
ReporterPLUS 1195

Project
VBA file 481

Project Overview diagrams 1325
Projects 133, 205, 244

$projectname keyword 172
active 11, 244, 245, 246
adding elements 215
adding new elements 134
adding profile to existing 215
adding project to list 249
Architect for System Engineers edition 239
1564 User Guide

Index
archiving 221
AUTOSAR 1378
autosave 218
backing up 220
build Eclipse 145
closing 220
closing all 248
copying elements 247
copying in multiple 246
creating 206
creating NetCentric 275
creating new Rational Rhapsody 206
creating units 255
debug Eclipse 146
directory structure 258
disassociating Eclipse from Rational Rhapsody 287
DoDAF 1322
Eclipse 280
Eclipse IDE 141
editing Rational Rhapsody 215
elements 205
files and directories 264
flat directory structure 258
folder 244
Harmony 1232
incremental save 218
insert another in open project 244, 245
insert existing 244
insert new 244
inserting into other project 245
keyboard shortcuts 1455
large 327
lifecycle instance values 537
limitations 249
loading backup 221
managing lists 248
migration 268
MODAF 1355
multi-language 268
multiple 244
NetCentric 272
new 249
opening 209
opening project list 249
organizing 295
Rational Rhapsody profiles 207
referencing in multiple 246
removing from project list 249
renaming 219
restoring 221
saving 217
saving project in project list file 248
settings 206
SOA 272
systems engineering 1223
tool icons 35
tools 33

types 206, 275
unit 253
validation 1286
Visual Studio 288
without profiles 376
workspace 250

Prolog
header file 933
implementation file 938

Properties 155, 220, 1398, 1401
AcceptChanges 1054, 1057, 1061, 1212, 1214
active project’s displayed 250
ActiveThreadName 1100
ActiveThreadPriority 1100
activity diagram settings 1258
ActivityReferenceToAttributes 653
adding comments to files 189
adding customized 189
AdditionalBaseClasses 965
AdditionalKeywords 1001
AdditionalNumberOfInstances 960
AddNewMenuStructure 501, 503, 504, 505
AddressSpaceName 754
affecting diagram editors 417
Aggregates 1376
AlternativeDrawingTool 495
AnalyzeGlobalFunctions 1017
AnalyzeGlobalTypes 1017
AnalyzeGlobalVariables 1017
AnalyzeIncludeFiles 1004
AnimateSDLBlockBehavior 293
animation 1130
AutoCopied 378
AutoReferences 379
AutoSaveInterval 218
AvailableMetaclasses 490
backup 220
BackUps 220
BaseNumberOfInstances 960
BlockIsSavedUnit 258
blocks 1264
BrowserIcon 493
change directory scheme 258
changing 177
changing the common view 182
changing values 185
ClassCentricMode 672
ClassCodeEditor 86, 924
ClassIsSavedUnit 258
CleanupRealized 672
CodeGeneratorTool 979, 1039
CollectMode 1042
Common view 180
CommonList 505
ComplexityForInlining 787
ComponentIsSavedUnit 258
ConstantVariableAsDefine 999
Rational Rhapsody 1565

Index
constraint in parametric diagrams 1274
ContainerSet 563
controls 182
CPPCompileCommand 917
CreateDependencies 1004
CreateReferenceClasses 1017
custom 176
CustomHelpMapFile 381, 382
CustomHelpURL 380, 382
DataTypes 1023
DefaultDirectoryScheme 258
DefaultProvidedInterfaceName 98
DefaultReactivePortBase 98
DefaultReactivePortIncludeFile 98
definitions 83, 96, 156, 178
DescriptionTemplate 945, 1209, 1211
DiagramIsSavedUnit 254, 258
DiagramsToolbar 494, 496
displaying 49, 177
DisplayMessagesToSelf 1130
DisplayMode 296
DrawingShape 495
DrawingToolbar 493, 496
DrawingToolIcon 493, 494
DrawingToolTip 494
Eclipse Workbench 285
EditorCommandLine 855, 925
EventGenerationPattern 757
EventToPortGenerationPattern 757
ExcludeFilesMatching 992
ExecutionModel 1303
expanding with keywords 967
FileIsSavedUnit 258
FileName 549
Files (for reverse engineering) 991
filtered views 180
flowKeyword 580
for black-box testing 1134
for composite types 111
FullTypeDefinition 111
GeneratedCodeInBrowser 925, 1058
GenerateDirectory 602, 607, 612, 1010
GeneratePackageCode 913
GeneratorRulesSet 984
grouping of 156
Header (for reverse engineering) 999
HelpersFile 478
HideCellNames 232
HideEmptyRowsCols 232
ImpIncludes 1013
ImplementActivityDiagram 652
Implementation 563
Implementation of composite types 111
ImplementationExtension 988
ImplementFlowchart 666
ImplementWithStaticArray 563, 961
import from Rational Rose model 1413

ImportDefineAsType 999
ImportJavaAnnotation 1220
In 111
IncludeScheme 612
inheritance 192
InitializationBlockDeclaration 969
InitialLayoutForTables 234
InOut 112
InterfaceGenerationSupport 976
internal code editor 395
InvokeMake 915
IsCompletedForAllStates, IS_COMPLETED

macro 651
IsCompletedForAllStates, local termination code 733
JavaAnnotation 1221
LocalizeRespectInformation 1065
Locally Overridden view 180
LocalTerminationSemantics 631, 662
LocalTerminationSemantics, statecharts 732
MacroExpansion 1043
MakeFileContent 915
MaximumPendingEvents 961
ModelCodeAssociativityFineTune 1049
ModelCodeAssociativityMode 1049
ModuleNameFromProject 1402
MutatorGenerate 111
NotifyOnInvalidatedModel 1059
ObjectIsSavedUnit 258
OpenDiagramsWithLastPlacement 263
OpenWindowsWhenLoadingProject 263
Out 112
Overridden view 180
overridden view 302
overriding 183
PackageIsSavedUnit 258
ParserErrors 1059
ports 96
PreCommentSensibility 1039
PredefineIncludes 1059
PredefineMacros 1059
profile 378
PropertiesXMLPath 1413
ProtectStaticMemoryPool 960
Rational Rose model 1413
RealizeMessages 672
ReferenceImplementationPattern 111
ReflectDataMembers 1029
RemoteHost 1086
ReportChanges 1059
RespectCodeLayout 1039, 1043, 1065
RestrictedMode 1060
ReturnType 112
reverse engineering 1022
RootDirectory 1014
roundtripping 1059
RoundtripScheme 1039, 1043, 1060
RTFCharacterSet 1205
1566 User Guide

Index
SDLSignalPrefix 292
searching for 178
serialization 970
set for Asian languages 327
setting a Web-enabled device 1175
ShowAnimCancelTimeoutArrow 1123
ShowAnimCreateArrow 1123
ShowAnimDataFlowArrow 1123
ShowAnimDestroyArrow 1123
ShowAnimStateMark 1120
ShowAnimTimeoutArrow 1123
ShowArguments 682
ShowAttributes 414
ShowCGSimplifiedModelPackage 979
ShowContainerElementForPorts 233
ShowLabels 327
ShowLogViewAfterBuild 31
ShowOperations 414
ShowPorts 96
ShowPortsInterfaces 96
simplification 979
simplifying C code generation 979
SpecificationEpilog 949
SpecificationExtension 988
SpecificationHeader 945
SpecificationProlog 949
SpecInclude 576
SpecIncludes 1013
StandardOperations 966
StrictExternalElementsGeneration 604
subjects 156, 157
Submenu#List 505
Submenu#Name 505
Submenu1List 502
Submenu1Name 502
Submenu2List 502
Submenu2Name 502
Submenu3List 502
Submenu3Name 502
Submenu4List 502
Submenu4Name 502
SubmenuList 502, 505
SupportExternalElementsInScope 604
tab 96, 177, 866
table display 179
to customize Rational Rhapsody 155
to set sequence numbers 689
TriggerArgument 112
UsageType 611
UseAsExternal 549, 1016
UseCalculatedRootDirectory 1015
UseDescriptionTemplates 1209
UseIncrementalSave 218
UseRapidPorts 292
UseRemoteHost 1086
VariableInitializationFile 319
VariableLengthArgumentList 935

viewing overridden 302
WebComponents 1175
WebManaged 1175

PropertiesXMLPath property 1413
Protected attributes 67
ProtectStaticMemoryPool property 960
Provided interface 90

for rapid ports 98
PRP file

including other 191
PurgeOnDelete property 1398
Push Button control 804
Push Button tool 795
Pushpin note 372

Q
Qualified association

in OMDs 557
Qualified to-many relations 957
Qualifier field 557
Queries 222
Queue 743
Quick Add 390
quit command 1157

ending the tracer session 1169

R
Random access to-many relations 958
Rapid external modeling 605
Rapid ports 974

include files 98
reactive base class 98
required interface 98

Rational ClearCase 3, 132, 149
Rational DOORS 1242, 1243, 1391

action pins/activity parameters 650
calling 1396
Check Data 1404
creating a project for Rational Rhapsody 1396
dxlapi.dll 1392
exiting 1407
export options 1397
formal modules 1397
installation requirements 1392
Interface window 1396
link modules 1392, 1406
linking data 1400
navigating to Rational Rhapsody 1396
nested packages 1397
objects 834
on Solaris systems 1392
pc_server.dxl 1392
requirements 1391
shadows 1400
stored information 1402
Rational Rhapsody 1567

Index
using with Rational Rhapsody 1393
Rational Rhapsody 1, 127

$RhapsodyVersion keyword 173
.ini file 196
accessing Web services 1185
adding to Web design 1189
affinity variable 197
analysis phase 7
and Rational DOORS 1393, 1396
and Rational Rose 1410
and Tornado 289
animation 131
Animation toolbar 40, 1093
API, using with VBA 481
Architect for System Engineers edition 2
backing up 220
Browse From Here browser 304
browser 295
building the target 916
Check Model tool 882, 885, 1375
code generation, incremental 912
command-line interface 1439
common drawing tools 41
components-based development 973
convert configuration to Eclipse 281
creating model from existing Teamcenter

project 1301
customized workspace 262
design phase 8
development methodology 7
diagram icons 43
diagrams 6
DiffMerge tool 266, 1302
directory structures 258, 259
drawing tools 17
dynamic model-code associativity 914
Eclipse Debug perspective 130
Eclipse Modeling perspective 129
editions 2, 237, 275
environment settings 197
environment variables 196
exporting 1425
exporting code 135
exposing elements on the Web 1174
Favorites browser 11, 306
Favorites toolbar 40, 307
features 2
file extensions 134
filtering out file types 134
formal reports 1195
generating code 141
generating reports 1203
glossary 1467
graphic editors 13, 62
help 1456
implementation phase 9
importing 1425

integrating with CodeTEST 865
IntelliVisor 462
keyboard shortcuts 1459
license for Platform Integration 128
license information 1464
linked elements 1400
list of Check Model tool checks 889
locating code in Eclipse 286
MODAF 1341, 1342, 1343
model checking 885
model, connecting to from the Web 1176
modeling class types 1023
Modeling toolbar 40
modifying elements shared with Teamcenter 1302
multiple projects 244
perspectives in Eclipse 129
Platform Integration (Rational Rhapsody and

Eclipse) 127
plug-in for Eclipse 280
predefined keywords 163
project 205
project files and directories 264
project types 206, 275
properties for Rational DOORS 1398, 1401, 1402
properties for Tornado 291
Rational DOORS project 1396
Rational Statemate block in 1385
reports 1195
repository 128
roundtripping 1048
running animated application without Rational

Rhapsody 1141
running the executable 918
search facility 1280
standard toolbar 35
stored information about Rational DOORS 1404
synchronizing with Rational Statemate 1388
systems engineering version 1223
Teamcenter 1298
testing phase 9
timeouts 746
units 136, 149
utilities 15
VBA toolbar 40
Web server 1193
windows 17, 39
with IDEs 279
Workflow Integration 127
XMI in development 1425

Rational Rhapsody Gateway 1242, 1243
importing requirements into Rational Rhapsody 1243
limitations 1244
requirements and analysis 1243
use case diagrams 1242

Rational Rhapsody handle 1391
Rational Rhapsody Platform Integration (Rational

Rhapsody and Eclipse)
1568 User Guide

Index
confirming 128
Rational Rose 1409

import properties 1413
importing 208
importing association classes 1424
importing code from imported Rational Rose

model 1417
importing from 1410
incrementally importing 1414
look-and-feel 1411
mapping rules 1419
merging imported code to imported Rational Rose

model 1418
naming conventions 1411
notes in 374
properties 1413
re-importing a package 1415
rose_properties_import.xml 1413
rose_properties_import_java.xml 1413
selecting elements to import 1410
XML map file 1413

Rational Rose Logical View 1409
Rational Statemate 1385

block 1386
Block profile 208
flowports 1388
model requirements 1385
preparing for Rational Rhapsody 1385
synchronizing with Rational Rhapsody 1388
troubleshooting 1389

Rational Synergy 3, 132
Rationale 1226

block definition diagram 1267
requirements diagram 1247

Reactive class 773
refining the hierarchy 778

Reactivity 1
Real time environment 1
Realization field 684

instance line 678
Realization Of option 844
Realization relationship 550, 973
Realization, implementing base classes 614
Realize elements of base class 617
RealizeMessages property 672
Real-Time Workshop 1431, 1432, 1433
Rearrange

elements 448
elements in file 854

Receptions 73
browser icon 320
Features window 75

Rectilinear line 420
Recursive analysis mode 1004
Recursive composite 326
Redo 216
Refactor 219

ReferenceImplementationPattern property 111
References 36, 211, 246

class 1018
diagram 698
finding 342
finding element 342
limitations 647
modifier 70
to constraints 370
to element 342
to locate elements 330
unit using environment variables 260
unresolved 261, 278

References window 250, 342
Referencing 246
refine stereotype 1250
Refinement 1226
Reflect Data Members option 1021, 1028
ReflectDataMembers property 1029
Refresh 61, 226, 456

new terms 496
table and matrix view 222
view option 456
Web pages, using the GUI 1174
Web pages, using webconfig.c file 1194

Regenerate
code 33
configuration files 913

RegisterUpload function 1194
RegisterUpload() call 1186
Re-importing a Rational Rose package 1415
Relations 80, 313, 956

accessor 939
adding 313
bounded 961
fixed 961
implementing 563
mutator 939
of instances 571
ordered to-many 957
qualified to-many 957
random access to-many 958
roundtripping 1055
show all 82
show in views 233
Show Relations in New Diagram menu command 82
tab 80
to external element 611
to whole field 534, 832
to-many 956
to-one 956
type for populating diagrams 412

Relationships 527
Remarks 368

anchors 370
converting to comment 370
creating 366
Rational Rhapsody 1569

Index
deleting 373
dependencies 367
display options 372
editing 368
types of 365

Remote
managed devices 1171
target animation 1087

RemoteHost property 1086
Remove

properties from the common view 182
Remove from common list option 182
Removing

classes 90
element from model 451
element from view 451
hyperlinks 59
label 330
level of inheritance 780
tags 393
user-defined points from lines 420

Rename 1234
element 332
project 219

Renaming 219
Re-order model element in browser 334
Repetitive Drawing Mode 418
Replace 137, 209, 212
Replicate option 446
Report on imported items 990
ReportChanges property 1059
ReporterPLUS 1195

generate list 213
launching 1196
list of ports 1201
MODAF 1368
reports to examine models 1425
requirements diagrams 1202
viewing reports online 1201

Reports 153, 1195
customize templates 1196
DoDAF 1321, 1331
for presentations 1195
formal 1195
generating from templates 1200
HTML 1195, 1200
internal output 1205
layout for systems engineering 1202
overridden properties 1204
PowerPoint 1195, 1200
prepackaged templates 1196
ReporterPLUS 153
requirements 1202
RTF 1195
RTF character set 1205
System Architect (SA) import 1297
system model templates 1201

templates 153, 1196
text format 1195
view overridden properties 1204
viewing online 1201
Word format 1195

Reposition windows 18
Repository 128, 153
Repository file 264
Represented field 584
Represents field 644
Required interface 90

for rapid ports 98
Requirements 1, 7, 365, 1223, 1247

defining 8
defining in use cases 1255
dependencies 1248, 1255
derive 1248
diagrams 1245
hierarchical 367
icon in browser 300
identifying 7
importing 1243
in SysML 1227
listed in table views 224
Rational DOORS 1391, 1394
reports 1202
satisfaction of 1247
searching 1245
specialized types 1249
specification supports Asian languages 346
specifications option 346
synchronization 1395
systems engineering 1242
tabular view for SysML 1250
trace 1248
tracing in use cases 1255
verification of 1247
view 302

Requirements diagrams
allocations in 1247
create package in 1247
dependencies 1247
derivations 1247
icon in browser 301
output in ReporterPLUS 1202
problem 1247
rationale 1247
use cases in 1247

Re-route line 420
RES file 1189
Reset instance groups 719
Resize element 434
Respect 1063
RespectCodeLayout property 1039, 1043, 1065
RespectProfile 208
RestrictedMode property 1060
Return codes 1443
1570 User Guide

Index
Return type
$opRetType keyword 172

Return Value box 684
Return values, animating 691, 1123
Returns

primitive operations 73
ReturnType property 112
Reusable statechart

local termination code 732
Reverse engineering 136, 985, 986

#define 999
#if...#ifdef...#else...#endif 1000
adding wild card expression 1023
additional user-defined keywords 1001
analyzing list of files 1007
analyzing same name header files 1005
code respect 1037, 1063
comments 1039
confirm settings 986
directing output 1036
enumerated types 1038
excluding particular files 992
external elements 994
files 1009
Filtering tab 1016
imported items report 990
importing object model diagrams 987, 1034
include files 1003
include statements 1004
include/CLASSPATH 997
initializing the Reverse Engineering window 991
Input tab 1003
Java 997
JavaAnnotations 1220
Javadoc comments 1211
legacy code 600, 1030
log file 265
Log tab 1035
lost constructs 1045
macros 1043
mapping classes 1008
mapping classes as types 1023
Mapping tab 1008
Merging existing packages 1033
Model Updating tab 1033
NO_OUTPUT_WINDOW variable 197
options 989
overwrite existing packages 1044
overwriting existing packages 1033
preprocessing 995
Preprocessing tab 995
preserving comments 1039
Process tab 1031
properties 1022
restrictions 985
results 1044
root directory 1014

static blocks 1212, 1214
static import statements 1212
templates in C++ 1037
to create external elements 600
tree view 987
unions 1038

Reversed
attribute 94
messages 845
ports 80

ReverseEngineering.log file 197, 265
Rhapsody.exe 1439
rhapsody.ini 196, 616

animation port, other than default 1444
control DMCA 1049
favorites list 307
General section 1416
hide Output window 1036
placement of GUI elements 250
plug-in information 980

RhapsodyCL.exe 1439
RM macro 175
RMDIR macro 175
Role names for classifiers 679
Role of field 556
Root directory for reverse engineering 1014
RootDirectory property 1014
ROPES process 7

analysis phase 7
design phase 8
implementation phase 9
testing phase 9

rose_properties_import.xml 1413
rose_properties_import_java.xml 1413
Rotate on synchronization bar 640
Roundtripping 86, 1047, 1049

annotations 1052
arguments 1054
associations 1054
attributes 1054
automatic 1050
classes 1054
classes, supported modifications 1053
code respect 925, 1047, 1063
constructor 1054
deletion of elements from the code 1057
destructors 1054
DMCA 1049
edited code 87
events 1055
forcing 1050
friend dependency 1058
functions 1055
limitations 1048
menu option 577
operations 1054
package supported modifications 1055
Rational Rhapsody 1571

Index
preserving comments 1039
properties 1059
relations 1055
restricted mode 1060
static blocks 1212, 1214
static import statements 1212
supported elements 1048
templates in C++ 1058
text edits 87
triggered operations 1055
variables 1056

RoundtripScheme property 1039, 1043, 1060, 1064
rpyRetVal variable 653
RTF

reports 1195
storage format for Asian text 327
viewing reports in 1201

RTFCharacterSet property. 1205
Rules compiler 980, 981
RulesComposer 977, 980, 981
RulesPlayer 978, 980
Running

animation 1086
animation automatically 1128
animation scripts 1128
executable 918
Rational Rhapsody from command line 1439

S
Samples 656, 1431

Architect for Software edition 240
CustomCG 980
Designer for Systems Engineers edition 238
Extensibility 888
helper (.hep) applications 476
Simple Plug-in 512
System 1249

satisfy stereotype 1249
Save As command 217
Saving

diagrams 256
log files 265
option settings to a file 711
projects 217
units in separate directory 258
units individually 256
viewing preferences 262
window preferences 263
workspaces 262

Scale 457
Scenarios 1236, 1243

creating reusable 675
Schedulability, Performance, and Time (SPT)

profile 208, 277
Scope 297

code generation in activity diagram 653

code view editor 921
configuration 863
derived 863
explicit 863

Screen snapshot 1465
Scripts 1442

animation 1126, 1128
Java 1189, 1190
on Web server 1184
overwriting placeholder text 1189
tags 1191
uploading 1186
VBA 259

SDL 292
profile 208

SDLBlock 292
animation 293
behavior ports 293

SDLSignalPrefix property 292
Search 137, 138, 209

customize criteria 138
display results 139
working with results 139

Search and replace 35, 212
automatic 344
element name 343
elements 348
in model 342
limitations 359
text 344
using internal code editor 406

Search facility 1280
Search Results tab 32
Search window (Rational Rhapsody Platform

Integration) 62
Searching

advanced capabilities 210
delete item 212
elements 345
references 211
results changes 211
within fields 346

Select Association option 563
Select Information Flow option 583
Select tool 795
Selecting

association in OMD 564
elements 430
messages 685
multiple elements 431

Selection handles 431
Selective instrumentation 866
Self transitions 635
Self-directed message 683
Send Action 624, 756, 1260

code generation 756, 757
display options 757
1572 User Guide

Index
event 756
graphical behavior 757
properties 757
target 756

Sequence
field 684
UCD 528

Sequence diagrams 4, 5, 669
actor line 695
animated 1115
animated, partial 1091
animated, show transition states 1119
animating return values 691
auto-create instance lines 1117
automatic animation 703
cancelled timeout 674
comparison 707, 711
comparison excluding a message 713
comparison of instance groups 715
comparison of message arrival times 710
comparison of message groups 720
comparison, algorithm 707
comparison, color coding 709
comparison, saving options to a file 711
condition mark 675, 693
create arrow 674
created from activity diagrams 1234
creating 44, 674
creating message in 681
data flow 674
dataflows 696
deleting 706
destroy arrow 674, 693
destruction event 675
drawing tools 674
editor 13
execution occurrence 675
files 264
found message 675
generated from activity diagrams 1263
icon in browser 301
instance line 674, 677
IntelliVisor information 465
interaction occurrence 675, 698
interaction operator 675
interaction operator separator 675
layout 670
link wizard 1240
lost message 675
menu in browser 706
message 674, 681
message types 687
messages 1121
navigating to reference 699
part decomposition 700
partition line 674, 698
property for sequence numbers 689

reference diagrams 698
reply message 674
reusable scenarios 675
sequence numbers 689
shifting elements with mouse 705
system border 674, 676
time interval 674, 695
timeout 674
timeouts 694

Serialization
generating methods 970
implementation methods 971
reactive instances 970

Server
default Tornado target 199

Service Oriented Architecture (SOA) 272
Service ports 973, 1264
SetDeviceName function 1193
SetHomePageUrl function 1194
SetPropPortNumber function 1194
SetRefreshTimeout function 1194
setSeparateSaveUnit 259
SetSignaturePageUrl function 1194
Settings 314, 377

backward compatibility profiles 377
WindowPos variable 198

Settings tab 864
Severity checks 883
S-functions 1435
Shadows 1400
Shortcuts 1459
Shortcuts, keyboard 399
show command 1159
Show Inherited option 538
Show Labels 297
Show Relations in New Diagram menu command 82,

323, 956, 1376
Show Roles Labels option 563
ShowAnimCancelTimeoutArrow property 1123
ShowAnimCreateArrow property 1123
ShowAnimDataFlowArrow property 1123
ShowAnimDestroyArrow property 1123
ShowAnimStateMark property 1120
ShowAnimTimeoutArrow property 1123
ShowArguments property 682
ShowAttributes 414
ShowCGSimplifiedModelPackage property 979
ShowCleanImportData 1416
ShowContainerElementForPorts property 233
ShowLabels 327
ShowLogViewAfterBuild property 31
ShowOperations 414
ShowPorts property 96
ShowPortsInterfaces property 96
Signature page

changing using the GUI 1174
changing using webconfig.c file 1194
Rational Rhapsody 1573

Index
Silent animation 1112
Silent mode 1094, 1112
Simplification 979
Simplified models 979
Simulation 1286

setting scope 1287
Simulink 1432

configuration 1436
flowports 1435
profiles 1433

Simulink integration 1431
SimulinkBlock 1431, 1433
Slanted message 683
Slider control 807
Slider tool 795
Smart generation 913
Snapshot 1465

viewing system 537
Socket mode

command-line interface 1440
Software

configuration management 149
developers 127
development in Eclipse 280
prerequisites 128
product lines 241

Solaris, Rational DOORS settings 1392
Source of transition 735
SourceArtifacts 1039, 1065
Special characters 251
Specialization parameters 123
Specification field 369
Specification files 1054, 1055
SpecificationEpilog property 949
SpecificationExtension property 988
SpecificationHeader 945
SpecificationProlog property 949
Specifications

behavior 1286
comment 346
requirements option 346
UML 4

Specify object values 537
SpecInclude property 576
SpecIncludes property 1013
Spline line 420
SPT profile 208, 277
Stamp mode 418
Standard Diagram toolbar 41, 455
Standard Headers field 851, 864
Standard operation 966
Standard toolbar 35
StandardOperations property 966
Statechart mode 650, 725, 732
Statecharts 4, 5, 726, 728, 1286

"And" line in 758
active transitions 768

And states 726
animated 1124
basic state 726
compound transitions 738
created from class for Harmony 1235
creating 44
creating new 409
decision node 727
dependency 728
description 730
diagram connector 728, 762
drawing options 727
editor 13
else branch 760
EnterExit point 728
events 742
events and operations 751
flat 865
for a use case 523
forks 739
guards 747
history connector 727, 761
icon in browser 301
inheritance 771
initial connector 750
inlining 786
inlining code 786
IntelliVisor information 466
IS_IN 781
join transitions 728
junction connector 727, 762
leaf state 726
local termination code 732, 733
local termination rules 651
merge sub-statechart 766
messages 751
operations 751
Or states 726
overriding inheritance 776
parent 765
reusable 865
SDLBlock 293
semantics 767
Send Action 756
send action 728
separate transitions 728
serialization 970
single-action 770
states 726
static reactions 774
sub-statecharts 728
Tabular 787
termination connector 727, 767
termination state 728
timeout triggers 746
transition labels 728, 741
transitions 735
1574 User Guide

Index
transitions in 735, 741
triggers 741
Updating EnterExit points 764

StatemateBlock profile 1386
States 726

action 622, 658, 1260
activity diagrams 622
And and code generation 733
basic 726
block 628, 660
creating 728
drawing 728
final 650
leaf 726
names 728
Or 726
Or and code generation 732
Or and local termination code 733
subactivity 1261
termination 728, 732
transitions between 1262

Static
attribute 934
attributes 71
modifier 70

Static architecture 959
memory allocation algorithm 962

Static blocks 1213
Static import 1212
Static memory allocation 960

algorithm 962
conditions 963
limitations 963

Static reactions 774
Statistics page 1187
Status of an object 1159
Stereotypes 375, 385, 1248

associating a bitmap 387
associating with element 385
automotiveC profile 1382
browser icon 300
change order 387
composite requirement 1249
conform 1226
copying MOEs 1235
defining a tag 390
deleting 388
dependency 1256
derive 84, 1248
derive requirement 1249
display for compartment lists 454
display with elements in browser 335
extend requirement 1249
graphical representation 336
inheritance 389
New Term 505
new term 385, 386, 389

NewTerm 53
problem 1226
refine requirement 1249
satisfy requirement 1249
SDLBlock 292
serviceContract 273
serviceProvide 273
show label 88
special 389
specilized requirement types 1249
static for variants 242
SysML allocation 1226
SysML blocks 1226
SysML model element 1226
SysML requirements 1227
trace requirement 1249
verify requirement 1249

store.log file 265
Straight line 420
Strategic viewpoint (MODAF) 1345
StrictExternalElementsGeneration 604
Structural view 5
Structure diagrams 4, 5, 238, 239, 829, 1264

compared to OMD 829
composite class 830
creating 44
dependencies 835
drawing tools 830
files 264
flows 835
icon in browser 301
IntelliVisor information 468
links 835
objects 830, 831
ports 835
toolbar 830

Structure type 109
Structure, modeling as a type 1025
Structured class 457
Stub unit 262
Subactivities 624
Subactivity 629, 630

creating 630
creating from action blocks 629

Subactivity diagrams 630
Submachine 765

opening 765
Submenu#Listproperty 505
Submenu#Name property 505
Submenu1List property 502
Submenu1Name property 502
Submenu2List property 502
Submenu2Name property 502
Submenu3List property 502
Submenu3Name property 502
Submenu4List property 502
Submenu4Name property 502
Rational Rhapsody 1575

Index
SubmenuList property 502, 505
Subpackages 316
Sub-statechart, merge into parent statechart 766
Subsystems

operations allocated to 1238
Subversion (SVN) 132
Superclass 300, 462, 545, 548

add 549
prevent code generation for 549

SupportExternalElementsInScope 604
Suspend 1127
SV-1 System Interface Description 1325
SV-10a Systems Rules Model 1326
SV-10b System State Transition Description

diagram 1326
SV-10c System Event-Trace Description diagram 1326
SV-11 Physical Schema diagram 1326
SV-2 System Communication Description

diagram 1326
SV-4 System Functionality Description diagram 1326
SV-8 System Evolution Description diagram 1326
SVM 132
Swimlanes 621, 622, 624, 642, 1260, 1262

converted to life lines 1234
divider 643
dividers, deleting 644
frame 643
frames, deleting 645
limitations 645
subactivity limitation 1261
viewing in browser 644

Switches, command-line 1444
Swlimlanes

consistency checks 1234
Symbol

defined 998
preprocessor 995
undefined 1000

Synchronization 638
bar constraints 634
bars 638
between client and server 745
code changes 603
fork bars 639
modifying bars 641
Rational Statemate and Rational Rhapsody 1388

Synchronization bar 640
Synchronization option 710
Synchronous events 681
SysML 2

action types 1257
activity diagrams 1257
activity modeling 1257
block definition diagrams 1225
diagrams 1226
dimension 1267
elements 1293

flow of control 1257
flows 1226
model element stereotypes 1226
model libraries 1226
parametric diagram 1272
ports 1226
profile 1245
project type 1224
report template 1201
requirements diagrams 1245
requirements in 1227
SA imported elements 1293
specialized requirement types 1249
Teamcenter 1298, 1300
units 1267
units and value types 274
valueType 1267

SysML profile 208, 1224
allocation 1226
Architect for Software edition 240
packages 1226
requirements tabular view 1250
starting point 1225
with NetCentric 275

System
border 676
border in ASDs 1121
boundary box 520
thread 1099
viewing snapshot 537

System Architect (SA) 1293
creating SysML diagram from 1296
encyclopedia 1295
importing DoDAF elements 1295
mapping elements to Rational Rhapsody 1293
post processing 1297

System engineering
activity view 1232

Systems engineering 1223
accept event action 1259
action pins 623, 1259
activity diagrams 1257
activity diagrams drawing icons 1259
activity parameters 623, 1259
activity view 1234
actors 1252
architectural design wizard 1238
architecture 1265
block definition diagram 1265
create ports and interfaces 1236
creating a project 1223
defining dependencies 1248
design structure 1264
diagrams 1223
display options 1276
equations 1276
fork node 1263
1576 User Guide

Index
Harmony 1234
Harmony process 1230
initial flow 1261
link wizard 1240
modeling behavior 1286
modeling data types 274
organize activities 1262
requirements 1242
simulation 1286
statecharts 1286
stereotypes 1256
subactivity 1261
SysML profile 1224
system boundary 1252
tracing requirements 1255
transitions 1261
use case diagrams 1242, 1251
using WSDL files 273
validation 1286
version 1223

Systems view (DoDAF) 1313
Systems viewpoint (MODAF) 1346

T
Table views 222, 226

attributes listed in 224
binding view and layout 234
customize for MODAF 1360
export data 236
layouts 223
layouts for SysML 1226
manage data 236
requirements listed in 224

Tags 354, 375, 390
browser icon 300
creating 390
deleting 393
DoDAF 1327
features 390
global 391
graphical representation 336
individual element 391
stereotype 390
tab 83

Target
building 916
default Tornado server 199
field 736
main() 172
name 172
of hyperlink 56
type 172

Target monitoring 21
Targets 916

for hyperlinks 58
icons for hyperlinks 57

Send Action 756
Teamcenter 1298

creating Rational Rhapsody model 1301
importing Rational Rhapsody model 1300
integration 1298
modifying elements shared with Rational

Rhapsody 1301
prerequisites for working with Rational

Rhapsody 1300
SysML 1298, 1300
UML 1298, 1300
viewing corresponding Rational Rhapsody

elements 1302
Technical support 1461

new customers 1461
Technical view (DoDAF) 1313
Technical viewpoint (MODAF) 1346
Template check box 73
Template Class 122
Template instantiation 123
Template Instantiation Argument window 125
Template specialization 122, 123
Templates 122, 1196

classes 66
code generation 126
customizing report 1199
DiffMerge tool 122
for code-based documentation systems 944
instantiation 66
limitations 126
ModafReport.tpl 1370
parameters 126
reverse engineering (C++ only) 1037
roundtripping (C++ only) 1058
system model 1201

Termination
connector 763
state 732

Terminology
in customized profile 385

Test bench 1235
TestConductor 265
Testing

application on remote target 1088
phase 9

Testing profile for OMG 209
TestingProfile 1235
Text

adding to file 854
editing 452
editor 392
format 42, 439
in Asian languages 327
selecting editor 855

Text Box control 806
Text Box tool 795
Third-party interfaces 16
Rational Rhapsody 1577

Index
this_ variable 653
Threads 1147

active 1100
animation 1098
focus in animation 1098
focus in tracer 1158
mainThread 1099
multiple 319, 1099
naming in animation 1099
naming in tracing 1147
priority 1100
resuming 1158
suspending 1162
system 1099

TIFF 364
Tile, maintaining window content 23
Time

behavior modeling 785
interval 674, 695
message arrival 710
Model field 864
model setting 172
out trigger 746
outs 1, 694
real setting 864
real-time environment 1
simulated setting 864
stamp 218, 1127
stamp command 1162

Timeout 674
cancelled 674, 694
creating 694
trigger 746

timestamp command 1162
Tip section

FilePos variable 198
StartUp variable 198
TimeStamp variable 198

tm() keyword 746
To-many relations 956
Tool

Break 1095
Call operations 692, 1108
Command Prompt 1095

Toolbars
Animation 40, 1093
arrange 448
Code 37
Favorites 40, 307
Format 42, 439
Free Shapes 42, 422
Layout 42, 450
modeling 40
Standard 35
structure diagram 830
VBA 40
Windows 39

zoom 41, 455
Tools

Common drawing 41
Tools menu 474, 503
To-one relations 956
Tornado 289, 290, 291

DefaultTargetServerName variable 199
Trace 1127, 1156

calling operations 692, 1108
command 1162
field 866
requirements 1248
selective 866

trace stereotype 1250
Tracer 1143

break command 1148
CALL command 1151
commands 1126, 1148
display commands 1153
ending a session 1145
GEN commands 1153
go command 1154
help command 1155
input 1155
input command 1155
messages 1167
output command 1157
output destination 1157
quit command 1157
show command 1159
starting a session 1144
stepping through the application 1154
timestamp command 1162
trace command 1162
using 1143
watch command 1166

Trade analysis option 1235, 1237
Transition states 1119
Transitions 735, 1261

active 768
activity diagrams 634
adding actions on 1277
completion 635
compound 738
conflicts 768
context 735
context message parameters 783
creating activity diagram 634
execution 770
fork 739
in statecharts 735
join 624, 728, 739, 747
join for activity diagrams 636
label 623, 728
label for activity diagrams 636
label for statechart 741
labels 636
1578 User Guide

Index
labels in statecharts 741
loop for activity diagram 635
null activity diagrams 650
null in statecharts 747
priorities 768
separate 624, 728
statechart 735
to self 635
types 738

Translative code generation 910
Transparency 388
Trigger 741

field 736
null 747
selecting 740
timeout 746

TriggerArgument property 112
Triggered operations 75, 688

applying 745
replies 745
roundtripping 1055
statechart 745

Troubleshooting
clean configuration 921
code generation 921
connecting to models from the Web 1177
controlled files 356
DoDAF 1334, 1337
MODAF 1373, 1374
MODAF and ReporterPLUS 1371
Rational Statemate with Rational Rhapsody 1389
ReporterPLUS and MODAF 1371
Simulink 1434

Type declarations search option 347
Type field 851, 1224, 1232

block 534, 832
Typedef 110, 1024
Types 320

$Type keyword 174
block definition diagram value 1267
composite 106
creating 106
creating enumerated 107
creating languages 108
creating structure 109
creating typedef 110
creating union 110
data 274
editing the order of 115
field 114
language 109
language-independent 113
logical file 853
message 687
modifying 70
nested 67
predefined 113

primitive operations 73
receptions 75
roundtripping user-defined 1055
transitions 738
user-defined 1154

U
UML 2, 1425

diagrams 4, 205
dynamic behavior view 5
export format to XMI 1426
export versions 1426
import format from XMI 1429
MODAF 1342
signal 73
structural view 5
Teamcenter 1298, 1300
views 5

Undefined symbol 1000
Undo 216

limitations 216
operations that cannot be undone 216
zoom 457

Undo/Redo internal code editor 405
Undock Features window 51
Unicode characters 314
Unified Modeling Language

diagrams 4
dynamic behavior views 5
structural views 5

Union 110
creating 110
reverse engineering 1038

UNISYS format for diagrams 1426, 1428
Units 253

access privileges 255
adding to model 136
adding to workspace 262
browser icon 299
characteristics 254
ClassIsSavedUnit property 258
comparing 266
creating 255
elements saved as 246
file extension 255
icons 246, 256
importing 136
loading 262
loading and unloading 256
modifying 256
names 254
projects 253
referencing 246, 254
saving in separate directories 258
saving individual 256
separating project into 255
Rational Rhapsody 1579

Index
stub 262
SysML 1267
Unit View 150
unloaded 262
unresolved 262
view 302

Unloaded unit 262
Un-override 180
Unresolved references 261, 278
Unresolved unit 262
Update-on-Break mode 1112
UPDM

profile 209
Upload file 1184
Upload to a File Server page 1186
Usage of elements 342
UsageType property 611
Use case diagrams 4, 5, 517, 1251

associations 527
automatically populating 412, 415
boundary box 1252
creating 410, 519
defining SysML requirements 1255
dependencies 528, 1255
drawing icons 519
editor 13
files 264
flow of information 1256
generalizations 527
icon in browser 301
IntelliVisor information 468
packages 526
Rational Rhapsody Gateway 1242
system boundary box 520
tracing requirements 1255

Use cases 321, 520, 1251
actors with 1254
attributes 521
browser icon 300
creating 520
creating a statechart 523
define features 1253
drag and drop 331
in requirements diagrams 1247
operation 522
requirements 1255
view in browser 302

Use Default check box 864
Use existing type field 69, 73
UseAsExternal property 1016
UseCalculatedRootDirectory property 1015
UseDescriptionTemplates property 1209
UseIncrementalSave property 218
User Points option 420
UseRapidPorts property 292
User-defined checks 881, 886
User-defined keywords (reverse engineering) 1001

User-defined type 1154
creating 69
generate event of 1096
Typedefs 1024

UseRemoteHost property 1086
Utilities 15, 1318

V
Validation 1286
Value field 537
Value, specifying for instances 537
VariableInitializationFile property 319
Variable-length argument list 935
VariableLengthArgumentList 935
Variables 319

adding to a diagram 596
create 319
environment used by Rational Rhapsody 196
global 319
ordering 319
roundtripping 1056
rpyRetVal 653
tab 590
this_ 653

Variants 241, 242
static stereotype 242

Variation points 241
VB

versus VBA programs 481
VBA 21, 482

adding macros 479
keyboard shortcuts 1456
macros 482
project file 265, 481
toolbar 40
using with the Rational Rhapsody API 481
versus VB programs 481

verify stereotype 1250
Video capture 1465
View

components 302
conform 1228
designing 1181
diagrams in browser 302
entire model 302
generated code 921
internal code editor options 395
model from the Web 1183
overridden properties with browser filter 302
property filters 180
property tables 179
removing elements from 451
requirements 302
scale 457
split 403
Unit View 150
1580 User Guide

Index
use case 1409
use cases in browser 302
Viewpoint 1228

Viewing preference 262
Viewpoints 5, 1226

adding 1228
Views

packages 1227
Viewport 23
Views 5, 1226, 1227

creating 1227
hide empty cells 232
include descendants 226, 230
include ports 224, 233
matrix 230
show relations 224, 233
specification 457
structured 457
SysML requirements 1250
table 226

Visibility
attributes 69
destructors 79
primitive operations 73
receptions 75, 77

Visual programming environment (VPE) 155
Visual Studio 288

as IDE 279
Visualization Only (Import as External) 986
Visualize eternal elements 994
VPE 155

W
Warning 881
Watch command 1166
Watch mode 1094, 1112
Web browser, navigating to a model 1176
Web GUI 1183, 1184
Web pages

adding Rational Rhapsody functionality to 1189
automatic refresh rate 1194
binding embeddable objects 1190
changing home page in webconfig.c file 1194
Define View 1180
device name 1193
navigation 1178
Personalized Navigation page 1181

Web server 1171
changing port number 1194
customizing 1193
generating Web site 1176
port 1174

Web services 1185
libraries 1185
Statistics page 1187
Upload to a File Server page 1186

webconfig.c file 1186, 1193, 1194
Web-enable 1288

a model 1288
configuration 1288
interface 1291
property 1290
sending events to a model 1292
setting stereotype 1290

Web-enabled devices 1171, 1178
adding files to model 1184
Advanced Settings 1174
connecting to a model 1176
controlling 1183
customizing the GUI 1184
Define View page 1180
limitations 1173
name/value pairs 1183
Personalized Navigation page 1181
properties for 1175
setting elements as 1172
troubleshooting 1177
viewing 1183

Webify 864, 1172, 1288
setting parameters 1174
Toolkit 1171, 1185

WebManaged property 1175
Web-services Definition Language (WSDL) 208, 272

exporting 276
generating 275

Welcome Screen 33
Window

characteristics 17
docking 18
drawing area 23
keyboard shortcuts 1456
maintaining the content 23
output 24
position 198
preference 263
properties for internal code editor 395
repositioning 18
undocking 18
viewport 23

Windows 127, 352
browsers 1201
Internet Explorer 1428
navigation buttons 39
toolbar 39
viewing reports 1201

Wizards
Architectural Design 1238
Link 1240

Workflow 599, 994
Workflow Integration (Rational Rhapsody and

Eclipse) 127
Workspace 262

adding units to 262
Rational Rhapsody 1581

Index
creating 262
file 265
opening 263
saving 262
window preferences 263

X
XMI 1425

examining exported file 1428
export action pins 650
export activity parameters 650

export as version 2.1 1426
importing 1429
in development 1425
SysML support for version 2.1 1225

XML Metadata Interchange (XMI) 1425

Z
Zoom 41, 455

scaling percentage 457
undoing 457

Zoom to Fit button 457
1582 User Guide

	Contents
	Introduction to Rational Rhapsody
	Rational Rhapsody features
	UML design essentials
	UML diagrams
	UML views
	Diagrams in Rational Rhapsody
	Specify a model with Rational Rhapsody

	Development methodology
	Analysis
	Design
	Implementation
	The testing phase

	Rational Rhapsody tools
	The Rational Rhapsody browser
	The Favorites browser
	Diagram tools
	Graphic editors
	Code generator
	Animator
	Utilities
	Third-party interfaces

	Rational Rhapsody windows
	View menu commands
	View > Status Bar
	View > Favorites
	View > Features
	View > Description
	View > Tags
	View > Relations
	View > Properties
	View > Browser
	View > Label Mode
	View > Workbar Mode
	View > Gradient Mode
	View > Full Screen Mode
	View > Maintain Window Content
	View > Output Window
	View > Active Code View
	View > Bird’s Eye
	View > Pop Context
	View > Toolbars > Diagrams
	View > Toolbars > Code
	View > Toolbars > Browser Filter
	View > Toolbars > Start Target Monitoring
	View > Toolbars > Target Monitoring
	View > Toolbars > VBA

	Browser
	Diagram drawing area
	Maintaining the window content
	Changing the drawing area window display

	Diagram navigator
	Output window
	Log tab
	Check Model tab
	Build tab
	Configuration Management tab
	Animation tab
	Search Results tab

	Active Code View window
	Specification tab
	Implementation tab

	Welcome window

	Rational Rhapsody project tools
	Browser filter
	Standard tools
	Edit menu commands
	Edit > Undo
	Edit > Redo
	Edit > Cut
	Edit > Copy
	Edit > Paste
	Edit > Delete
	Edit > Search
	Edit > Advanced Search and Replace
	Edit > Search Inside Selected

	Tools for Generating and running code
	Tools for managing and arranging windows
	Tools for the Favorites browser
	Tools for the VBA interface options
	Tools for animation
	Tools for creating and editing diagram elements
	Tools for common annotations
	Tools for zooming diagram views
	Tools for formatting text
	Tools for the layout of elements
	Tools for free shapes

	Creating diagrams
	Tools for creating/opening diagrams
	Opening the main diagram
	Locating in the browser

	Add new elements
	Add New > Event
	Add New > Interface
	Add New > Actor
	Add New > Tag
	Add New > Use Case
	Add New > Requirement
	Add New > Flow Item

	The Features window
	Open the Features window
	Applying changes with the Features window
	Canceling changes on the Features window
	General tab
	Properties tab
	Pinning the Features window
	Hiding the buttons on the Features window
	Docking the Features window
	Undocking the Features window
	Opening multiple instances of the Features window
	Displaying a tab on the Features window in a stand-alone window
	Docking a stand-alone window for a Features window tab
	Undocking a stand-alone window for a Features window tab
	Hiding tabs on the Features window

	Hyperlinks
	Create hyperlinks
	Creating hyperlinks on the Description tab
	Creating hyperlinks on the Rational Rhapsody browser

	Following a hyperlink
	Edit a hyperlink
	Editing the hyperlink in the Description area
	Using tag values in hyperlinks
	Changing the tag value

	Deleting a hyperlink
	Hyperlink limitations

	Create a diagram
	Creating a diagram

	Create a Rational Rhapsody project
	Creating a Rational Rhapsody project

	Import a Rational Rhapsody project
	Importing a Rational Rhapsody project

	Import source code
	Importing source code

	Search window
	Graphic editors
	Call stack and event queue

	Classes and types
	Creating a class
	Class features
	Defining the characteristics of a class
	Selecting nested classes in windows

	Defining the attributes of a class
	Defining the features of an attribute
	Launching a text editor
	Modifying data types

	Class operations
	Primitive operations
	Creating a primitive operation
	Defining the features of a primitive operation

	Receptions
	Creating a reception using the Features window
	Creating a reception using the browser
	Reception features
	Deleting receptions

	Triggered operations
	Constructors
	Creating a constructor
	Defining constructor features
	Adding initialization code

	Destructors
	Creating a destructor
	Modifying the features of a destructor

	Define class ports
	Define relations
	Showing all relations for a class, object, or package in a diagram
	Defining class tags
	Defining class properties

	Adding a class derivation
	Making a class an instance
	Defining class behavior
	Generating, editing, and roundtripping class code
	Generating class code
	Editing class code
	Roundtripping class code

	Opening the main diagram for a class
	Display option settings
	General tab display options
	Advanced Image View Options window

	Displaying attributes and operations

	Removing or deleting a class
	Ports
	Partial specification of ports
	Considerations
	Implicit port contracts
	Rapid ports

	Creating a port

	Specifying the features of a port
	The Port General tab
	The Port Contract tab
	Specifying the port contract
	Display options for ports

	The Tags tab
	The Properties tab

	Viewing ports in the browser
	Connecting ports
	Using rapid ports
	Selecting which ports to display in the diagram
	Creating a new port for a class
	Showing all ports
	Showing new ports only
	Hiding all ports
	Deleting a port
	Programming with the port APIs in C++
	Basic API tasks
	Intermediate-level tasks
	Advanced-level tasks

	Port code generation in C
	Action language for sending events

	Port code generation in Java

	Composite types
	Creating enumerated types
	Creating language types
	Using %s
	Creating structures
	Creating Typedefs
	Creating unions
	Properties

	Language-independent types
	Changing the type mapping
	Changing the order of types in the generated code

	Using fixed-point variables
	Defining fixed-point variables
	Operations permitted for fixed-point variables
	Restrictions on use of fixed-point variables
	Fixed-point conversion macros

	Java enums
	Adding a Java enum to a model
	Defining constants for a Java enum
	Adding Java enums to an object model diagram
	Code generation
	Creating Java enums with the Rational Rhapsody API

	Template classes and generic classes
	Creating a template class
	Using template classes as generalizations
	Creating an operations template
	Creating a functions template
	Instantiating a template class
	Code generation and templates
	Template limitations

	Eclipse platform integration
	Platform integration prerequisites
	Confirming your Rational Rhapsody Platform Integration within Eclipse
	Rational Rhapsody Platform Integration within Eclipse
	Rational Rhapsody perspectives in Eclipse
	Opening perspectives
	Rational Rhapsody modeling perspective
	Rational Rhapsody Debug perspective

	Rational Rhapsody Eclipse support for add-on tools

	Eclipse projects
	Creating a new Rational Rhapsody project within Eclipse
	Opening a Rational Rhapsody project in Eclipse
	Adding new elements
	Filtering out file types
	Exporting Eclipse source code to a Rational Rhapsody project
	Importing Rational Rhapsody units
	Importing source code (reverse engineering)
	Search and replace in models
	Accessing the Rational Rhapsody search facility in Eclipse
	Customize the search criteria
	Search results display
	Working with search results

	Generate and edit code
	Checking the model
	Generate code
	Creating an Eclipse IDE project
	Generating code

	Selecting Dynamic Model-Code Associativity
	Edit code
	Launching the Eclipse code editor from the browser or diagram
	Editing code from a diagram element
	Locating an element in the browser from the editor
	Viewing code associated with a model element

	Build, debug, and animate
	Building your Eclipse project
	Debugging your Eclipse project
	Rational Rhapsody animation in Eclipse
	Preparing for animation
	Run animation
	Debug animated applications

	Eclipse configuration management
	Parallel development
	Configuration management and Rational Rhapsody unit view
	Navigating to the unit view
	Navigating to the model browser

	Sharing a Rational Rhapsody model
	Performing team operations
	Rational Rhapsody DiffMerge facility in Eclipse

	Generate Rational Rhapsody reports
	Generating a report

	Properties
	Rational Rhapsody properties overview
	Property groups and definitions
	Subjects
	Metaclasses

	Regular expressions
	Regular expression syntax
	Parsing regular expressions

	Property file format
	Rational Rhapsody keywords
	Predefined variables
	Map custom properties to keywords

	Rational Rhapsody properties
	Using the Properties tab in the Features window
	Properties definitions display
	Searching for properties
	Resizing the Features window
	Filtering views
	Filtering properties
	Adding and removing the common view
	Property controls
	Overridden properties
	Changing a property value
	Visibility of properties

	PRP files
	Customizing existing properties
	Adding customized properties
	Adding comments to the properties files
	Including PRP files

	Property inheritance
	Concepts used in properties
	Static architectures
	IncludeFiles
	Selective framework includes
	Reactive classes
	Units of collaboration
	The Executer

	Rational Rhapsody environment variables
	Format properties
	Defining default characteristics
	Defining line characteristics

	Rational Rhapsody projects
	Project elements
	Creating and managing projects
	Creating a project
	Profiles
	Opening an existing Rational Rhapsody project
	Search and replace facility
	Searching models
	Search results
	Examining references in search results
	Deleting located items
	Replacing

	Locating and listing specific items in a model
	File menu commands
	File > New
	File > Add to Model
	File > Add Java API Library
	File > Configuration Items
	File > Compare

	Editing and changing a project
	Adding elements
	Adding a Rational Rhapsody profile manually
	Editing in the Features window
	Undo and redo

	Using IDF for a Rational Rhapsody in C project
	Saving a project
	Saving a project in a new location
	Incremental save
	Autosave

	Renaming a project
	Refactoring or renaming in the user code
	Previewing the rename changes
	Examining the renamed elements

	Closing all diagrams
	Closing a project
	Closing Rational Rhapsody
	Creating and loading backup projects
	Archiving a project

	Table and matrix views of data
	Basic method to create views from layouts
	Creating a table layout
	Adding a new row to the table layout

	Creating a table view
	Changing the layout for a generated table
	Including and excluding descendants
	Analyzing data in the table
	Adding elements to a table

	Creating a matrix layout
	Selecting the element types for the matrix layout
	Modifying the matrix layout

	Creating a matrix view
	Filtering out rows and columns without data
	Including ports and multiple relations
	Adding elements to a matrix

	Setting up an initial layout for table and matrix views
	Managing table or matrix data

	The Rational Rhapsody specialized editions
	Creating projects in Rational Rhapsody Designer for Systems Engineers
	Creating projects in Rational Rhapsody Architect for Systems Engineers
	Creating projects in Rational Rhapsody Architect for Software

	Components with variants for software product lines
	Creating variation points
	Defining variants
	Selecting a variant
	Generating code for software variations

	Multiple projects
	Inserting an existing project
	Inserting a new project
	Setting the active project
	Copy and reference elements among projects
	Creating references
	Copying elements to other projects
	Using the Shift key to copy, reference, or move elements

	Moving elements among projects
	Closing all open projects
	Managing project lists
	Saving projects in a project list file
	Opening a project file list
	Adding a project to a project list file
	Removing a project from a project list file

	Project limitations
	New project
	Placement of GUI elements
	References window
	DiffMerge
	Configuration management
	Properties
	Components and configurations
	VBA editor and the active project

	Naming conventions and guidelines
	Guidelines for naming model elements
	Standard prefixes

	Using project units
	Unit characteristics and guidelines
	Separating a project into units
	Modifying units
	Saving individual units
	Loading and unloading units
	Loading units from last session

	Saving packages in separate directories
	Flat mode
	Hierarchical mode
	Changing a hierarchical model to a flat model

	Using environment variables with reference units
	Preventing unresolved references

	Using workspaces
	Creating a custom Rational Rhapsody workspace
	Adding units to a workspace
	Unloaded units
	Opening a project with workspace information
	Controlling workspace window preferences

	Project files and directories
	Parallel project development
	Unit types
	DiffMerge tool functions

	Project migration and multi-language projects
	Opening models from a different language version
	Multi-language projects
	Determining language of a unit in multi-language projects
	Code generation
	Language-specific differences in Rational Rhapsody
	Non-unit elements
	Reverse engineering
	Miscellaneous issues

	Domain-specific projects and the NetCentric profile
	Service consumers
	Service provider
	Creating a NetCentric project
	Creating a service contract to export as WSDL
	Exporting a WSDL specification file
	Importing a WSDL specification

	Schedulability, Performance, and Time (SPT) profile
	Manually adding the SPT profile to your model
	Using the stereotypes and tagged values
	Changing the profile

	Rational Rhapsody with IDEs
	IDE options
	Locating Rational Rhapsody elements in an IDE
	Opening the IDE
	Creating an IDE project

	Using the Rational Rhapsody Workflow Integration with Eclipse
	Converting a Rational Rhapsody configuration to Eclipse
	Importing Eclipse projects into Rational Rhapsody
	Creating a new Eclipse configuration
	Troubleshooting your Eclipse installation with Rational Rhapsody
	Switching between Eclipse and Wind River Workbench
	Rational Rhapsody tags for the Eclipse configuration
	Configuring Rational Rhapsody for Eclipse
	Eclipse workbench properties
	Editing Rational Rhapsody code using Eclipse
	Locating implementation code in Eclipse
	Opening an existing Eclipse configuration
	Disassociating an Eclipse project from Rational Rhapsody
	Workflow integration with Eclipse limitations

	Visual Studio IDE with Rational Rhapsody
	Changing an existing Rational Rhapsody configuration to Visual Studio
	Adding a new Visual Studio configuration
	Creating a new Visual Studio project

	Co-debugging with Tornado
	Preparing the Tornado IDE
	IDE operation in Rational Rhapsody
	Co-debugging with the Tornado debugger
	IDE properties

	Creating Rational Rhapsody SDL blocks

	Model elements
	Browser techniques for project management
	Opening the Rational Rhapsody browser
	Browser display options
	Setting the Organize Tree mode to flat
	Setting the Categories mode
	Displaying model element labels
	Showing the implementation arguments
	Setting the project scope
	Showing the active component elements within the project scope

	Basic browser icons
	Rational Rhapsody browser menu options
	Deleting items from the Rational Rhapsody browser

	The Browse From Here browser
	Opening a Browse From Here browser
	Closing a Browse From Here browser
	Navigating a Browse From Here browser
	Deleting items from the Browse From Here browser
	Browse From Here browser limitations

	The Favorites browser
	Favorites toolbar
	Showing and hiding the Favorites browser
	Creating your Favorites list
	Creating a folder structure for your Favorites
	Re-ordering the items on your Favorites list
	Removing items from your Favorites list
	Favorites browser limitations

	Elements
	Adding elements
	Naming new elements in the browser
	Browser settings

	Components
	Configurations
	Configuration files

	Packages
	Package design guidelines
	Creating a package
	Using functions
	Creating a global function
	Changing what a function returns

	Using objects
	Using variables
	Creating a variable
	Variable ordering in C++

	Dependencies
	Constraints
	Classes
	Types
	Receptions
	Events
	Actors
	Use cases
	Nodes
	Files

	Diagrams
	Adding diagrams
	Locating an element on a diagrams
	Example of Locate On Diagram from code view
	Locate On Diagram rules
	Locate On Diagram limitations

	Element identification and paths
	Descriptive labels for elements
	Setting properties for Asian languages
	Adding a label to an element
	Removing a label from an element
	Label mode

	Modify elements
	Moving elements
	Copying elements
	Renaming elements
	Deleting elements
	Editing multiple elements
	Re-ordering elements in the browser
	Displaying stereotypes of model elements
	Creating graphical elements
	Supported image formats
	Associating an image file with a model element
	Displaying associated images
	Restoring image size, proportions
	Modifying, replacing, and removing associated image files
	Compatibility with previous image association mechanism
	Controlled files and image association

	Smart drag-and-drop
	Searching in the model
	Finding element references
	Advanced search and replace features
	Using the auto replace feature
	Searching for elements
	Searching in field types
	Previewing in the search and replace facility

	Controlled files
	Creating a controlled file
	Browsing to a controlled file
	Controlled file features
	Adding dependencies to controlled files
	Adding tags to controlled files
	Configuration management

	Troubleshooting controlled files
	Controlled file limitations
	General limitations
	DiffMerge limitations
	Search and replace limitations

	Print Rational Rhapsody diagrams
	Selecting which diagrams to print
	Diagram print settings
	Using page breaks

	Exporting Rational Rhapsody diagrams
	Annotations for diagrams
	Creating annotations
	Creating dependencies between annotations
	Creating hierarchical requirements

	Editing annotation text
	Defining the features of an annotation
	Converting notes to comments
	Anchoring annotations
	Finding constraint references
	Deleting an anchor

	Changing the display options for annotations
	Deleting an annotation
	Using annotations with other tools
	Annotation limitations

	Profiles
	Creating a project without a profile
	Backward compatibility profiles
	Types of profiles
	Converting packages and profiles
	Profile properties
	Use a profile to enable access to your custom help file
	About creating your custom Help file and map file
	About creating your custom help file
	Enabling access to your custom help file
	Testing the custom help file
	Using the custom help file

	Stereotypes
	Associating stereotypes with an element
	Associate a stereotype with a new term element
	Re-ordering stereotypes in a list
	Associating a stereotype with a bitmap
	Deleting stereotypes
	Establishing stereotype inheritance
	Special stereotypes

	Use tags to add element information
	Defining a stereotype tag
	Defining a global tag
	Defining a tag for an individual element
	Adding a value to a tag
	Using the internal text editor

	Deleting a tag

	The Internal code editor
	Window properties
	The Color/Font tab
	Changing the default colors
	Changing the default font

	The Language/Tabs tab
	The Keyboard tab
	Assigning custom keyboard mappings
	Default keyboard mappings

	The Misc tab
	Using split views

	Mouse actions
	Using Undo and Redo
	Using the search feature of the internal code editor
	Bookmarks
	Printing from the internal code editor

	Graphic editors
	Create new diagrams
	Creating new statecharts
	Creating new activity diagrams
	Creating all other diagram types

	Opening existing diagrams
	Navigating forward from opened diagram to opened diagram
	Navigating backwards from opened diagram to opened diagram

	Deleting diagrams
	Automatically populating a diagram
	Relation type styles
	Creating and populating a new diagram
	Automatically populating existing diagrams

	Property settings for the diagram editor
	Setting diagram fill color
	Create elements
	Repetitive drawing mode
	Drawing boxes
	Drawing arrows
	Changing the line shape

	Naming boxes and arrows
	Draw freestyle shapes
	Drawing lines and polylines
	Drawing polygons
	Drawing rectangles
	Drawing polycurves and closed polycurves
	Drawing ellipses and circles
	Drawing text
	Adding images
	Deleting freestyle shapes

	Placing elements using the grid
	Setting the grid properties
	Snapping to the grid
	Displaying the rulers

	Autoscroll
	Select elements
	Selecting elements using the mouse
	Selecting elements using the edit menu
	Selection handles
	Selecting multiple elements
	Shift+Click
	Clicking-and-dragging

	Edit elements
	Resizing elements
	Moving control points
	Moving elements
	Maintain line shape when moving or stretching elements
	Change the format of a single element
	Format text on diagrams

	Copying formatting from one element to another
	Changing the format of a metaclass
	Change the style scope

	Making the format for an element the default formatting
	Copy an element
	Simple copy
	Replicating
	Copying with model

	Arranging elements
	Layout toolbar

	Removing an element from the view
	Deleting an element from the model
	Editing text

	Display compartments
	Selecting items to display
	Display stereotype of items in list

	Zoom
	Zoom toolbar
	Zooming in and zooming out
	Refreshing the display
	Scaling a diagram
	Panning a diagram
	Undoing a zoom
	Specifying the specification or structured view

	The Bird’s Eye (diagram navigator)
	Showing and hiding the Bird’s Eye window
	Navigating to a specific area of a diagram
	Using the Bird’s Eye to enlarge and shrink the visible area
	Scrolling and zooming in drawing area
	Changing the appearance of the viewport
	General characteristics of the Bird’s Eye window

	Complete relations
	Use IntelliVisor
	Activating IntelliVisor
	IntelliVisor information
	Collaboration diagrams
	Component diagrams
	Deployment diagrams
	Sequence diagrams
	Statecharts and activity diagrams
	Use case diagrams
	Structure diagrams

	Customizations for Rational Rhapsody
	Helpers
	Creating a link to a helper application
	Examples of helper application menu commands
	Using a .hep file to link to helper applications
	Modifying a link to a helper application
	Modifying a .hep file

	Adding a VBA macro

	Visual Basic for applications
	VBA and Rational Rhapsody
	The VBA project file
	VBA versus VB programs
	Writing VBA macros
	Creating and editing macros
	VBA Macros window
	Saving your macros

	Exporting and importing VBA macros

	Creating a customized profile
	Creating a new stereotype for the new profile
	Re-using your customized profile

	Adding new element types
	New terms and their properties
	Availability of out-of-the-box model elements

	Creating a customized diagram
	Adding customized diagrams to the diagrams toolbar
	Creating a customized diagram element
	Adding customized diagram elements
	Diagram types
	Diagram elements

	Customize the Add New menu
	Re-organizing the common list section of the Add New menu
	Re-organizing the bottom section of the Add New menu
	Customizing the Add New menu completely
	Re-using property changes to the Add New menu

	Creating a Rational Rhapsody plug-in
	Writing a Java plug-in for Rational Rhapsody
	Creating a .hep file for the plug-in
	Attaching a .hep file to a profile
	Troubleshooting Rational Rhapsody plug-ins
	Debugging Rational Rhapsody plug-ins
	The simple plug-in sample

	Use case diagrams
	Use case diagrams overview
	Opening an existing use case diagram
	Create use case diagram elements
	Use case diagram drawing tools
	System boundary box
	Use cases
	Creating a use case
	Modify the features of a use case
	Adding attributes to a use case
	Adding operations to a use case
	Adding extension points
	Creating a statechart or activity diagram for a use case diagram

	Actors
	Creating an actor
	Modify the features of an actor
	Adding attributes and operations
	Creating a statechart, activity, or structure diagram
	Generating code for an actor

	Creating packages
	Creating associations
	Creating generalizations
	Creating dependencies
	Sequences

	Object model diagrams
	Object model diagrams overview
	Object model diagram elements
	Object model diagram drawing tools
	Objects

	Opening an existing object model diagram
	Creating an object
	Object characteristics
	Parts in an object model diagram
	Object features
	Converting object types
	Converting classes to objects
	Code generation for objects
	Editing the declaration order of objects
	Changing the value of an instance

	Creating a vacuum pump model as an example
	Creating classes
	Class compartments
	Creating composite classes

	Creating a package
	Package features
	Inheritance
	Creating an inheritance with an inheritance arrow
	Creating inheritance in the browser
	Inheriting from an external class

	Realization
	Associations
	Bi-directional associations
	Creating a bi-directional association
	Association features
	The End1 and End2 tabs
	The End1 and End2 properties tabs

	Directed associations
	Creating a directed association
	Directed association features

	Aggregation associations
	Creating an aggregation association
	Aggregation association features

	Composition associations
	Creating a composite association
	Composition association features
	Associations in the browser
	Associations implementation
	Associations menu
	Select associations

	Links
	Creating a link
	Link features
	Link menu
	Using the complete relations functionality
	Code generation for links
	Populating one-to-many associations with objects
	Restrictions

	Dependencies
	Dependency arrows
	Drawing the dependency
	Creating the dependency in the browser
	Dependency features
	Dependency menu
	Constructive dependencies

	Actors
	Creating an actor
	The actor menu

	Flows and flowitems
	Creating a flow
	Features of a flow
	Conveyed information
	Flow menu
	Flowitems
	Flowitem features
	Adding a new information element
	Adding an existing information element to the flow

	Embedded flows
	Creating an embedded flow
	Changing the flow direction
	Changing display options for embedded flows
	Restrictions

	Files
	Creating a file
	File features

	Converting files
	Associations and dependencies
	Code generation for files
	Files with other tools

	Attributes, operations, variables, functions, and types
	Adding details to the object model diagram
	Flow ports
	Adding a flow port
	Atomic flow ports
	Defining non-atomic flow ports
	Updating attribute values

	External elements
	Reverse engineering
	Reverse engineering a single iteration
	Reverse engineering multiple iterations
	Creating external elements in pre-V5.2 models

	External elements created by modeling
	Using rapid external modeling
	Using the component model
	Creating a shortcut for Rational Rhapsody Developer for C

	Converting external elements
	Viewing the path to the source file
	External element code access
	Adding source files to the build
	Code generation for external elements
	Code generation for relations
	Limitations

	Implementation of the base classes
	Implicit invocation
	Explicit invocation
	Implement base classes window
	Base class tree view
	Editing the implementation code
	Controlling the display of the window
	Realizing the elements

	Namespace containment
	Property that controls display of namespace containment
	Displaying namespace containment

	Activity diagrams
	Activity diagram features
	Advanced features of activity diagrams
	Actions
	Activity diagram elements
	Activity diagram drawing tools
	Drawing an action
	Modify the features of an action
	Displaying an action
	Activity frames
	Creating an activity frame manually
	Creating an activity frame automatically
	Synchronizing the pins
	Updating activity pins

	Action blocks
	Creating an action block
	Modify the features of an action block
	Creating a subactivity from an action block

	Subactivities
	Creating a subactivity
	Opening a subactivity diagram

	Creating a final activity
	Object nodes
	Creating an object node
	Display options for an object node
	Object node features
	Associate an object node with a class

	Adding call behaviors
	Activity flows
	Creating an activity flow
	Completion activity flows
	Drawing initial flows
	Drawing loop activity flows
	Adding or modifying activity flow labels
	Modify activity flows

	Connectors
	Drawing merge nodes
	Drawing decision nodes
	Drawing diagram connectors

	Join or fork bars
	Creating join nodes
	Creating fork nodes
	Rotating join or fork bars
	Stretching join or fork bars
	Moving join or fork bars
	Modify join or fork bars

	Swimlanes
	Creating swimlanes
	Modify the features of a swimlane
	View swimlanes in the browser
	Deleting swimlane dividers
	Deleting the swimlane frame
	Swimlane limitations

	Adding calls to behaviors
	Modifying a called behavior
	Display called behaviors
	Called behavior limitations

	Add action pins/activity parameters to diagrams
	Making the action pin tool available
	Using the action pin
	Adding an activity parameter
	Modify features of action pins / activity parameters
	Graphical characteristics of action pins / activity parameters
	Other characteristics of action pins / activity parameters

	Local termination semantics
	Statechart mode
	Activity diagram mode

	Code generation
	Functor classes
	Limitations and specified behavior

	Flow charts
	Define algorithms with flow charts
	Flow charts similarity to activity diagrams
	Create flow chart elements
	Tools for drawing flow charts
	Actions
	Creating a flow chart
	Drawing an action
	Modify the features of an action
	Displaying an action

	Action blocks
	Creating an action block
	Modify the features of an action block

	Activity final
	Creating an activity final

	Activity flows
	Drawing activity flows
	Completion action flows
	Drawing initial flows
	Drawing loop activity flows
	Modify action flows

	Connectors
	Drawing merge nodes
	Drawing decision nodes

	Code generation
	Flow chart limitations and specified behavior

	Sequence diagrams
	Sequence diagram layout
	Names pane
	Changing names
	Renaming classifier roles

	Message pane

	Analysis versus design mode
	Showing unrealized messages
	Realizing a selected element

	Creating sequence diagram elements
	Sequence diagram drawing tools
	Creating a system border
	Creating an instance line
	Modifying the features of a classifier role
	Names of classifier roles
	Instance line menu

	Creating a message
	Message names
	Displaying message arguments
	Slanted messages
	Horizontal messages
	Message-to-self
	Message line menu
	Modifying the features of a message
	Selecting a message or trigger
	Browsing for messages
	Cutting, copying, and pasting messages
	Moving messages
	Message types
	Viewing sequence numbers

	Creating a reply message
	Animation of the return value for an operation

	Drawing an arrow
	Creating a destroy arrow
	Creating a condition mark
	Creating a timeout
	Creating a cancelled timeout
	Creating an actor line
	Specifying a time interval
	Creating a dataflow
	Creating a partition line
	Creating an interaction occurrence
	Navigating to a reference sequence diagram
	Interaction occurrence menu
	Part decomposition
	Limitations

	Creating interaction operators
	Characteristics of interaction operators
	Adding an interaction operator to a diagram
	Setting the type of an interaction operator
	Setting the guard of an interaction operator
	Adding an interaction operand separator to an interaction operator
	Interaction operator types

	Creating execution occurrences
	Deleting execution occurrences

	Shifting diagram elements with the mouse
	Display options

	Sequence diagrams in the browser
	Animation for selected classes
	Sequence diagram comparison
	Sequence comparison algorithm
	Comparing sequence diagrams
	Sequence comparison options
	The General tab for the sequence comparison
	The Message Selection tab
	Excluding a message in the comparison
	Comparing arguments

	The Instance Groups tab
	Creating object groups
	Deleting object groups
	Modifying object groups
	Resetting object groups

	The Message Groups tab
	Creating message groups
	Modifying message groups
	Deleting message groups

	Statecharts
	States
	Opening an existing statechart
	Statechart drawing tools
	Drawing a state
	State name guidelines
	Features of states
	Action on entry
	Action on exit
	Reactions in state

	Display options for states

	Termination states
	Local termination code with the reusable statechart implementation
	Or states in reusable statechart
	And states in reusable statechart

	Local termination code with flat statechart implementation
	Or states in flat statechart
	And states in flat statechart

	Transitions
	Creating a statechart transition
	Features of transitions
	Types of transitions
	Compound flows
	Forks
	Joins

	Selecting a trigger transition

	Transition labels
	Triggers
	Events
	Triggered operations
	Timeouts
	Null transitions

	Guards
	Actions

	Initial connectors
	Events and operations
	Sending events across address spaces
	Properties for sending events across address spaces
	API for sending events across address spaces
	Functions for serialization/unserialization
	Serialization function
	Unserialization function
	Example of serialization/unserialization functions

	Send action elements
	Defining send action elements
	Display options for send actions
	Graphical behavior of send actions
	Code generation for send actions

	And lines
	Drawing And lines

	Connectors
	Decision nodes
	Else branches

	History connectors
	Merge nodes
	Diagram connectors
	Termination connectors
	EnterExit points
	Updating EnterExit points

	Submachines
	Creating a submachine
	Opening a submachine or parent statechart
	Deep transitions
	Merging a sub-statechart into its parent statechart

	Statechart semantics
	Single message run-to-completion processing
	Active transitions
	Transition selection
	Conflicts
	Priorities
	Transition selection algorithm

	Transition execution
	Active classes without statecharts
	Single-action statecharts

	Inherited statecharts
	Types of inheritance
	Inheritance color coding
	Inheritance rules
	Rules for states
	Rules for transition labels
	Rules for entry and exit actions
	Rules for static reactions
	Rules for connectors

	Overriding inheritance rules
	Overriding textual information
	Refining the hierarchy of reactive classes
	Removing a level of inheritance
	Inheritance between two reactive classes

	IS_IN Query
	Message parameters
	Modeling of continuous time behavior
	Interrupt handlers
	Inlining of statechart code
	Tabular statecharts
	Format of statechart tables
	Modifying statecharts from tabular view
	Adding a transition
	Adding an event
	Deleting a transition, event, or state

	Panel diagrams
	Panel diagram features
	Creating a panel diagram
	Create panel diagram elements
	Panel diagram drawing tools
	Drawing a bubble knob control
	Drawing a gauge control
	Drawing a meter control
	Drawing a level indicator control
	Drawing a matrix display control
	Drawing a digital display control
	Drawing an LED control
	Drawing an on/off switch control
	Drawing a push button control
	Drawing a button array control
	Drawing a text box control
	Drawing a slider control

	Bind a control element to a model element
	Binding a control element
	More about binding a control element
	Attribute types

	Change the settings for a control element
	Changing the settings for a control

	Change the properties for a control element
	Properties for a bubble knob control
	Properties for a gauge control
	Properties for a meter control
	Properties for a level indicator control
	Properties for a matrix display control
	Properties for a digital display control
	Properties for a LED control
	Properties for a on/off switch control
	Properties for a slider control

	Setting the value bindings for a button array control
	Changing the display name for a control element
	Panel diagram limitations

	Structure diagrams
	Structure diagram drawing Tools
	Composite classes
	Objects
	Creating an object
	Features of objects
	Actual Call window for objects
	Changing the order of objects
	Supported Rational Rhapsody functionality in objects

	Structure diagram ports
	Links and associations
	Dependency uses
	Flows mechanism
	External files in C

	Collaboration diagrams
	Collaboration diagrams overview
	Collaboration diagram tools
	Classifier roles
	Multiple objects
	Actors
	Creating an actor

	Links
	Creating a link
	Features of links
	Changing the underlying association

	Link messages and reverse link messages
	Creating a link message or reverse link message

	Component diagrams
	Component diagram uses
	Component diagram drawing Tools
	Elements of a component diagram
	Components
	Creating a component
	Features of components

	Files
	Creating a file
	Adding an element to a file
	Adding text to a file
	Component diagram files menu

	Folders
	Creating a folder
	Features of folders
	Folders menu

	Dependencies
	Component interfaces and realizations
	Creating a component interface

	Flows

	Component configurations in the browser
	Component options
	Active component
	Setting the active component

	Configurations
	Configuration menu
	Setting the active configuration
	Features of configurations
	General tab
	Initialization tab
	Settings tab
	Checks tab
	Relations tab
	Tags tab
	Properties tab

	Using selective instrumentation
	Making permanent changes to the main file
	Creating components under a package

	Deployment diagrams
	Opening an existing deployment diagram
	Deployment diagram drawing tools
	Nodes
	Creating a node
	Changing the owner of a node
	Designating a CPU type
	Features of nodes

	Component instances
	Adding a component instance
	Moving a component instance
	Features of component instances

	Dependencies
	Adding a dependency

	Flows
	Assigning a package to a deployment diagram

	Checks
	Checker features
	The Checks tab
	Specifying which checks to run
	Checking the model
	Checks tab limitations
	User-defined checks
	Creating user-defined checks
	Removing user-defined checks
	Deploying user-defined checks
	External checks limitations

	List of Rational Rhapsody checks

	Basic code generation concepts
	Code generation overview
	The Code Toolbar
	Generating Code
	Incremental Code Generation
	Forcing Complete Code Generation
	Regenerating Configuration Files

	Smart Generation of Packages
	Generating Code Guidelines
	Dynamic Model-Code Associativity
	Generating Makefiles
	Stopping Code Generation

	Targets
	Building the Target
	Deleting Old Objects Before Building Applications

	Running the Executable
	Shortcut for Creating an Executable
	Instrumentation
	Stopping Model Execution

	Generating Code for Individual Elements
	Using the Code Menu
	Using the Browser
	Using an Object Model Diagram

	Results of Code Generation
	Output Messages
	Locating and Fixing Compilation Errors

	Viewing and Editing the Generated Code
	Setting the Scope of the Code View Editor
	Adding Line Numbers
	Editing Code
	Locating Model Elements
	Regenerating Code in the Editor
	Associating Files with an Editor
	Using an External Editor
	Viewing Generated Operations

	Deleting Redundant Code Files
	Generating Code for Actors
	Selecting Actors Within a Component
	Limitations on Actor Characteristics

	Generating Code for Component Diagrams
	Cross-Package Initialization
	Class Code Structure
	Class Header File
	Prolog
	Relationships to Other Classes
	Instrumentation
	User-Defined Attributes and Operations
	Variable-Length Argument Lists
	Synthesized Methods and Data Members for Relations
	Statechart Implementation
	Events Interface
	Serialization Instrumentation
	State Classes

	Implementation Files
	Headers and Footers
	Prolog
	Constructors and Destructors
	Operations
	Accessors and Mutators for Attributes and Relations
	Instrumentation
	State Event Takers
	Initialization and Cleanup
	Implementation of State Classes

	Changing the Order of Operations/Functions in Generated Code
	Using Code-Based Documentation Systems
	Template Properties
	Sample Usage
	The Model Profile
	Point Class Definition
	The Generated Code for the Point
	Roundtripping Behavior

	Wrapping Code with #ifdef-#endif
	Overloading Operators
	Using Anonymous Instances
	Creating Anonymous Instances
	Deleting Anonymous Instances
	Deleting Components of a Composite

	Using Relations
	To-One Relations
	To-Many Relations
	Ordered To-Many Relations
	Qualified To-Many Relations
	Random Access To-Many Relations

	Support for Static Architectures
	Properties for Static Memory Allocation
	Static Memory Allocation Algorithm
	Containment by Value via Static Architecture

	Static Memory Allocation Conditions
	Static Memory Allocation Limitations

	Using Standard Operations
	Applications for Standard Operations
	Event Serialization
	Canonical Forms of Classes
	Persistence
	Support for Frameworks

	Creating Standard Operations
	Template Keywords
	Standard Operations Example
	Customize Code Generation with Stereotypes
	Providing Support for Java Initialization Blocks

	Statechart Serialization
	Generating Methods for Serialization
	Serialization Properties
	Methods Provided for Implementing Serialization

	Generating Classes as Structs in C++
	Components-based Development in C
	Action Language for Code Generation
	Calling an operation via a C interface
	Sending an event via a C interface
	Calling an operation via a C port
	Sending an event via a C rapid port
	Sending an event via a C rapid port using ISR
	Querying the port through which the event was received
	Sending an event via a C non-rapid port

	C Optimization
	Backward Compatibility
	Limitations

	Customize C code generation
	Code customization concepts
	Customizing code generation
	Viewing the simplified model
	Customize the generation of the simplified model
	Properties used for simplification
	User-provided simplification (ByUser option)

	Customizing the code writer
	Customizing the C rules
	Placeholders package

	Deploying the changed rules

	Reverse engineering
	Reverse engineering restrictions
	Reverse engineering legacy code
	Reverse engineering tool features
	Displaying files in a tree view
	Displaying files in a flat view
	Reverse engineering messages in the Output window

	Initializing the Reverse Engineering window
	Excluding particular files
	Analyzing makefiles
	Visualization of external elements
	Defining preprocessor symbols
	Adding a preprocessing symbol
	Include/CLASSPATH paths
	Defined symbols (C and C++)
	Undefined symbols (C and C++)
	Additional keywords (C and C++)
	Dialects (C++)

	Analyzing #include files
	Analyzing header files with the same name
	Analyzing a list of files

	Mapping classes to types and packages
	Specifying directory structures
	C++ namespaces

	Specifying reference classes
	Reference classes
	Adding a reference class
	Deleting a reference class
	Modifying a reference class

	Locating a directory that contains reference classes

	Miscellaneous reverse engineering options
	Modeling classes as Rational Rhapsody types
	Modeling typedefs as user-defined types
	Modeling structures as types instead of classes

	Reflect data members

	Reverse engineering error handling
	Creating flow charts during reverse engineering
	Updating existing packages
	Command-line interface for populate object model diagrams
	Populate object model diagrams limitations

	Reverse engineering message reporting
	Code respect and reverse engineering for Rational Rhapsody Developer for C and C++
	Reverse engineering for C++
	Reverse engineering for Rational Rhapsody in Java
	Reverse engineering other constructs
	Unions
	Enumerated types

	Comments
	Limitations for comments

	Macro collection
	Collected macro file
	Code Generation
	Controlling macro collection

	Code generation of imported macros
	Limitations for imported macros
	Backward compatibility issues

	Results of reverse engineering
	Lost constructs

	Roundtripping
	Supported elements
	Roundtripping limitations
	Dynamic Model-code Associativity (DMCA)
	The roundtripping process
	Automatic and forced roundtripping
	Roundtripping classes
	Modifying code segments for roundtripping
	Recovering lost roundtrip annotations
	Roundtripping classes
	Roundtripping packages
	Roundtripping deletion of elements from the code
	Roundtripping for C++
	Roundtripping for Java
	Roundtripping properties

	Code respect
	Activating the code respect feature
	Where code respect information is defined
	Making SourceArtifacts display in the browser
	Manually adding a SourceArtifact
	Reverse engineering and SourceArtifacts
	Roundtripping and SourceArtifacts
	Code generation and SourceArtifacts
	Location of the generated files

	Configuration management and SourceArtifacts

	Code-centric mode
	Entering code-centric mode
	Leaving code-centric mode
	Roundtripping in code-centric mode
	Code generation in code-centric mode
	Diagrams for which code not generated
	Code regeneration in code-centric mode

	Animation in code-centric mode
	Scope for code-centric models
	Properties modified by code-centric settings

	Animation
	Animation Overview
	Animation Features
	Preparing for Animation - General Procedure

	Create a Component
	Creating a component
	Setting the Component Features
	Creating a Configuration

	Setting the Instrumentation Mode
	Running the Animated Model
	Running on the Host
	Running on a Remote Target
	Opening a Port Automatically
	Testing an Application on a Remote Target

	Testing a Library
	Partially Animating a Model (C/C++)
	Setting Elements for Partial Animation
	Partial Animation Considerations
	Partially Animated Sequence Diagrams

	Ending an Animation Session
	Animation Toolbar
	Creating Initial Instances
	Break Command
	Command Prompt
	Generating Events Using the Animation Command Bar
	Events with Arguments
	Generating Events Using the Command History List

	Threads
	Thread View
	Setting the Thread Focus
	Names of Threads
	Notes on Multiple Threads
	Active Thread Properties
	Creating Breakpoints
	Defining Breakpoints
	Enabling and Disabling Breakpoints
	Deleting Breakpoints

	Event Generator
	Generating Events
	Events History List
	Resending Events

	Calling Animation Operations

	Scheduling and Threading Issues
	Using Partial Animation
	Scheduling and Threading Restrictions

	Animation Modes
	Silent Mode
	Watch Mode

	Viewing the Model
	Call Stack
	Event Queue
	Animated Browser
	Animated Sequence Diagrams
	Opening Animated Sequence Diagrams
	Adding and Deleting Instance Lines
	Auto-creating Animated Instances
	Showing State Transitions in Animated Sequence Diagrams
	The System Border
	Messages
	Limiting Message Display in Animated Sequence Diagrams
	Suppressing Animated Sequence Diagram Messages
	Dataflows
	Animating Return Values

	Animating Statecharts
	Animation Highlighting

	Instance Names
	Names of Class Instances
	Names of Component Instances
	Navigation Expressions
	Names of Special Objects

	Animation Scripts
	Sample Script
	Running Scripts Automatically

	Black-Box Animation
	Animation Properties
	Example
	Using the Properties for Black-Box Testing
	Instance Line Menu
	Behavior and Restrictions

	Animation Hints
	Exception Handling
	If Animation and Application are Out of Sync
	Passing Complex Parameters
	Combining Animation Settings in the Same Model
	Animation Feature Limitations

	Guidelines for Writing Serialization Functions
	AnimSerializeOperation
	AnimUnserializeOperation

	Running an Animated Application Without Rational Rhapsody

	Tracing
	Tracer Capabilities
	Starting a Trace Session
	Controlling Tracer Operation
	Accessing Tracer Commands
	Tracer Commands and an Input File
	Sending Commands in the Default Input File
	Sending Commands to the Animator in the Input File

	Threads in Tracing
	Tracer Commands
	break
	CALL
	display
	GEN
	go
	help
	input
	LogCmd
	output
	quit
	resume
	set focus
	show
	suspend
	timestamp
	trace
	watch

	Tracer Messages by Subject
	Ending a Trace Session

	Managing Web-enabled devices
	Use of Web-enabled Devices
	Setting Model Elements as Web-Manageable
	Limitations on Web-Enabling Elements
	Selecting Elements to Expose to the Internet

	Connecting to the Web Site from the Internet
	Navigating to the Model through a Web Browser
	For Applications Running on Your Local Machine
	For Applications Running on a Remote Machine or Server
	Troubleshooting Problems
	Connecting to Filtered Views of a Model

	The Web GUI Pages
	The Objects Navigation Page
	The Define Views Page
	The Personalized Navigation Page

	Viewing and Controlling of a Model via the Internet
	Customizing the Web Interface
	Adding Web Files to a Rational Rhapsody Model
	Accessing Web Services Provided with Rational Rhapsody
	The Upload a File to Server Page
	The Statistics Page
	The List of Files Page

	Adding Rational Rhapsody Functionality to Your Web Design
	Calling Element Values
	Binding Embedded Objects to Your Model
	Calling Model Functions

	Customizing the Rational Rhapsody Web Server
	Setting a Device Name
	Setting a Home Page
	Setting a Personalized Bottom Navigation
	Setting a Port Number
	Setting an Automatic Refresh Rate
	Enabling File Upload

	Reports
	ReporterPLUS
	Launching ReporterPLUS
	ReporterPLUS templates
	Using the ReporterPLUS interface
	Examining pre-fabricated templates
	Customizing templates

	Generating reports using existing templates
	Viewing reports online
	Generating a list of specific items
	Using the system model template
	Report layout
	Requirements diagrams

	The internal reporting facility
	Producing an internal report
	Setting the RTF character set
	Using the internal report output

	Java-specific issues
	Generation of Javadoc comments
	Including Javadoc comments in Rational Rhapsody-generated code
	Changing the appearance of Javadoc comments in generated code
	Enabling/disabling Javadoc comment generation
	"Built-in" keywords
	Description templates in JavaDocProfile
	Multiple appearance of Javadoc tags
	Adding new Javadoc tags
	Javadoc handling in reverse engineering and roundtripping
	Javadoc troubleshooting

	Static import
	Adding static imports to a model
	Reverse engineering/roundtripping and static import statements
	Code generation checks

	Static blocks
	Adding static blocks to classes in a model
	Changing a static block to an operation
	Reverse engineering/roundtripping and static blocks

	Generating JAR files
	Java 5 annotations
	Creating a JavaAnnotation type
	Using a JavaAnnotation type
	Using a JavaAnnotation within a model
	Code generation and Java 5 annotations
	Reverse engineering and Java 5 annotations
	Limitations for Java 5 annotations

	Java reference model

	Systems engineering with Rational Rhapsody
	Installing and launching systems engineering
	Creating a SysML profile project
	SysML profile features
	SysML profile packages
	Views and viewpoints
	Creating a view
	Adding a viewpoint

	Adding elements

	Harmony process and toolkit
	Harmony process summary
	Creating a Harmony project
	Creating an activity view
	Adding measures of effectiveness (moe)

	Harmony profile features
	Special Harmony menu commands
	Performing a Trade Analysis
	Architectural Design Wizard
	Modeling Toolbox

	Systems engineering requirements in Rational Rhapsody
	Analysis and requirements using the Rational Rhapsody Gateway
	Importing Rational Rhapsody Gateway requirements
	Limitations

	Searching requirements
	Creating Rational Rhapsody requirements diagrams
	Requirements diagram drawing tools
	Drawing and defining the dependencies

	Creating specialized requirement types
	Requirements tabular view

	Creating use case diagrams
	Boundary box and the environment
	Actors and systems design in use cases
	Use case features for systems engineering
	Associating actors with use cases
	Defining requirements in use case diagrams
	Tracing requirements in use case diagrams
	Dependencies between requirements and use cases
	Defining flow in a use case diagram
	Defining the stereotype of a dependency

	Activity modeling in SysML
	Action types in SysML
	SysML activity diagrams
	Creating an activity diagram
	Setting activity diagram properties
	Activity diagram drawing tools for systems engineering
	Drawing action states
	Drawing a initial flow
	Drawing a subactivity
	Drawing activity flows
	Drawing activity flows between states
	Drawing swimlanes
	Drawing a fork node
	Drawing a join node
	Creating a sequence diagram from an activity diagram

	Creating a design structure
	Block properties
	Blocks and behaviors

	Creating a block definition diagram
	Block definition diagram drawing tools
	Adding graphics to block definition diagrams

	Creating an internal block diagram
	Internal block diagram drawing tools
	Drawing the parts
	Drawing standard ports and links
	Specifying the port contract and attributes

	Parametric diagrams
	Parametric diagram drawing tools
	Creating the constraint block
	Creating the parametric diagram
	Binding constraint properties together
	Adding equations

	Implementation using the action language
	Basic syntax rules
	Frequently used statements
	Reserved words
	Assignment and arithmetic operations
	Defining an action using the action language
	Checking action language entries
	Action language reference
	Printing
	Comparison operators
	Conditional statements
	Incremental looping
	Conditional looping
	Launching block operations
	Generating events
	Generating port events
	Referencing event parameters
	Testing port for an event
	Test to see if currently in a state

	System validation
	Creating a component
	Setting the component features
	Creating a configuration

	Preparing to Web-enable the model
	Creating a Web-enabled configuration
	Selecting elements to Web-enable

	Connecting to the Web-enabled model
	Navigating to the model through a Web browser
	Viewing and controlling a model
	Sending events to your model

	Importing DoDAF diagrams from Rational System Architect
	Mapping the import scope
	Rational System Architect type mappings to Rational Rhapsody
	Adding a default map entry

	Importing the Rational System Architect elements
	Converting imported data into a Rational Rhapsody diagram
	Post processing mechanism for Rational System Architect users
	Generating a Imported Elements report

	Integration with Teamcenter systems engineering
	UML or SysML
	Prerequisites for working with Rational Rhapsody
	Importing a Rational Rhapsody model into Teamcenter
	Creating a Rational Rhapsody model from existing Teamcenter Project
	Modifying shared elements from within Teamcenter
	View corresponding Rational Rhapsody element
	Modifying shared elements from within Rational Rhapsody

	Limitations

	The MicroC profile
	The extended execution model
	MicroC code generation
	UI changes

	The mxf
	Modeling network ports
	Optimizations for static systems
	Direct flow ports
	Direct relations

	Monitoring of application running on target
	Using target monitoring
	Generating instrumentation code
	Configuring communication with application on target
	Monitoring the application on the target

	Viewing MicroC properties

	IBM Rational Rhapsody DoDAF Add On
	Rational Rhapsody for DoDAF Add On and profile
	DoDAF views
	Operational view
	Systems view
	Technical view
	All views

	Products included in the Rational Rhapsody for DoDAF Add On
	Rational Rhapsody for DoDAF Add On helper utilities
	Setup DoDAF packages
	Create OV-2 from Mission Objective
	Create OV-6c from Mission Objective
	Update OV-2 from OV-6c
	Generate Service Based OV-3 Matrix
	Generate SV-3 Matrix
	Generate SV-5 Summary Matrix
	Generate SV-5 Full Matrix
	Rational Rhapsody for DoDAF Add On Report Generator

	Rational Rhapsody project for Rational Rhapsody for DoDAF Add On configuration
	Creating a Rational Rhapsody for DoDAF project
	Diagrams toolbar for a Rational Rhapsody for DoDAF project
	DoDAF tags
	Accessing tags through the Rational Rhapsody browser
	Accessing tags from a diagram, element, or relation

	Generating the OV-3 Operational Information Exchange Matrix
	Generating the DoDAF report from the architecture model

	Limitations
	Troubleshooting
	Verifying the Rational Rhapsody for DoDAF Add On installation
	Manually adding the Rational Rhapsody for DoDAF Add On helpers
	Correcting messages that appear as mission objectives
	View, caption, or table of figures is missing from document

	IBM Rational Rhapsody MODAF Add On
	Rational Rhapsody for MODAF Add On
	MODAF viewpoints
	All Views viewpoint
	Strategic viewpoint
	Operational viewpoint
	Systems viewpoint
	Acquisition viewpoint
	Technical viewpoint

	Views Included in the Rational Rhapsody for MODAF Add On
	Configure a Rational Rhapsody project for MODAF
	Creating a Rational Rhapsody for MODAF project

	Customize the Rational Rhapsody table and matrix views for MODAF
	Creating stereotypes and using tags
	About creating table/matrix views in MODAF
	CustomizableTableAndMatrixLayoutsPkg
	CustomizedStereotypesPkg
	CustomizableTableAndMatrixViewsPkg

	Create documentation for Your MODAF project with ReporterPLUS
	Setting up ReporterPLUS
	Document structure
	Generating a MODAF document
	Troubleshooting ReporterPLUS and Rational Rhapsody for MODAF

	The Dependencies Linker
	Using the Dependencies Linker
	Troubleshoot the Dependencies Linker

	General troubleshooting
	Verify the Rational Rhapsody for MODAF Add On installation
	Find icons missing from diagram tools
	Check your Rational Rhapsody for MODAF model
	Setting up the Rational Rhapsody Check Model tool for a Rational Rhapsody for MODAF Add On project
	Running the Rational Rhapsody Check Model tool

	The Rational Rhapsody automotive industry tools
	AUTOSAR modeling
	The AUTOSAR workflow
	Creating an AUTOSAR project
	Creating AUTOSAR diagrams
	Checking an AUTOSAR model
	Import/export from/to AUTOSAR XML format

	The AutomotiveC profile
	Automotive-specific adaptor
	The OSEK21 adaptor

	Automotive-specific stereotypes
	The stereotypes are available for the C language and in the Automotive C profile only.
	Configuration stereotypes

	Simulink and StatemateBlock integration capabilities
	Fixed-point variable support
	AutomotiveC properties

	StatemateBlock in Rational Rhapsody
	Preparing a Rational StatemateBlock for Rational Rhapsody
	Creating the Rational StatemateBlock in Rational Rhapsody
	Connecting and synchronizing Rational Statemate and Rational Rhapsody
	Troubleshooting Rational Statemate with Rational Rhapsody

	IBM Rational DOORS interface
	Installation requirements
	Rational DOORS version 7.0
	Solaris-specific information

	Using Rational Rhapsody with Rational DOORS
	Configuring Rational Rhapsody and Rational DOORS with the Gateway wizard
	Requirements synchronization in Rational DOORS and Rational Rhapsody
	Navigating from Rational DOORS to Rational Rhapsody

	Rational DOORS projects
	Invoking the Rational DOORS interface
	Set export options
	Identify which formal modules to create
	Selecting Rational DOORS export options
	Linking the Rational DOORS data
	Links in Rational DOORS between use case and sequence diagrams

	Information stored in Rational DOORS
	Rational DOORS information stored in Rational Rhapsody
	Data checking
	Problem Description window

	Mapping Requirements to imported elements
	Ending a Rational DOORS session
	Rational DOORS with Rational Rhapsody summary

	Rational Rose models
	Importing a Rational Rose model
	Setting up the XML map file for importing Rational Rose properties

	Incremental import of Rational Rose models
	Before the import process starts
	About processing time and project size

	Code import
	Merging imported code to the imported Rational Rose model
	How Rational Rose constructs and options map into a Rational Rhapsody model
	Imported association classes

	XMI exchange tools
	Using XMI in Rational Rhapsody development
	Exporting a model to XMI
	Examining the exported file
	Importing an XMI file to Rational Rhapsody
	More information

	Integrating Simulink components
	Importing Simulink components
	Integration of the Simulink-generated code
	Troubleshooting Simulink integration

	Creating Simulink S-functions with Rational Rhapsody
	Using Rational Rhapsody in conjunction with Simulink
	Creating a Simulink S-function
	S-function creation: behind the scenes
	Timing and S-Functions
	Limitations

	The Rational Rhapsody command-line interface (CLI)
	RhapsodyCL
	Interactive mode
	Socket mode

	Command-line syntax
	Switches
	Commands
	Order of commands

	Include commands in a script file
	Exit after use of command-line options
	Return codes
	Examples
	Command-line switches
	Command-line commands

	Rational Rhapsody shortcuts
	Accelerator keys
	Mnemonics
	Keyboard modifiers
	Standard Windows keyboard interaction
	Rational Rhapsody accelerator keys
	Application accelerators
	Accelerators and modifier usage in diagrams
	Code editor accelerators

	Useful Rational Rhapsody Windows shortcuts
	Changing settings to show the mnemonic underlining

	Technical support
	Contacting IBM Rational Software Support
	Prerequisites
	Contacting Support
	About Rational Rhapsody
	License Details

	Reporting Rational Rhapsody Problems from the Software

	Rational Rhapsody glossary
	Index

